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Abstract

Facial expression recognition (FER) has greatly bene-
fited from deep learning but still faces challenges in dataset
collection due to the nuanced nature of facial expressions.
In this study, we present a novel unlabeled dataset and semi-
supervised contrastive learning framework that utilizes Re-
action Mashup (RM) videos, a video that includes multiple
individuals reacting to the same film. We created a Reaction
Mashup dataset (RMset) from these videos. Our framework
integrates three distinct modules: A classification module
for supervised facial expression categorization, an atten-
tion module for inter-sample attention learning, and a con-
trastive module for attention-based contrastive learning us-
ing RMset. We utilize both the classification and attention
modules for the initial training, subsequently incorporat-
ing the contrastive module to enhance the learning process.
Our experiments demonstrate that our method improves
feature learning and outperforms state-of-the-art models
on three benchmark FER datasets. Codes are available at
https://github.com/yunseongcho/RMFER.

1. Introduction
Facial expression plays an essential role in non-verbal

communication [9,20]. Facial expression recognition (FER)

is a task to classify facial expressions presented in an input

image or a video into a predefined set of categories, e.g.,
neutral, happiness, sadness, surprise, fear, disgust, anger,

and contempt [11, 31]. Lately, the FER has attracted much

attention due to its applications in marketing, education, af-

fective computing, and other HCI applications.

With recent advances in deep learning [25] and the emer-

gence of large-scale datasets such as AffectNet [33], RAF-

DB [26], and FERPlus [1], FER approaches [27, 34, 47,

50] have advanced significantly, overcoming long-standing

challenges in in-the-wild situations such as various poses,

illumination, and occlusion. Despite significant progress,
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Figure 1. Overview of RMset-based contrastive learning. An

anchor face is randomly chosen from a video, with surrounding

faces forming the positive set. Faces that share the anchor’s iden-

tity but are temporally distant form the negative set. During sam-

pling, attention to the anchor improves positive and negative sets.

FER continues encountering unresolved challenges, such as

mislabeling due to annotator subjectivity and the subtlety

and complexity of facial expressions. As collecting new

data and annotations is time-consuming and labor-intensive,

self-supervised approaches, such as contrastive learning,

may present a potential solution as they do not rely on fully

labeled data.

However, most contrastive learning approaches in

FER [18, 19, 29, 32, 36] require labeled data, which can

be difficult and expensive. Liu et al. [29] and Meng and

Liu [32] achieved identity-invariant FER through con-

trastive learning with labeled datasets. Kim and Song [18]

performed contrastive learning on feature transformation,

but this approach cannot be easily applied to unlabeled

datasets. The same authors performed contrastive learning

between weak and strong emotions [19], requiring a labeled

dataset for valence and arousal labels. In addition, unsu-

pervised learning without labeled data typically performs

worse than supervised learning [35, 40, 48].

Consequently, semi-supervised learning, which lever-
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ages labeled data to its fullest extent and incorporates

unlabeled data, is gaining increased attention. Recently,

Li et al. [24] proposed a semi-supervised algorithm where

pseudo labels were obtained for the unlabeled data and di-

vided into two subsets based on their confidence score. Con-

trastive learning was applied to the subset with low confi-

dence scores. However, their confidence score is not directly

correlated to the objective of contrastive learning and is sub-

optimal. We proposed contrastive learning, embedding the

attention learning mechanism within it; thus, our attention

is better suited for contrastive learning.

To fully exploit the advantages of contrastive learning,

we construct the RMset from reaction mashup (RM) videos

and introduce a novel semi-supervised algorithm optimized

for this dataset. The RM video records multiple viewers re-

acting toward a common film, as shown in Fig. 2. We as-

sume that when viewing a specific video, people’s reactions

would be similar, while each person’s expression in the

video would change according to the time. In other words,

based on an arbitrary anchor face, the facial expressions of

people with different identities in nearby frames are likely

to be similar. Our main assumption of contrastive learning

on the RMset is illustrated in Fig. 1. However, faces with the

same identity in distant frames may differ. One may think

we can simply apply contrastive learning by using the above

scenarios as positives and negatives. However, the naı̈ve ap-

plication of contrastive learning may not work well for the

following reasons: Being in a nearby frame does not nec-

essarily guarantee the expression similarity to the anchor

face, and faces located far away from the anchor face do

not always exhibit different expression to that of the an-

chor face as well. Therefore, we need a method to mea-

sure the expression similarity between the anchor face and

positive and negative candidates. We propose inter-sample

attention, which measures the expression similarity. After-

ward, we sample the improved positive and negative sets

from the initial sets based on the measure. Finally, we apply

contrastive learning to these improved sets. In order to ap-

ply it in our scenario, the existing NT-Xent loss [43] needs

to be expanded to have multiple positives.

Our contribution is summarized as follows:

• We present the RMset, which can be effectively uti-

lized for semi-supervised contrastive learning in FER.

To the best of our knowledge, this is the first large-

scale unlabeled dataset for this task.

• We propose a novel semi-supervised contrastive learn-

ing framework, RMFER, that learns the inter-sample

attention for contrastive learning. Based on this, con-

trastive learning on the unlabeled dataset (i.e., RMset)

could be effectively achieved.

• From comprehensive evaluations, we verify that RM-

FER achieves state-of-the-art performance on three

FER datasets (i.e., AffectNet, RAF-DB, and FERPlus).

We also confirm that our scheme leads to better feature

distribution via MDS plots.

2. Related Work
2.1. Deep Facial Expression Recognition

Various Deep-FER methods have been proposed for

solving problems such as region attention [17,52,54], noisy

annotation [5, 8, 30, 56, 57, 60, 61], and uncertain expres-

sion [39, 49, 59]. Although multiple issues exist in FER,

we introduce identity-invariant FER and feature learning for

FER, which are directly related to our study.

Identity-invariant FER. In the real-world scenario, per-

forming FER regardless of identity is one of the important

issues. Liu et al. [29] regarded face images with different fa-

cial expressions of the same identity as hard negatives and

those with the same facial expressions of different identities

as positives and performed deep metric learning. Yang et

al. [55] employed a conditional GAN to produce a neutral

image. A fully connected layer was added to the intermedi-

ate layer to fit FER, as the GAN model was fixed after train-

ing and assumed to have learned expression removal. To en-

able identity-invariant embedding, [58] extracts an identity

feature from a fixed identity model and a face feature from

a face model with the same structure. Then, they use the de-

viation between the two features as an expression feature.

Following that, the FEC dataset [45] is used to compare

contrastively to discover the expression distribution.

In our method’s attention-based contrastive learning, we

assume that when the anchor perceives the same expres-

sions across different identities, they are considered posi-

tive; however, other expressions from the same identity are

regarded as negative. The anchor and positives also learn to

pull, while negatives learn to push. The same expression is

mapped to be the same regardless of identity; hence, this is

an assumption for identity-invariant FER.

Feature Learning for FER. Feature learning in FER aims

to maximize intra-class similarity and inter-class separa-

tion. [4], [28] and [12] all suggest a variation of the cen-

ter loss [51]. They present island loss, regularized center

loss, and DDL-loss, respectively. Their function is not only

to make each cluster agglomerate but also to make the dis-

tance between the clusters increase, all the same. Another

center loss variant, the DACL, is presented by Farzaneh and

Qi [13]. By assigning distinct weights for the center loss

for each feature, DACL decreases the influence of irrele-

vant features on the model compared to the center loss [51],

which reduces the distance for all features equally. Siqueira

et al. [42] demonstrated that ESR [41] could be included

in large-scale FER and that the ensemble approach of CNN

allows for greater feature learning. According to Ruan et

al. [37], the expression feature consists of shared and par-
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Figure 2. The process of creating the RMset. In the “Removal Area Selection” step, the trigger film is seen in each RM video. The trigger

film can disturb the face detection algorithm (e.g. when faces appear in the film); thus, we remove pixels there before proceeding to the

“Face ID assignment” step. Then, face ID is assigned to each face detected in the first frame and tracked for later frames. In the “Image

transformation” step, the distorted face (a) is corrected to a normal face (b) by adjusting the bounding box size involving backgrounds.

ticular information in each expression category. They sug-

gested the FDRL that acquires information while decom-

posing an expression feature into a latent feature and its re-

construction.

In inter-sample attention learning and attention-based

contrastive learning, inter-class separation and intra-class

similarity between features increase without explicit super-

vision, similar to center loss and its variations. While learn-

ing inter-sample attention, the separation between classes

becomes apparent, and cohesion within the class is strength-

ened through contrastive learning.

2.2. Contrastive Learning

SimCLR [6] presents contrastive learning using aug-

mentation. Under the premise that augmentation does not

change semantic information, they trained the model by

making positive samples, using augmentation for anchor,

and negative samples, which are different. In SimCLR, the

anchor and embedding of positive and negative samples

were passed through the projection head, and then con-

trastive learning was performed using NT-Xent loss [43].

MoCo [16] views contrastive learning in terms of building

dynamic dictionaries. The key sampled from the data is ex-

pressed through the encoder, and the corresponding query

should be similar to the matching key and dissimilar to the

others. Here, MoCo is proposed to satisfy two characteris-

tics that a dictionary should have: large scale and consis-

tency. Specifically, MoCo can have an extensive dictionary

by storing only the key values of features, not images, using

a queue, and achieving consistency using a slowly progress-

ing encoder by momentum update. BYOL [15] proposes

a method for contrastive learning without negative pairs.

They presented two networks, an online network, and a tar-

get network, and let the online network predict the repre-

sentation of the target network of different augmentations of

the same image. This enabled contrastive learning without

negative pairs while avoiding the collapse problem. Sim-

siam [7] revealed that the stop gradient is more decisive for

avoiding the collapse problem than the momentum update

of BYOL [15] and succeeded in contrastive learning only

with positive pairs. Contrastive learning has been extended

to video representation learning [21, 22].

3. Reaction Mashup Dataset (RMset)
In this section, we describe the methodology utilized for

acquiring and generating the reaction mashup dataset (RM-

set), a collection of reaction videos of multiple viewers of a

common film they are watching. We illustrate some exam-

ples in Fig. 2. When multiple persons are watching the same

film, their expressions in the same frame are often similar.

We call the film a “trigger film” as it triggers the reaction of

viewers.

We compiled reaction mashup (RM) videos featuring

seven basic facial expressions of individuals sourced from

YouTube. These facial expressions include happiness, sad-

ness, surprise, fear, disgust, anger, and contempt. Given that

the neutral expression was consistently present across all

videos, we did not collect it separately. To search videos,

we used keywords like “sad reaction mashup,” “try not to

laugh,” or “try not to be scared.” Only videos with a res-

olution of 1080p or higher were collected to reduce im-

age noise. In total, we collected 216 videos and contained

seven expressions as uniformly as possible to avoid the data

imbalance problem. In each video, about 10 to 20 people

appear. In aggregate, we collected 3,141,787 frames, 3,485

people, and 45,677,989 facial images. For details on licens-

ing, keywords used for collection, statistics, and more for

RMsets, refer to the supplemental Sec. 2. We index each
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face by film name, frame index, and face ID. Each per-

son in the RM video watches a specific film, which we

use to discriminate the videos. Each video comprises multi-

ple frames; in each frame, we have multiple people’s faces,

with a unique ID assigned to each person.

Our pre-processing steps are as follows:

Step 1: Removal Area Selection. Each RM video contains

a trigger film and the faces of people who react to it. We

must remove the area where the trigger film appears since

face samples are often mistakenly obtained from the region.

This can be achieved by manually reading the region coor-

dinates and removing the pixels.

Step 2: Face ID Assignment. In contrast to the film name

and frame index, which are available in a video, face IDs are

not trivially available. A pre-trained face detector [10] de-

tects Human faces in the first frame. If any faces are missed,

we manually label bounding boxes for them. Then, we as-

sign an ordered index to all faces in the first frame. Faces in

the later frames are tracked from the first frame’s faces, as

discussed in the next step.

Step 3: Face Tracking. We apply the same face detector to

the later frames. As the position of the faces does not change

significantly in later frames, the identity of each face can be

distinguished through the position of each face. The IOU

score between the current frame’s detected bounding boxes

and the first frame’s bounding boxes are compared; based

on this, the face IDs are assigned. For exceptional cases

where the face detector misses any faces, or new persons

appear in the middle frames, those faces cannot be reflected

in our framework; we ignore them as it is rare, and there are

many samples other than them.

Step 4: Image Transformation. RM videos often involve

faces whose width/height ratios are different. This differ-

ence could lower the FER performance. Thus, we resize the

face image patches, as illustrated on the right side of Fig. 2.

Let wf and hf be the width and height of the face area, re-

spectively, and the width and height of the entire image are

denoted as w and h. While making h = hf , we adjust wf

towards w = wf +Δw where Δw is 0.31×wf . As a result,

the ratio of hf/wf becomes approximately 1.31, similar to

the AffectNet dataset after the process. Upon completion of

the process, we normalize the pixel values of images. The

RMset will be publicly released upon acceptance.

4. The proposed method: RMFER
In FER, we aim to map an RGB image x ∈ X ⊂

R
260×260×3 to the corresponding facial expression y ∈

Y ⊂ R
E×1, where E denotes the number of pre-defined

expression categories of the benchmark dataset. Our RM-

FER framework is developed to train the feature extractor

fFeat : X → F using three modules, the classification

module, attention module, and contrastive module, on the

benchmark dataset with annotations {xb
i ,y

b
i}Ni=1 as well as

the collected RMset {xRM
i }Mi=1 without annotation. M and

N denote the number of samples in the RMset and bench-

mark dataset, respectively, and generally M � N . The

classification network fFER◦fFeat is composed of the feature

extraction network fFeat : X → F that first maps the input

image x ∈ X into the feature vector f ∈ F ⊂ R
ndim×1 and

the fully connected layers fFER : F → Y that again maps

it towards the expression output y ∈ Y , where ndim denote

the number of feature dimensions.

In the first few epochs, we enforce the feature extractor

fFeat to learn the mapping from the input x to the corre-

sponding expression feature f suitable for classifier fFER as

well as inter-sample feature f ’s similarity using classifier

f IAL based on the benchmark dataset. After that, the feature

space F of fFeat is enriched by exploiting the RMset to learn

further the feature similarities among the samples using the

contrastive module. The overall operation is summarized in

Fig. 3, and we describe each component in detail in the re-

mainder of this section. Additionally, refer to supplemental

Sec. 4 for the criteria for the first few epochs.

4.1. Inter-sample Attention Learning (IAL)

In this step, we involved the benchmark dataset with dis-

cretized annotations {xb
i ,y

b
i}Ni=1 to learn the mapping be-

tween the input image x and the expression label y, at the

same time we learn the feature vector f ’s pairwise similarity

{ajk}j=B,k=B
j=1,k=1 within batch samples, where B denotes the

number of samples in each batch.

Batch-wise Cosine Similarity-based Processing. For B
samples in the same batch, we make the B×B-dimensional

cosine similarity matrix S on transformed feature vectors

zi = H(fi) whose entries sij using the cosine similarity

measures. The projection head H is involved in order to

project the original feature vector into the same dimensional

different space similar to [6]. In our approach, self-masking

is employed to compel the model to focus on inter-sample

attention by setting the self-attention values to zero. Specif-

ically, as the softmax function is applied row-wise to the co-

sine similarity matrix S, we replace the diagonal elements

of S with 10−6, ensuring the self-attention, subsequent to

the softmax operation, approaches a value close to zero:

sij =

⎧⎨
⎩

zi·zj

‖zi‖‖zj‖ , if i �= j

10−6, otherwise

(1)

To generate the attention feature as a summation of features

excluding itself within the batch, we transform the similar-

ity matrix S into matrix A by utilizing a softmax operation.

After dividing sij by the scale value τ , we apply the softmax

as follows:

aij =
exp (sij/τ)∑
j exp (sij/τ)

(2)
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Figure 3. Schematic diagram of our proposed framework, RMFER. Our framework consists of three modules that share one backbone:

classification module, attention module, and contrastive module. The classification module receives the RGB image x of the benchmark

dataset as input and outputs the expression output y. The attention module receives a batch of RGB image x as input and creates an

attention matrix A through batch-wise cosine similarity-based processing and self-masking softmax. An attention feature vector v is

created by matrix multiplication of attention matrix A and feature vector f , and inter-sample attention is learned by v passing through

f IAL. The classification and attention modules are trained for the first few epochs. After that, the contrastive module is added and receives

a batch of the RMset, anchor, positive set P, and negative set N as inputs, which P and N are improved through attention-based sampling.

The improved positives Pimp, negatives Nimp, and the anchor passes through fFeat again to be applied to LACL (Eq. (10)).

The attention feature vector for the i-th sample vi is ob-

tained by weight-summing the feature similarity of i-th and

j-th sample with the feature vector j-th sample’s feature

vector fj as follows:

vi =
B∑

j=1

aij × fj (3)

Afterward, we map the attention feature vector vi towards

the expression y via the fully connected layer f IAL : V →
Y , which has the same architecture as fFER.

Then, the attention value between i-th and j-th sample

aij is learned in a supervised way on the benchmark dataset.

Here, we assume that if i-th and j-th samples are similar, j-

th sample’s feature vector can be exploited to represent the

attention i-th feature vector vi and the attention value aij
between i-th and j-th samples is learned higher than others.

Similarly, we also assume that the attention value between

i-th and j-th sample is learned lower for the dissimilar case.

Loss. The total loss of the IAL is as follows:

Lpre = LFER(f
Feat, fFER) + λ1LIAL(f

Feat, f IAL) (4)

where λ1 are used to balance with LFER and the loss LFER

is defined for closing the distance between the prediction

of our FER classifier fFER(x) and ground truth y using the

cross-entropy loss as follows:

LFER(f
Feat, fFC) = −

N∑
i=1

yi · log
(
fFC

(
fFeat(xi)

))
(5)

and the loss LIAL is also the cross-entropy loss defined on

fFeat and f IAL as follows:

LIAL(f
Feat, f IAL) = −

N∑
i=1

yi · log
(
f IAL(v̂i)

)
(6)

where v̂i is the differentiably outputted value from x using

Eq. (1), (2), (3) and fi = fFeat(xi).

4.2. Attention-based contrastive learning (ACL)

The goal of the attention-based contrastive learning is

further to learn the output space of feature extraction net-

work fFeat based on the RMset {xRM
i }Mi=1. There could be

a couple of ways to exploit the RMset to improve the fea-

ture distribution; we proposed to use the contrastive learn-

ing framework for that by fully exploiting priors inherent in

the RMset.

Priors inherent in the RMset. Our RM videos are com-

posed of multi-persons’ faces watching the same film and

the RMset is made from it. Let xl
t be the face obtained from

the l-th person in the t-th frame. Depending on the content
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of the film multiple persons are watching, the expression

value of faces in the same frame, e.g., xl
t and xl′

t might be

similar to each other; while the expression value of same

person’s faces that exist in distance frames, e.g., xl
t and xl

t′

might become dissimilar. To exploit the prior inherent in the

RMset, we first construct the positive set P and negative set

N for the anchor face xl=L
t=T using the information:

P = {xl
t|l ∈ [1, L′], l �= L and t ∈ [T − d, T + d]}, (7)

N = {xl=L
t |t < T − d′ or t > T + d′} (8)

where L′ denotes the total number of persons in the video

and d = 5, d′ = 30 are the hyper-parameters for deciding

the nearby frames and distant frames, respectively.

Improving Positive/Negative Sets using Attention. We

empirically found that our initial assumption on positive

set P and negative set N is roughly valid (see Fig. 1.),

while some cases violate our initial assumption: For mul-

tiple faces with different identities watching the same film

frame, their expression could be different. Also, the same

person’s face in distant frames could have similar expres-

sions.

To relieve this, we proposed to further sample improved

positives Pimp and improved negatives Nimp from positive

set P and negative set N, respectively, using the cosine

similarity with the anchor. The self-masking softmax that

computes inter-sample attention from cosine similarity is a

monotonically increasing function. Therefore, if the model

is IAL trained to have high inter-sample attention between

similar facial expressions and low inter-sample attention be-

tween dissimilar facial expressions, the cosine similarity

between faces will have the same property. (see Sec. 4.1).

Among the samples in the initial positive set P, we select

the samples whose cosine similarity to the anchor face is

high. Similarly, among the samples in the initial negative

set N, we select the samples whose cosine similarity to the

anchor face is low. Then, we choose upper γ ratio and lower

γ ratio of samples for improved positive/negative sets Pimp

and Nimp out of the initial positive/negative sets P and N.

We set γ as 0.1 from the 10-fold cross-validation and denote

the testing accuracy for this in the Supplemental Sec. 6.

Loss. The attention-based contrastive learning loss LACL is

applied to enrich fFeat network based on improved positive

set Pimp and improved negative set Nimp generated from

the RMset. The loss Lpre based on the benchmark dataset is

additionally involved to prevent forgetting the information.

Thus, the total loss of the RMFER is composed as follows:

Ltotal = Lpre + λ2LACL(f
Feat) (9)

where λ2 are used to balance each term.

By extending the NT-Xent loss used in [6], which in-

volves only one positive sample for the anchor, we use the

loss function LACL that can involve multiple samples in both

positive and negative sets as follows:

LACL(f
Feat) = − log

∑
i∈Pimp

exp
(
si
τ

)

∑
i∈Pimp

exp
(
si
τ

)
+

∑
j∈Nimp

exp
( sj

τ

) (10)

where τ is equal to Eq. (2)’s and s denotes the cosine simi-

larity of i, j between the anchors.

4.3. Testing

Testing is performed using the feature extractor fFeat and

classifier fFER. Without adding any other modules for the

testing, we use only enriched feature extractor fFeat by the

IAL and ACL, which are semi-supervised learning.

5. Experiment
In this section, we brief our experimental settings and

current against state-of-the-art methods qualitatively and

quantitatively, alongside ablation studies on various hyper-

parameters.

5.1. Experimental Settings

Datasets. To validate our method, we evaluate on three

FER benchmarks: RAF-DB [26], AffectNet [33], and FER-

Plus [1]. AffectNet [33] is the largest database of affect that

provides eight categorical basic emotions (seven basic emo-

tions plus contempt). About 280, 000 images are manually

annotated with eight basic emotions and used as a train-

ing set, and a total of 4, 000 images, 500 for each emo-

tion, are used as a validation set. The testing set is currently

unpublished; thus, the validation set is used for the eval-

uation. In the validation set of AffectNet, the number of

samples on each label is balanced. RAF-DB [26] consists

of a total of 29, 672 images whose annotation is performed

by crowdsourcing. RAF-DB provides seven basic emotions

(surprised, fearful, disgusted, happy, sad, angry, and neu-

tral). Specifically, there are 15, 339 basic emotion images,

which are divided into 12, 271 training sets and 3, 068 test-

ing sets. FERPlus [1] is an extension of the FER2013 [14]

dataset, where ten new annotators vote for the labels. It con-

sists of a grayscale image with a resolution of 48 × 48 and

has eight emotion categories. The train, validation, and test

sets have 28, 389, 3, 553, and 3, 546 images, respectively.

Evaluation Metrics. We used overall accuracy and aver-

age accuracy in our evaluation. Overall accuracy is a metric

for the entire test set without considering class-specific per-

formance. If the test set is imbalanced, this is an inappro-

priate metric to evaluate the average performance of each

class. Therefore, we additionally used average accuracy, a

metric that shows the average performance of each class.

The average of the diagonal values of the confusion ma-

trix represents average accuracy. For the AffectNet, due to
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Method
AffectNet RAF-DB FERPlus

7 emotion 8 emotion overall average overall average

PSR [46] 63.77 60.68 88.98 80.78 89.75 69.63

ESR [42] - 59.30 - - 87.15 69.26

DDA loss [12] 62.34 - 86.90 79.71 - -

LDL-ALSG [5] 59.35 - 85.53 - - -

SCN [49] - 60.23 88.14 - 89.35 -

RAN [50] - 59.50 86.90 - 89.16 -

KTN [23] 63.97 - 88.07 81.38 90.49 74.31

DAN [52] 65.69 62.09 89.70 85.32 - -

FER-VT [17] - - 88.26 80.63 90.04 73.24

DACL [13] 65.20 - 87.78 80.44 - -

RUL [59] - 61.43 88.98 - 88.75 -

EfficientFace [61] 63.70 60.23 88.36 - - -

DMUE [39] - 63.11 89.42 - 89.51 -

EfficientNet-b2 [38] 66.34 63.03 - - - -

EAC [60] 65.32 - 89.99 - 89.64 -

SOFT [30] 66.13 62.69 90.42 - 88.60 -

Ours w/o ACL, IAL 66.13 63.32 90.58 84.03 86.62 76.30

Ours w/o ACL 66.33 63.54 90.81 84.55 86.57 76.71

Ours (full) 66.85 63.82 91.33 85.59 86.48 77.37

Table 1. Quantitative comparisons with state-of-the-art methods in

AffectNet, RAF-DB, FERPlus datasets.

Figure 4. Visualization of attention for the samples of the RM-
set. As we involve the ACL and IAL losses, the attention becomes

better: Attention needs to be higher for similar expressions while

becoming less for different expressions with the same identity.

the lack of contempt expression in the natural world, some

studies [5, 12, 13, 23, 54, 60] use only seven classes exclud-

ing contempt expression, while others [39,42,49,50,59] use

eight classes including contempt expression. We evaluated

ours using both to compare with all methods for AffectNet.

As the validation set of AffectNet is balanced, there is no

need to measure the average accuracy; while in RAF-DB

and FERPlus, the test set is imbalanced, so we additionally

report average accuracy in RAF-DB and FERPlus.

5.2. Results and Discussion

Table 1 presents our quantitative comparisons to state-of-

the-art methods in three datasets (i.e., AffectNet, RAF-DB,

and FERPlus). ‘Ours w/o ACL, IAL’ is a network trained

only using LFER(f
Feat, fFER), and it is the same setting as

[38]. However, we obtain slightly better performance com-

pared to [38]. We think the reason is that we additionally

consider the label imbalance in a batch during the training

for IAL. ‘Ours w/o ACL’ is trained additionally using the

loss Lpre (Eq. (4)) so that the feature learns inter-sample at-

tention. Even though only inter-sample attention is added

to the baseline, performance improvement occurs in almost

all datasets. This means that inter-sample attention learning

acts positively on expression classification. ‘Ours’ is trained

using the total losses Ltotal (Eq. (9)). This shows the best

performance in all measures in all datasets except for the

‘overall accuracy’ of FERPlus. This is due to the extremely

unbalanced test set of FERPlus. In an unbalanced test set,

overall accuracy is strongly influenced by the class with the

most samples. Refer to Sec. 5 in the Supplemental for an in-

depth discussion of the underlying reasons behind this phe-

nomenon; additionally, Sec. 3 provides more experimental

results on the effectiveness of the RMset and the RMFER

framework, time efficiency, and hyper-parameter analysis.

Our setting using a labeled dataset combined with unsu-

pervised video via contrastive learning could be considered

semi-supervised learning. Thus, we compare our method to

several state-of-the-art semi-supervised learning methods,

as in Table 2. In the experiment, labeled data come from

the RAF-DB selecting only 4, 000 images: This is the same

setting as [24]. Our method that involves the RMset using

contrastive learning clearly outperforms Li et al. [24], which

also performs contrastive learning, as mentioned in Sec. 1.

We confirm the superiority of involving attention-learning

mechanisms within contrastive learning.

Qualitative Results. The value of attention for each model

in real-world images can be found in Fig. 4. It visualizes

attention with anchors by selecting an anchor, positives,

and negatives from the RMset that is not used during train-

ing. Overall, the attention given to positives is highest in

‘Ours’ and lowest in ‘Ours w/o ACL, IAL.’ Also, the atten-

tion given to negatives is highest in ‘Ours w/o ACL, IAL’

and lowest in ‘Ours.’ In other words, even if negatives and

the anchor share the same identity, inter-sample attention is

trained to react to the expression similarity rather than the

similarity of the identity in the IAL. The ACL reinforces

that effect.

Additionally, the MDS plot based on the cosine distance

is provided to examine the impact of inter-sample atten-

tion learning and contrastive learning on feature learning. In

Fig. 5, the classes are mixed at ‘Ours w/o ACL, IAL,’ but it

can be observed that a boundary is established for each class

when attention is learned. Moreover, each class starts to

converge after contrastive learning is conducted. The mean

distance from the center is gradually reduced from 0.329,

0.325, and 0.291 for (a), (b), and (c). It further supports the

finding.

5.3. Ablation Study

Here, we evaluated the effectiveness of the ‘self-masking

softmax’ we proposed in the IAL over the standard softmax
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(a) Ours w/o ACL, IAL (b) Ours w/o ACL (c) Ours

Figure 5. MDS plot of (a) Ours w/o ACL, IAL, (b) Ours w/o ACL, (c) Ours in AffectNet-7. An X mark represents the center of each

expression sample in the MDS plot. The mean distance from the center in the MDS plot is 0.329, 0.325, and 0.291 for (a), (b), and (c),

respectively. More analysis is given in the supplemental Sec. 7.

Method Overall (%)

MixMatch [3] 83.57

UDA [53] 83.56

ReMixMatch [2] 83.51

FixMatch [44] 83.31

Ada-CM [24] 84.42

Ours 87.13

Table 2. Comparison to semi-

supervised learning methods

Acc(%)
RAF-DB AffectNet

overall average 7 emotion 8 emotion

Ours w/o ACL, IAL 90.58 84.03 66.13 63.32

Ours w/o ACL, SM 90.42 83.95 66.13 63.37

Ours w/o ACL 90.81 84.55 66.33 63.54

Ours w/o SM 90.94 83.97 66.53 63.59

Ours (full) 91.33 85.59 66.85 63.82

Table 3. Ablation study of self-masking softmax. The SM de-

notes ‘self-masking’

Size
AffectNet RAF-DB

7 emo 8 emo overall average

0% 66.33 63.54 90.81 84.55

50% 66.53 63.67 90.94 84.4

100% 66.85 63.82 91.33 85.59

Table 4. Ablation study of the size of the RM-

set

and the size of the RMset. In Sec. 6 of the Supplemental,

we provides ablation studies on the effects of γ.

Self-masking Softmax. In Table 3, ‘Ours’ denotes our full

model, and ‘Ours w/o SM’ denotes the model without the

‘self-masking softmax’ in the attention module. ‘Ours w/o

ACL, SM’ is a model that does not perform the ACL, nor

does it use ‘self-masking softmax’ in the attention module.

The accuracy consistently becomes accurate as we involve

the ‘self-masking softmax’ scheme in the attention module

in both the IAL and ACL. For more results on self-masking

softmax, refer to Sec. 6 of the Supplemental.

Size of the RMset. To further validate the effectiveness of

the RMset, we assessed the accuracy based on the amount

of the RMset used. We involved 0%, 50%, and 100% of

the overall RMset during the ACL and evaluated the per-

formance on RAF-DB and AffectNet datasets. The results

are presented in Table 4. The results show that the accu-

racy consistently increases in all testing cases as more of the

RMset is involved. As the dataset expands, the performance

is expected to improve further, and it is easy to expand, as

demonstrated in Supplemental Sec. 2.

6. Conclusion

We overcome the difficulties of FER, the limitation of

collecting datasets due to the subjectivity of the annota-

tor, and subtle expressions via semi-supervised contrastive

learning. Specifically, we made the RMset from the RM

videos and proposed a framework with inter-sample atten-

tion learning (IAL) and attention-based contrastive learning

(ACL) learning that utilize the RMset. The attention mod-

ule performs supervised learning on a benchmark dataset

and learns the inter-sample attention. The contrastive mod-

ule achieves learning the backbone using unlabeled data

via contrastive learning using the learned attention. We ob-

tained state-of-the-art results in three FER datasets.

Limitations and Future works. Our work proposed the

semi-supervised learning framework exploiting large-scale

unlabeled video data, RMFER. The limitation lies in the ef-

ficiency of the unlabeled dataset. Even though we proposed

several modules to filter out data based on the quality, the

data efficiency is still limited compared to the labeled data.

The future work may need to improve it.
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