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Abstract

Interactive segmentation methods have been investigated
to address the potential need for additional refinement in
automatic segmentation via human-in-the-loop techniques.
For accurate segmentation of 3D images, we propose Slice-
and-Conquer, a novel planar-to-3D pipeline formulating
volumetric mask construction into two stages: 1) 2D inter-
active segmentation and 2) guided 3D segmentation. Specif-
ically, the first stage enables users to focus on a single 2D
slice and provides the corresponding 2D prediction results
as strong shape priors. Taking the planar guidance, an ac-
curate 3D mask can be constructed with minimal interac-
tions. To support a flexible iterative refinement, our system
recommends a next slice to annotate at the end of the sec-
ond stage. Since volumetric segmentation can be completed
by consecutively annotating a few recommended 2D slices,
our method significantly reduces the cognitive burden of ex-
ploring volumetric space for users. Through extensive ex-
periments on various datasets of 3D biomedical images, we
demonstrate the effectiveness of the proposed pipeline.

1. Introduction

Image segmentation, which aims to extract sub-regions
of interest, is essential in various applications [19]. For in-
stance, localizing instances (e.g., lesions or organs) and ac-
curately quantifying their volumes in medical images can be
a fundamental stage of clinical interventions. Although ma-
chine learning (ML)-based algorithms have shown remark-
able segmentation performance, which can even be compa-
rable to manual segmentation of domain experts [12], such
automatic methods still need further improvement to ensure
high accuracy and robustness. To overcome the problem,

* Equal contribution

sungbin@korea.ac.kr

Model Input

After Refinement

(@)

Incorrect Voxels (White)

¥ Point Interactions Correctly Updated Voxels (Red)

3D Image

Model Input After Refinement

(b) LA
y E] y
Incorrect Voxels (White)

3D Image 2D Segmentation Mask ) Correctly Updated Voxels (Red)

Figure 1. (a) 3D propagation of point interactions. (b) Gradually
propagated into a 2D slice first and then to the 3D image, the same
number of points can refine larger regions. The incorrect and re-
fined regions are highlighted in white and red respectively.

one can use interactive segmentation methods, which allow
segmentation models to take user-provided hints. Using in-
teractive tools (e.g., points, bounding boxes, or scribbles),
users can obtain satisfying segmentation results.

In the natural image domain, such interactive techniques
have been widely studied. After Xu et al. [29] introduced
deep interactive object selection (DIOS), the first deep inter-
active segmentation method built upon convolutional neu-
ral networks (CNN5s), a number of techniques such as itera-
tive training [16] and test-time optimization (backpropaga-
tion) [8,22] were developed to enhance segmentation accu-
racy. Recently, Sofiiuk et al. [23] presented robust interac-
tive segmentation results by using the mask prediction of
the previous iteration as an additional cue at each iteration
and leveraging diverse and large-scale datasets.

In comparison with 2D applications, interactive segmen-
tation techniques for volumetric images have received rela-
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tively less attention despite their necessity. 3D biomedical
imaging can be a representative application requiring accu-
rate volumetric segmentation, where target images usually
have low contrast and ambiguous boundaries. Thus, it is re-
quired to effectively propagate user-provided hints designed
for 2D interfaces in volumetric space. To achieve the goal,
previous studies attempted to encode user interactions into
a complex distance map (e.g., Geodesic encoding) [15,25].
However, especially in 3D applications, such complicated
distance encoding requires high computational costs at each
iteration. Another potential issue of such volumetric prop-
agation methods is that the task imposes a high cognitive
burden on users since it is required to review mis-segmented
regions in 3D space, e.g., manually inspecting several 2D
slices, causing inflexible human-in-the-loop segmentation.

Another source of difficulty in making interactive seg-
mentation via 3D CNNs challenging is data deficiency. As
conventional 3D segmentation models require a large num-
ber of parameters to handle the entire volume, it is essential
to use large-scale and diverse data to effectively optimize
the parameters. Without large-scale datasets or effective
transfer learning techniques, networks may not sufficiently
learn the volumetric structure of the target foreground. As
an alternative, Zhou et al. [34] proposed a two-staged slice
propagation method, which first annotates axial slices via
2D models and then propagates them to the other slices
back and forth. Despite its need for multiple segmentation
inferences in the second round, thus slowing interactive re-
sponses, this method might still underperform as it spreads
2D mask information without considering the full 3D vol-
ume.

To alleviate the aforementioned problems, we propose a
novel two-stage pipeline for effective planar-to-3D propa-
gation, called Slice and Conquer (SnC). In the first stage,
SnC forces users to annotate a single slice extracted from
each 3D volume. Propagating the user interactions and 3-
axis 2D mask predictions to the full volume via a 3D model,
the second stage produces an accurate 3D mask (Figure 1 il-
lustrates the effectiveness of mask guidance). To support a
flexible iterative refinement, we design a slice recommenda-
tion algorithm, which aims to effectively bridge the first and
second stages by selecting a challenging slice to be refined
in the next iteration. By solving 3D interactive segmenta-
tion by 3-axis planar-to-3D propagation, the users are able
to complete the task by concentrating only on a few slices.

For efficient and robust segmentation of volumetric im-
ages, we exploit various techniques to improve SnC. First,
we consecutively train 2D and 3D models, where the trained
parameters of the 2D model are employed as the initial
state of the 3D model. Replacing expensive 3D convolu-
tion with ACS convolution [31], our approach makes the
3D model benefit from transfer learning. Furthermore, we
incorporate a mask attention module into the 3D model for

better utilization of mask guidance. To enhance the align-
ment between the user-completed 2D results and the 3D
mask prediction, we additionally design a post-processing
technique, which is possible only in planar-to-3D pipelines.
Through our extensive experiments using various volumet-
ric biomedical images, we demonstrate the effectiveness of
our two-stage pipeline and its sub-components.

2. Related Work and Our Contribution
2.1. Interactive Segmentation

Deep interactive segmentation. In [29], DIOS presented
great potential of convolutional neural networks (CNNs) to
advance the field of interactive segmentation. To improve
the previous method, Mahadevan et al. [16] proposed an it-
erative training strategy. Afterwards, additional techniques
have been widely investigated to enhance the robustness of
interactive segmentation [8, | 1,22]. Furthermore, the au-
thors of [23] demonstrated strong interactive segmentation
performance by reviving mask predictions generated in the
previous iteration, and by leveraging high-quality annota-
tions from a large and diverse collection of datasets.

Volumetric Propagation of Interactions. In interactive
segmentation of 2D natural images, models usually utilize
click-based interaction and its variants such as scribble and
bounding box. However, such interactive methods designed
for 2D interfaces may not be suitable for medical applica-
tions that often involve 3D images. Moreover, medical im-
ages usually have low contrast and ambiguous boundaries.
Therefore, it is crucial to effectively propagate user inter-
action information throughout the entire volume, starting
from the interacted slice. To achieve this, Wang et al. [25]
used Geodesic encoding instead of conventional Gaussian
or disk encoding to transform click interactions for effective
volumetric propagation. Luo et al. [15] later improved the
encoding for better generalizability. Not only does such en-
coding necessitate high computational costs at each interac-
tion, but volumetric models also require a massive number
of parameters. Although these problems can lead to reduced
performance on smaller datasets, it is challenging to utilize
transfer learning appropriate for 3D medical images.

Slice Propagation for 3D Interactive Segmentation. As
an alternative, Zhou et al. [33, 34] recently proposed a slice
propagation approach following the principle of video ob-
ject segmentation [3, 6], which disseminates information
from the interacted slice to the neighboring ones and sub-
sequently to the rest of the slices. In other words, the model
uses 2D CNNs to segment each 2D slice of volumetric im-
ages, with guidance from the already annotated ones. While
the slice propagation method can handle volumetric images
in the form of high-resolution 2D slices and benefit from
transfer learning techniques, it may neglect 3D information
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Figure 2. An illustration of the inference workflow at the ¢-th SnC iteration. (a) Users conduct 2D interactive segmentation by clicking
points until obtaining a sufficiently accurate segmentation result. (b) Taking the guidance of the accumulated point interactions and 2D
mask predictions, f°° conducts 3D image segmentation. The mask attention module is employed to enhance the mask guidance. (c) If the
results of guided 3D segmentation are unsatisfactory, SnC recommends a next slice to annotate via maximum softmax probability (MSP)
score analysis. Our post-processing steps designed to make a more accurate 3D mask prediction are depicted in Figure 3.

and demand multiple model inferences when each 2D an-
notation round finishes, which can significantly increase the
runtime. Also, it is highly probable that the guidance from
annotated slices may weaken as propagation continues.

2.2. Our Contribution

To address the problems associated with prior methods,
this paper presents a novel two-stage pipeline for volumet-
ric interactive segmentation, where its in-depth details are
described in the next section. Our approach is carefully de-
signed by taking into account the following factors:

* As the two-stage iterative pipeline consists of 1) 2D in-
teractive segmentation followed by 2) guided 3D seg-
mentation, users can construct an accurate 3D mask by
consecutively annotating only a few 2D slices.

* The 3-axis 2D mask predictions from the first stage can
serve as a strong shape prior to the second stage, thus
eliminating the necessity of complex 3D distance map
encoding (e.g., Geodesic) for volumetric propagation.

* QOur two-stage SnC pipeline enables weight parameter
transfer from the 2D model to the 3D model and post-
processing of 3D results in Stage 2 based on the results
of Stage 1 so that the 3D model can provide more elab-
orated results through a single forward pass.

3. Proposed Method

Overview. Our proposed Slice and Conquer (SnC) aims
to complete a segmentation mask from scratch or refine an
existing mask for a 3D image. In SnC, a single iteration of

3D interactive segmentation (outer-loop) consists of 2D in-
teractive segmentation (inner-loop) and guided 3D segmen-
tation, where our slice recommendation algorithm enables
SnC to start a new iteration of 3D refinement. Throughout
the paper, we consider a conventional click-based interac-
tive scheme [23,29], which can be easily extended to other
interaction types, e.g., bounding box and scribble.

By counting the number of outer- and inner-loops with
tand s (t = 0 or s = 0 cases can be used for empty or
pre-existing masks), respectively, we present more detailed
process making a 3D segmentation prediction M ;P for a 3D
image I°P at the ¢-th SnC iteration:

1) 2D interactive segmentation (Sec. 3.1): Users con-
centrate on a single slice I ZD, which is extracted from
I°P. By following a conventional 2D interactive seg-
mentation scheme such as [23], f?° generates the cor-
responding 2D segmentation mask M?P.

2) Guided 3D segmentation (Sec. 3.2): Using the accu-
mulated click interactions and {M?P}!_, as a shape
prior of the target foreground region, our 3D segmen-
tation model f3P produces a segmentation mask M;P.

3) Slice recommendation (Sec. 3.3): At the first itera-
tion (¢ = 1), users select the first slice /7° to annotate
and acquire M;P. Afterwards, this process can be it-
erated until a satisfactory 3D mask is constructed. To
assist the users with refining the result, our system au-
tomatically selects the next 2D slice to annotate which
is highly likely to improve 3D segmentation accuracy.

For 2D interactive segmentation, f2P can be optimized
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by a loss function Ef,e%, where we use the normalized focal
loss (NFL) [23] as £ Similarly, we train f?P by £3D, a
3D version of ﬁffg. To effectively reflect the mask guidance
{MZ?P}t_, in fip, we design a mask attention module for
f3p, which can be trained based on another NFL-based loss
L. To sum up, the loss functions for f?° and f3P are
‘CZD _ L‘,ZD

seg

and ESD = £3D + >\£atm7 (1)

seg

respectively, where each term in Eq. (1) is NFL and )\ is a
hyperparameter. We illustrate the overall workflow of SnC
in Figure 2 and provide in-depth details about each step and
the corresponding components in the following subsections.
Also, the SnC pipeline is summarized in Algorithm 1.

3.1. 2D Interactive Segmentation

We consider that users iteratively provide positive and
negative clicks to refine mis-segmented regions. This click
method can be flexibly adapted to extreme clicking [17].

User-friendly environment. At the first stage, our SnC
forces users to focus on completing a 2D mask M?P for
a single slice I?°, which significantly reduces users’ cogni-
tive burden in 3D interactive segmentation. In what follows,
we provide a detailed description of the first stage:
¢ At the ¢-th SnC iteration, a user starts to refine MtZB,
which is extracted from M;P,. When ¢ = 1, M7} can

be a zero matrix or a 2D slice of existing M;P.

 Given positive or negative clicks, which aim to indicate
false-negative or false-positive segmented regions, re-
spectively, M7, can be refined to M?% by f2P.

S

* Atthe s-th 2D refinement, the user accept M, 32 as M?2P

if satisfactory (e.g., sufficiently high accuracy).

In this process, we use disk click encoding and Conv1S
module of [23], i.e., f?" takes (I7°®M72_,) and P72 as its
input at the s-th refinement, where Ptzg is the disk-encoded
click map. f2P allows users to concentrate on annotating a
single 2D slice (without considering the other slices of I3P),
thus serving as an intermediate module for user-friendly in-
teraction between the user-side and f3P.

Dense-hint generator. The 2D model f?P not only pro-
vides a user-friendly environment but also serves as a dense-
hint generator. As our SnC approach aims at constructing
an accurate segmentation result of I°P by conquering only a
few 2D slices, 3P of the next stage may not take sufficient
hints about the shape of target foreground if we only utilize
click interactions as guidance. Thus, we also exploit M?P to
provide additional guidance in 3D segmentation. To further
enhance the effectiveness of mask guidance, we train f2° to
handle 2D slices from three orthogonal planes (axial (XY),
sagittal (ZX), and coronal (YZ)). By investigating the three-
axes slices of I°P, users can additionally provide comple-
mentary shape information to f3P that cannot be obtained

Algorithm 1: Slice and Conquer Pipeline

input : 3D image /°P, 2D and 3D models { %P,
/3P}, and existing (or empty) mask M3P

output: 3D segmentation mask M 3P

111

2 repeat

3 | Extract selected or recommended I?° from I°P

4 | Initialize P2Q and M7

5 s+1

6

7

8

9

repeat

Update P72 by adding a new click

MR (0 6 M PR)

P2« PR and M7P « MR

10 s+ s+1

11 until Mtzg is satisfactory;

12 Aggregate { PP}!_, and transform to P?P—3P
13 Aggregate {M?P}!_, and transform to M2P—3P
14 M3P « f30(3D g M3D, | pPP—3D gy )2D3D)
15 Recommend a next 2D slice via Eq. (2)

16 Update M;P via the post-processing of Eq. (3)
17 t+—t+1

18 until M;P is satisfactory;

19 M3P « MPP

20 return M3P

when using only single-axis slices [18]. Also, it is notewor-
thy that the strategy of supporting 3D interactive segmenta-
tion in multiple-axes 2D slices is suitable for conventional
biomedical image visualization interfaces such as [9].

3.2. Guided 3D Segmentation

Transfer learning. To alleviate data deficiency issues in
biomedical applications, there has been a line of research
adapting the weights of pre-trained 2D feature extractors
for 3D medical image analysis. For instance, previous stud-
ies [30, 31] showed that transferring ImageNet-pretrained
2D weights to 3D models can enhance 3D segmentation ac-
curacy despite the domain difference.

Inspired by the techniques, we design our SnC pipeline
to flexibly incorporate the weights of f2P into f3P. Specif-
ically, we use the Mean-ACS convolution [31] technique,
which interprets a 3D convolutional filter as a combination
of three 2D convolutional filters of axial, sagittal, and coro-
nal planes, thus supporting more efficient computation than
3D convolution. Since we train f?P by exploiting 2D slices
of three orthogonal planes (extracted from 3D images), its
convolutional filters can be seamlessly transferred to the ax-
ial, sagittal, and coronal components of the corresponding
3D ACS convolutional filters of 73P.

Remark: To the best of our knowledge, our SnC frame-
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Figure 3. An illustration of our post-processing method, which
aims to enhance the alignment between a user-annotated 2D mask
M?P and the corresponding 2D mask M;P [z, y,] of M;®.

work introduces the first approach adopting transfer learn-
ing in volumetric interactive segmentation models. By us-
ing our carefully designed SnC pipeline (3D segmentation
following 2D interactive segmentation), we expect that f3P
can receive the prior knowledge of f?P, which learns inter-
slice contexts of target volumetric images.

Mask attention module. Making a slight modification to
the input feeding method of f?P, 3P takes (I°C @ M;P,)
and (P?P73P @ M?P—3P) at the ¢-th SnC iteration, where
MZP=3P and P3P are 3D volumes containing 2D masks
and point interactions accumulated since the first iteration,
respectively (I°P, M?°=3P and P3P have the same di-
mension). It is intuitive that the masks M?P~3P can serve
as a stronger shape prior than P?°~3P to construct M;P.

Inspired by FCA [1 1], we enhance the mask guidance by
applying an add-on module to f3P as illustrated in Figure 1
(b). As presented in Eq. (1), the mask attention module is
also trained to produce 3D segmentation predictions.

3.3. Slice Recommendation and Post-processing

Next slice recommendation. Our SnC framework aims
to generate an accurate 3D mask prediction via iterative re-
finement. In other words, if the quality of the 3D mask pre-
diction MED is not satisfactory at the ¢-th iteration, it is nec-
essary to initiate another iteration by selecting Itz_El. How-
ever, manually investigating erroneous regions in the volu-
metric space, such as scrolling through multiple 2D slices
back and forth, to select the next 2D slice to annotate can
hinder the efficient human-in-the-loop refinement pipeline.

To support flexible iterative refinement steps by reducing
user efforts in the selection of the next slice, it is necessary
to recommend one that needs additional refinement. How-
ever, such processes may require additional computation or

memory resources to find challenging slices in volumetric
segmentation. For instance, previous studies used a qual-
ity assessment module [33, 34] or an uncertainty estimation
technique based on multiple prediction results [4,24]. In or-
der to avoid the usage of an additional module or multiple
predictions, we make an assessment policy as in [10].

For each M;’P, we compute a volumetric confidence map
C%, whose elements contain pixel-level maximum softmax
probability (MSP) [5] scores corresponding to M;P. Then,

we define C’t[T] , whose element is 1 if the corresponding ele-
ment of C is greater than a threshold 7, or 0 otherwise. By
using the confidence map C’,m, our recommendation algo-

rithm selects Ct[T] [z*,y*] as a candidate of I}7D,, where

¥, y* = argmin HC’t[T] [z, y] Hl . 2)
T,y

In Eq. (2), |Ct[T] [, y]|l1 denotes the L;-norm of the y-th
2D slice in the 2-th axis of C|”), which implies that we se-
lect a 2D slice if the number of under-confident pixels is
greater than the others. For a better slice recommendation,
we skip the slices adjacent to the annotated slices and apply
the edge confidence enhancement [10] and LogitNorm [28]
techniques for robust construction of Cy.

3D mask post-processing. At each iteration of SnC, users
complete 2D interactive segmentation and then acquire a
3D segmentation prediction. In addition to the 2D model-
assisted click annotation, our pipeline is able to allow users
to refine 2D segmentation via manual annotation tools (e.g.,
brush or polygon tools) before feeding the 2D results to f3P.
Although it is necessary to maintain the regions where the
users put their effort to modify, 3D results of f°P may not
reflect the 2D mask completed at each iteration.

To alleviate the problem, we propose a post-processing
technigue which enhances the alignment between M;P and
the user-annotated 2D masks in MZP~3P, Let M?P[z, y] be
the y-th 2D slice of x-th axis, where x € {0, 1, 2}. For each
M?2P e {M?P}_, and the corresponding slice of M P, or
M3P[z,,, y,], one can define

Gn(M;P 20, yn], @) = MP, 3)

where ¢,, is an arbitrary operation that can approximately
transform M;P[x,,,y,] into M;P and « is a parameter con-
trolling the magnitude of operation. In our method, we im-
plement the operation via optical flow estimation and warp-
ing operation, where vector fields required for optical flow
registration can be obtained by the TV-L1 solver [27, 32].
Employing ¢,,, we replace M;P[z,,,y,] and its neighboring
slices with ¢, (M P [z, yn, + k], max(1 — |k, 0)), where
v € [0,1] is a hyperparameter. Note that it is not compul-
sory to utilize the post-processing technique on every mask
within the set {MZP}!_,. To prevent accuracy degradation,
we only use sufficiently accurate 2D masks. For a better un-
derstanding, we illustrate the post-processing in Figure 3.
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MSD KiTS19
Methods Models - - - -
Lung Colon Atrium Liver Pancreas Brain Kidney Tumor
Non-Interactive | 3D nnU-Net [7] 0.689 0.580 0.929 0.951 0.802 0.680 0.969 0.857
DIOS [29] 0.746 0.721 0.910 0.952 0.814 0.876 0.959 0.867
f-BRS [22] 0.753 0.743 0.921 0.948 0.833 0.890 0.965 0.870
Interactive FCA[I11] 0.786 0.740 0.927 0.956 0.830 0.899 0.968 0.881
Segmentation DeeplGeoS [25] 0.775 0.742 0.918 0.950 0.837 0.875 0.967 0.889
MIDeepSeg [15] 0.793 0.763 0.934 0.961 0.852 0.901 0.971 0.883
RITM [23] 0.807 0.757 0.930 0.959 0.865 0.898 0.962 0.872
VMN [34] 0.815 0.798 0.937 0.963 0.868 0.905 0.969 0.889
SnC (Ours) 0.849 0.817 0.945 0.971 0.882 0.907 0.969 0.892

Table 1. Comparison between our SnC method and the other volumetric segmentation methods (including automatic and interactive

methods). By following the evaluation protocol of [

4. Experiments
4.1. Training Details

For f?P, we used the HRNet-18 backbone [26] as in [23],
where the backbone of f3P was constructed by applying the
Mean-ACS convolution [31] to f2P. Also, we employed the
pre-trained weight of [23] and our trained weight of f?P as
the initial states of f?P and f3P, respectively. At training
time, we used the click simulation strategies of [13,29] and
the iterative training scheme of [23], where the clicks were
transformed into disk encodings of 5-pixel radius.

We employed the AdamWR optimizer [14] for optimiza-
tion and the cosine learning rate scheduling. With an initial
learning rate of 0.0003, f?P and f3P were trained for 90 and
120 epochs, where the restart scheme was applied at 30 and
40 epochs, respectively. At training time, the batch sizes of
f?P and £3P were set to 32 and 2, respectively.

In addition, we applied the principle of curriculum learn-
ing [1] after restarting the learning rate (after 30 and 40
epochs for f?P and f3P, respectively) to enhance the ro-
bustness of segmentation models. For the 2D model f2°
employing positive and negative clicks, we decreased the
number of simulated user clicks as the epoch increased. In
a similar manner, we controlled the number of 2D mask in-
puts for f3P, where the mask inputs included not only the
ground truth masks but also the output predictions of f2P.

4.2. Datasets

In our experiments, we employed the medical segmenta-
tion decathlon (MSD) dataset [21] and the dataset released
for 2019 kidney tumor segmentation challenge (KiTS19).
Using the MSD dataset, we conducted segmentation of lung
tumor, colon cancer, left atrium, liver, pancreas, and brain
tumor, where the subsets of the MSD dataset consist of 3D
scans and the corresponding segmentation masks. In addi-
tion, we performed kidney and kidney tumor segmentation
with the KiTS19 dataset, which includes arterial phase ab-
dominal CT scans and the corresponding masks.

], we reported the results of SnC after 6 iterations (annotating 6 slices).

. MSD-lung MSD-colon
# clicks

VMN Ours VMN Ours
1 0.769 0.815 0.715 0.719
2 0.780 0.820 0.720 0.750
3 0.784 0.835 0.752 0.764
4 0.798 0.840 0.771 0.793
5 0.807 0.844 0.782 0.807
6 0.815 0.849 0.798 0.817
7 0.821 0.852 0.805 0.823
8 0.830 0.856 0.811 0.833
9 0.834 0.860 0.820 0.840
10 0.839 0.862 0.832 0.843

Table 2. Segmentation DSC measures of our proposed method and
VMN [34] with respect to the number of slices.

4.3. Compared Models

As a non-interactive segmentation baseline, nnU-Net [7]
was employed. In addition, we tested 3D versions of in-
teractive segmentation methods for 2D images (DIOS [29],
FCA [11], £-BRS [22], and RITM [23]) by converting the
2D convolutions via ACS ones [31]. Volumetric segmenta-
tion models developed for medical images, DeeplGeoS [25]
and MIDeepSeg [ | 5] were also used as baseline methods. In
addition to the volumetric propagation methods, we com-
pared SnC with a slice propagation baseline VMN [34].

4.4. Evaluation Protocol

To measure the segmentation accuracy, we employed the
dice similarity coefficient (DSC) which is computed by

2| M, N My
1Mol + 1 Mol2”

where M, and M, are a ground truth segmentation mask
and the corresponding mask prediction, respectively.

In [34], the authors reported volumetric interactive seg-
mentation results by annotating 6 slices. Following the pro-
tocol, we reported DSC by using the same number of 2D

DSC = 4
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Figure 4. The input image and the ground-truth mask (1st column). Initial prediction obtained from the first slice (2nd column). Added
voxels and deleted voxels to the predicted mask after adding the second slice (3rd column) and the third slice (4th column). The segmen-

tation results obtained from three slices (5th column).

Method ‘ Model ‘ MSD-lung MSD-colon
InterCNN [2] 0.793 0.689
DeeplGeoS [25] 0.814 0.703
Interactive MlIDeepSeg [15] 0.821 0.721
Refinement RITM [23] 0.827 0.717
TIS [13] 0.849 0.740
SnC (Ours) 0.855 0.805

Table 3. Comparison between our SnC pipeline and the previous
approaches, where the models were required to refine the existing
3D nnU-Net mask predictions of the MSD-lung and MSD-colon
dataset. By following the evaluation protocol of [13], we reported
the results of the SnC method when applying 10 clicks.

slices in SnC. For the first slice to annotate, we randomly
selected a 2D slice adjacent to the largest foreground region
in its ground truth mask. In addition, we finished the first
stage of SnC (2D interactive segmentation) when the 2D
mask prediction is sufficiently accurate (e.g., DSC > 0.9)
or the number of used clicks is 5. At the ¢-th SnC iteration,
our post-processing method of Eq. (3) was applied to the
mask prediction of f3P by using sufficiently accurate ones
(e.g., DSC > 0.9) among the ¢ accumulated masks. For
the other interactive baselines, we used the same number of
interactions provided in SnC for each data sample.

We reported each segmentation result of SnC based on
the resolution of each pre-processed image, which was au-
tomatically given by the nnU-Net protocol [7].

5. Experimental Results

5.1. Quantitative Results

In Table 1, we compared the segmentation results of our
SnC approach to those of the previous methods described
in Section 4.3. The results present that our proposed SnC
pipeline is able to construct more accurate volumetric seg-

mentation results in comparison with previous automatic
(non-interactive) and interactive segmentation methods. Es-
pecially in the MSD datasets, which have a significantly
fewer number of images than KiTS, our method showed ro-
bust performance of volumetric interactive segmentation.

The table also implies that two-stage approaches, which
first annotate 2D slices and then propagate them to volumet-
ric space, can achieve a higher segmentation accuracy than
single-stage volumetric propagation techniques. To empha-
size the robustness of our framework, we compared the seg-
mentation results of SnC to those of VMN [34], the state-of-
the-art slice propagation method, with respect to the number
of slices, where the results are presented in Table 2.

5.2. Visual Demonstration

For a better understanding of our SnC pipeline, we il-
lustrated interactive segmentation processes in Figure 4 by
selecting a data item from each dataset. In addition to MSD,
we also visualized results for a NIH3T3 [20] data sample to
show the effectiveness of SnC in multiple-instance cases.

In the 1st column, we visualize the input image and the
ground-truth mask. The 2nd column shows the 3D segmen-
tation masks in the first iteration of SnC. The 3rd and 4th
columns show the updated voxels in the second and third it-
erations, respectively. 3D segmentation accuracy drastically
increased when additional 2D mask guidance is added.

5.3. Additional Results

Refinement of existing masks. In[13], Liu ef al. demon-
strated interactive refinement results of existing masks with
respect to the number of click interactions. The interactive
refinement results of the previous methods including Inter-
CNN [2], DeeplGeoS [25], MIDeepSeg [15], RITM [23],
and TIS [13] were reported. Starting from the most er-
roneous slice in each existing mask, our SnC method was
trained to exploit via positive and negative clicks.
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Model MSD-lung MSD-colon
10% 20% 50% 100% 10% 20% 50% 100%
3D nnU-Net [7] 0.267 0.430 0.655 0.689 0.334 0.482 0.565 0.580
RITM [23] 0.615 0.690 0.744 0.807 0.650 0.704 0.727 0.757
VMN [34] 0.689 0.740 0.802 0.815 0.627 0.714 0.773 0.798
SnC (Ours) 0.784 0.802 0.823 0.849 0.749 0.774 0.796 0.817

Table 4. In the setting of interactive segmentation from scratch, we compare our SnC method and the other volumetric segmentation
methods in low-data regime (using the random sampled subsets of the MSD-lung and the MSD-colon datasets).

Transfer. Mask attn. Post-proc. | MSD-lung
(1) - - - 0.816
2) v - - 0.825
3) v v - 0.833
“ v v v 0.849

Table 5. Ablation study results by adding the sub-components of
the SnC pipeline. We used the MSD-lung dataset for ablation.

Table 3 presents a comparison between the refinement
results of our proposed approach and the previous methods,
where the refinement initiates from the existing 3D nnU-Net
mask predictions for each dataset. For SnC, we first selected
a 2D slice that has the largest erroneous region. When its
2D refinement is satisfactory (e.g., DSC > 0.9), SnC can
start its next iteration. The table implies that SnC can also
be effective when refining existing segmentation masks. In
other words, one can utilize our pipeline to effectively refine
mis-segmented 3D masks given by automatic segmentation
models such as nnU-Net [7].

Low-data regime. As we mentioned, ML-based biomed-
ical image analysis algorithms usually suffer from data de-
ficiency problem. To demonstrate the segmentation robust-
ness of SnC in such a low-data regime, we adopted the ex-
periments of [34], which sub-sampled 10%, 20%, and 50%
of the MSD training data uniformly at random. By using the
experiment protocol of Table 1, we compared our method
to 3D nnU-Net (non-interactive) [7], 3D RITM (volumetric
propagation) [23], and VMN (slice propagation) [34].

As shown in Table 4, our proposed SnC method main-
tains sufficiently high segmentation accuracy even when the
number of training images is significantly reduced. Such
results imply that our methods can take benefits from the
post-processing step based on 2D mask predictions as well
as the transferred knowledge and 2D mask guidance of f7P.

Runtime analysis. We observed that a single SnC itera-
tion takes less than 2.5 s on a NVIDIA RTX2080Ti GPU,
while it was reported that VMN [34] and an interactive ver-
sion of 3D nnU-Net [7] costs more than 5 s and 50 s, re-
spectively. Since SnC requires only a single forward pass
for volumetric segmentation, which does not require mul-
tiple network inferences for slice propagation and replaces

3D convolutions with efficient ACS convolutions [31], our
proposed method can achieve high accuracy with less run-
time, thus supporting more flexible real-time interaction.

5.4. Ablation Study

To analyze the effect of the sub-components in our SnC
pipeline, we conducted an ablation study by using the MSD-
lung dataset. Table 5 shows that the transfer learning (trans-
fer.) technique, which employs the trained weight of 7P as
the initial state to train f 3D and the mask attention module
(mask attn.) can enhance the segmentation performance. In
addition, the table shows that our post-processing method
(post-proc.) that enhances the alignment between 2D mask
predictions of the first stage and 3D segmentation results,
can be effective in improving 3D segmentation accuracy.

6. Conclusion

This paper proposes a novel two-stage approach for in-
teractive 3D image segmentation called Slice-and-Conquer
(SnC). The 2D interactive segmentation stage not only en-
ables users to concentrate on a single slice at each iteration
but also provides dense hints for 3D image segmentation.
By empowering the sparse user-provided point interactions
with the 2D mask predictions, the 3D segmentation mod-
ule constructs a 3D mask based on the guidance. To further
enhance the flexibility in iterative refinement, SnC automat-
ically recommends 2D slices to annotate, i.e., the users are
only required to consecutively annotate a few recommended
slices for 3D image segmentation. Our extensive experi-
mental results show that the proposed approach outperforms
the previous methods in efficiency and effectiveness.
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