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Abstract

Previous methods to solve the problem of metal artifact
reduction (MAR) have mostly focused on 2D MAR, mak-
ing it challenging to apply to problems with 3-dimensional
CT such as CBCT. In this paper, we propose a novel ap-
proach for 3D MAR which utilizes two diffusion models to
model the metal-free CBCT prior and metal artifact prior.
Through dual-domain guidance in the image and projec-
tion domains, the 3D connectivity is enhanced in the re-
stored images. Moreover, we propose a memory-efficient
technique for an efficient sampling of 3-dimensional data,
which reduces the memory usage by orders of magnitude.
Experiments show that our method achieves the state-of-
the-art performance not only with synthetic data but also
with real-world clinical and out-of-distribution data.

1. Introduction

Cone Beam Computed Tomography (CBCT) is widely
utilized in dental diagnosis and treatment procedures, in-
cluding dental implant placement, orthodontic appliances,
and orthognathic surgery. However, the presence of metallic
inserts, such as dental crowns, implants, and orthodontic de-
vices, can result in non-local streaking and shading artifacts
during CBCT imaging. These artifacts can obscure den-
tal and oral structures, complicating the three-dimensional
volumetric reconstruction and hindering accurate diagnosis
[7, 21]. In particular, the intractable nature of artifact struc-
tures complicates mathematical modeling, thereby making
their removal a challenging process.

Metal Artifact Reduction (MAR) is a method that in-
volves removing artifacts caused by the scattering of met-
als in CT images. Numerous hand-crafted model-based ap-
proaches have been proposed to address the MAR prob-
lem [1,15,20]. With the recent advancements in deep learn-
ing, there has been a significant increase in attempts to solve
the MAR problem using Convolutional Neural Networks
(CNN) in the image domain [13, 19, 27], sinogram domain
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[9, 18, 31], and dual domain [28–30]. Furthermore, there
have also been works based on generative models for ad-
dressing the MAR problem [17, 18]. Despite the numerous
efforts, most of the existing works have primarily addressed
the 2D MAR problem. 2D-based MAR methods fail to con-
sider the three-dimensional geometry, which may lead to
difficulties in distinguishing CT slices containing metal ar-
tifacts from those without metal and potentially leading to
unnatural connections among the CT slices. Considering
that CBCT produces 3D volumetric data, the applicability
of 2D-based approaches in a clinical setting remains lim-
ited.

In a fidelity-embedded learning (FEL) Park et al. [22]
implemented MAR for 3D CBCT by utilizing UNet [24]
and wavelet decomposition [10] to remove metal artifacts
in each 2D slice individually, followed by updating only the
metal-free regions in the 3D cone beam projection based
on a simple thresholding and the separable paraboloid sur-
rogate method in an iterative process. While this method
represents a unique approach to performing MAR in 3D
CBCT, it may not be able to effectively restore images with
severe or novel types of artifacts and generalize well to out-
of-distribution data due to its inability to sufficiently learn
prior related to CBCT and metal artifacts.

In this paper, we proposed to use two distinct diffusion
models to separately model the metal-free CBCT prior and
the metal artifact prior. By incorporating dual domain dif-
fusion guidance in the image domain and the 3D cone beam
projection domain, we removed severe or novel types of
metal artifacts, while maintaining a natural continuity along
the z-axis. Moreover, we propose a memory-efficient sam-
pling method, which reduces the memory usage by 500×
compared to the previous diffusion-based models to solve
a similar type of inverse problems to our work. Experi-
ments demonstrate that the proposed model achieves clin-
ically significant performance in the 3D CT volume MAR
task. Below we summarize the contributions of our work.

• By using dual domain diffusion guidance in the im-
age domain and 3D cone beam projection domain, we
tackled the 3D MAR problem efficiently based on 2D-
diffusion models.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. 3D cone beam projection of (a) metal-free CBCT and (b)
metal-corrupted CBCT. The bright regions in (b) represent metal
inserts.

• We propose a diffusion guidance method which is
500× memory efficient compared to the existing base-
line methods using diffusion for 3D tasks.

• Our method not only is effective for synthetic samples,
but also generalizes well to a wide range of samples
including out-of-distribution and clinical samples.

2. Background
2.1. Cone beam projection & 3D Metal artifacts

The cone beam projection of X ∈ Rd×w×h at detector
position p given polychromatic energy E, and energy spec-
trum S(E) can be calculated as follows [22], see Fig. 1.

p = −γ log
∫
E

S(E) exp(−A(XE))dx (1)

XE is the attenuation coefficient of X in energy E, A is a
cone beam forward operator, and γ is a projection truncation
by detector. The projection p can be reconstructed into a
three-dimensional CT volume X using the FDK algorithm
[8].

When high attenuation materials, such as metals, are
present in CT images, non-local streaking and shadowing
artifacts can occur. Furthermore, since CBCT is based
on three-dimensional projections rather than individual CT
slices, these artifacts exhibit a three-dimensional correla-
tion. In such cases, the metal-corrupted CT can be con-
sidered as a combination of metal-free CT and its residual,
the metal artifacts.

X = X∗ +Xm (2)

X is a metal-corrupted CT, X∗ is a metal-free CT, and Xm

is the metal artifacts.

2.2. Score-based diffusion models

Diffusion model [12,25] is a generative model that learns
data distribution through a forward process, which progres-
sively corrupts original data by adding Gaussian noise, and

a reverse process that utilizes a neural network to learn the
inverse of the forward process. Among these, the score-
based diffusion model proposed by [25] defines the for-
ward process as a Stochastic Diffusion Equation (SDE).
In the diffusion process, data x is modeled as x(t), where
t ∈ [0, 1] is a continuous time index. x(0) ∼ p0 represents
the distribution of the dataset, while x(T ) ∼ pT denotes the
prior distribution.

dx = f(x, t)dt+ g(t)dw (3)

where w denotes the standard Wiener process (also known
as Brownian motion), f(, t) : Rd × R→ Rd represents the
diffusion coefficient of x(t), and g(t) : R→ R refers to the
drift coefficient of x(t). The reverse-time SDE correspond-
ing to Eq. (3) can be expressed as follows.

dx = [f(x, t)− g(t)2∇xt
log p(xt)]dt+ g(t)dw̄ (4)

w̄ is the standard Wiener process as t moves from T →
0, and dt represents the infinitesimal negative timestep.
log p(xt) signifies the score function, and if the score can
be calculated for each t, p0 can be sampled through the re-
verse process. log p(xt) can be approximated by sθ using
the DSM objective [26].

min
θ

Et,x0,xt∼p(xt|x0)[∥Sθ(xt, t)−∇xt log p(xt|x0)∥22]
(5)

By defining f(x, t) as 0, g(t) as
√

d[σ2(t)]/dt, and σ(t) as
a progressively increasing noise scale function, it becomes
a Variance Exploding SDE (VE-SDE). The VE-SDE sam-
pling process can be addressed by replacing the score func-
tion with a Score Network, a neural network specifically
trained for learning the score function.

2.3. Diffusion Posterior Sampling & Blind DPS

Diffusion Posterior Sampling (DPS) [3] addresses in-
verse problem by employing diffusion model and posterior
mean. When we consider the distribution of inverse prob-
lem,

P (y|x0) = N(y|A(x0), σ
2I), y ∈ Rm, x ∈ Rd (6)

y is the measurement, A is the forward projection matrix,
and Chung et al. [3] wish to recover x0. Then, the gradient
of the log-likelihood that Chung et al. [3] aim to solve is as
follows.

∇xt
log p(xt|y) = ∇xt

log p(y|xt) +∇xt
log p(xt) (7)

However in this scenario, ∇xt log p(y|xt) is intractable. To
solve this problem, Chung et al. [3] introduce posterior
mean that approximate X0. Then Eq. (7) becomes

∇xt
log p(xt|y) = ∇xt

log p(y|x̂0) +∇xt
log p(xt) (8)
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x̂0 = xt + σ2
i S

x
θ (xt, t) (9)

Sx
θ (xt, t) is the score function of xt and x̂0 is the posterior

mean. A blind inverse problem involves finding both x0

and A when neither is known. Blind DPS [2] extends the
method of DPS to solve the blind inverse problem by using
two diffusion models that model x0 and A respectively, and
utilizes the posterior mean for each. The solution of Blind
DPS is as follows.

∇xt
log p(At, xt|y) = ∇xt

log p(y|Â0, x̂0) +∇xt
log p(xt)

∇At log p(At, xt|y) = ∇At log p(y|Â0, x̂0) +∇At log p(At)
(10)

Blind DPS [2] can generate high quality outputs in situ-
ations where two or more variables interact by providing
guidance to both At and xt from y. However, this ap-
proach is time-intensive, as backpropagation for each diffu-
sion model must be carried out at every step. Additionally,
it imposes a significant memory burden, especially when
reconstructing three-dimensional data.

3. Dual Domain Diffusion Guidance for 3D
CBCT MAR

3.1. Projection Guidance for 3D Connectivity

In this work, we aim to separate metal-corrupted CBCT
into metal-free CBCT and metal artifacts. where,

x0 = x∗
0 + xm

0 (11)

x0 is the metal-corrupted CBCT, x∗
0 is the metal-free CBCT,

and xm
0 indicates metal artifacts. Leveraging the strength

of the diffusion model’s prior, we employ distinct diffusion
models to separately model the metal-free CBCT and metal
artifacts. The posterior distribution at time t is as follows.

P (x∗
t , x

m
t |x0) ∝ P (x0|x∗

t , x
m
t )p(x∗

t , x
m
t ) (12)

Our work attempts to solve the 3D MAR problem in CBCT.
While it is possible to utilize a 3D Diffusion model, this
approach is excessively complex, inefficient and requires
thousands of 3D volumes for training [23]. Therefore, we
use 2D slice-based diffusion models. Additionally, we in-
troduce 3D cone beam projection to address the inconsis-
tency issue along the z-axis. As the cone beam projection
provides a lateral view, it can effectively resolve the incon-
sistency issue along the z-axis.
Key idea. The problem is defined as follows.

y = A(x0) + n (13)

Where A is the 3D cone beam projection function, y is the
3D cone beam projection given x0, and n is Gaussian noise.

As mentioned above, because x0 is created using a 2D slice-
based diffusion model, there can be inconsistency problems
between the z-axis when we give diffusion guidance only
with x0. If we perform a 3D cone beam projection on x0,
it becomes a projection seen from the side and information
about the z-axis is created, see Fig. 1. Therefore, we intro-
duce additional guidance for the 3D cone beam projection
y. The posterior distribution given y is defined as follows.

P (x∗
t , x

m
t |x0, y) ∝ P (x0|x∗

t , x
m
t , y)p(x∗

t , x
m
t |y) (14)

When generating synthetic y, Gaussian noise is not consid-
ered, and since y is determined by x0, y can be ignored in
the conditional distribution specified in Eq. (14). Then, ac-
cording to the Bayes’ rule, it can be expressed as follows.

P (x∗
t , x

m
t |x0, y) ∝ P (x0|x∗

t , x
m
t )P (y|x∗

t , x
m
t )P (x∗

t )P (xm
t )

(15)
We focus more on MAR in the image domain and for
efficient sampling, we incorporate 3D cone beam projec-
tion guidance only once per every k step of diffusion sam-
pling. This is sufficient to solve the 3D connectivity prob-
lem. Therefore, the sampling process varies depending on
whether the diffusion sampling step is a multiple of k or not.
The gradient of the log-likelihood term with respect to k is
as follows.

∇x∗
t
log p(x∗

t , x
m
t |x0, y) ≃ α1∇x∗

t
log p(x0|x∗

t , x
m
t )

+β1∇x∗
t
log p(y|x∗

t , x
m
t ) +∇x∗

t
log p(x∗

t )

∇xm
t
log p(x∗

t , x
m
t |x0, y) ≃ α2∇xm

t
log p(x0|x∗

t , x
m
t )

+β2∇xm
t
log p(y|x∗

t , x
m
t ) +∇xm

t
log p(xm

t )
(16)

α1, α2, β1, and β2 are diffusion guidance hyperparameters.
When the sampling step is a multiple of k, we set β1 and β2

as zero.

3.2. Posterior mean Guidance for efficient sampling

In Eq. (16), the terms log p(x0|x∗
t , x

m
t ) and

log p(y|x∗
t , x

m
t ) are typically intractable. According

to Blind DPS [2], if x∗
t and xm

t can be sampled from inde-
pendent diffusion models, the terms log p(x0|x∗

t , x
m
t ) and

log p(y|x∗
t , x

m
t ) can be approximated as log p(x0|x̂∗

0, x̂
m
0 )

and log p(y|x̂∗
0, x̂

m
0 ), a tractable distribution, where x̂∗

0

and x̂m
0 are the posterior means of x∗

t and xm
t . Since

x∗
0 := x∗

t + σ2
tS

∗
θ (x

∗
t , t), a diffusion model must back-

propagate whole parameters in every reverse diffusion step
to calculate ∇x∗

t
log p(x0|x̂∗

0, x̂
m
0 ). The same applies to

the metal artifact diffusion model. For the 3D cone beam
projection diffusion guidance, when there are M slices in
CBCT, it necessitates the loading of 2M diffusion models
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Figure 2. Overview of our method. (left) In training process, The 2D metal-free diffusion model and the 2D metal artifact diffusion model
learn the metal-free prior and metal artifact prior, respectively. (right) In sampling process, the noisy outputs of the metal-free diffusion
model and the metal artifact diffusion model (x∗

t , x
m
t ) predict x̂∗

0 and x̂m
0 through diffusion posterior sampling (DPS). The sum of the two

is used to calculate the residual from the metal-corrupted CBCT, and the x̂∗
0 and x̂m

0 are updated through guidance in the image domain
(blue line). Then, the updated x̂∗

0 and x̂m
0 are added to perform a 3D cone beam projection, and the residual is calculated from the 3D

cone beam projection of the metal-corrupted CBCT to update x̂∗
0 and x̂m

0 through projection domain guidance (red line). Finally, reverse
sampling to predict x∗

t−1, x
m
t−1 is performed (purple line).

into memory simultaneously. This approach is highly
memory inefficient, see Tab. 3. To circumvent this problem,
we hijack the path to x∗

t , x
m
t and instead provide guidance

for x̂∗
0, x̂

t
0, rather than for x∗

t , xm
t .

∇x∗
t
log p(x∗

t , x
m
t |x0, y) ≃ α1∇x̂∗

0
log p(x0|x̂∗

0, x̂
m
0 )

+ β1∇x̂∗
0
log p(y|x̂∗

0, x̂
m
0 ) +∇x∗

t
log p(x∗

t ) (17)

∇xm
t
log p(x∗

t , x
m
t |x0, y) ≃ α2∇x̂m

0
log p(x0|x̂∗

0, x̂
m
0 )

+ β2∇x̂m
0
log p(y|x̂∗

0, x̂
m
0 ) +∇xm

t
log p(xm

t ) (18)

In Eq. (17), Eq. (18) we expect that, as the diffusion steps
progress, (x̂∗

0 + x̂m
0 ) should gradually approach x0. Intu-

itively, before taking the reverse diffusion step for x∗
t and

xm
t , we can update the posterior mean via guidance to make

it closer to x0, and then take the reverse diffusion step. Our
training and sampling processes are shown in Fig. 2 and our
sampling algorithm is given in Algorithm 1. In Algorithm 1,
[j] refers to the j-th slice of the CT scan.

4. Experiment
4.1. Dataset

Synthesized Dataset. We obtained 48 dental CBCT
scans from a commercial CBCT scanner (i-Cat 17-19,
Imaging Sciences International) with a tube voltage of
120kVp and tube current of 5mA. The voxel size was

Algorithm 1 Dual Domain Diffusion Guidance

Require: : N,M, y, α1, α2, β1, β2,K, {σi}Ni=1

1: x∗
N , xm

N ∈ Rdz,dx,dy , Z ∼ N (0, I)
2: for i←N − 1 to 0 do
3: for j ← 1 to M do
4: Ŝ∗[j]← Ŝ∗

θ (x
∗
i+1[j], σi+1)

5: Ŝm[j]← Ŝm
θ (xm

i+1[j], σi+1)

6: x̂∗
0[j]← x∗

i+1[j] + σ2
i+1Ŝ

∗

7: x̂m
0 [j]← xm

i+1[j] + σ2
i+1Ŝ

m

8: x̂∗′

0 [j] ← x̂∗
0[j] −

α1∇x̂∗
0 [j]
∥x0[j]− (x̂∗

0[j] + x̂m
0 [j])∥2

9: x̂m′

0 [j] ← x̂m
0 [j] −

α2∇x̂m
0 [j]∥x0[j]− (x̂∗

0[j] + x̂m
0 [j])∥2

10: end for
11: if (i%K == 0) then
12: x̂∗′′

0 ← x̂∗′

0 − β1∇x̂∗
0
∥y −A(x̂∗

0 + x̂m
0 )∥2

13: x̂m′′

0 ← x̂m′

0 − β2∇x̂m
0
∥y −A(x̂∗

0 + x̂m
0 )∥2

14: end if
15: x∗′

i ← x̂∗′′

0 − σ2
i Ŝ

∗ +
√
σ2
i+1 − σ2

iZ

16: xm′

i ← x̂m′′

0 − σ2
i Ŝ

m +
√
σ2
i+1 − σ2

iZ

17: end for
18: return x∗

0, x
m
0

768×768×576 with 0.3mm real scale along each axis.
These scans were from patients without metal inserts. Data
collection and experiment were conducted with the ap-
proval of the Institutional Review Board (IRB number:
2020AN0410) of our organization.
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Method PSNR ↑ SSIM ↑
Axial Coronal Sagittal

InDuDoNet+ [29] 24.99 0.9669 0.9674 0.9678
ACDNet [32] 24.92 0.9661 0.9670 0.9675

FEL [22] 33.12 0.9621 0.9528 0.9539
Blind DPS [2] 35.48 0.9667 0.9413 0.9419

Ours 38.21 0.9887 0.9875 0.9873

Table 1. Synthetic Metal-corrupted CBCT MAR evaluation results (PSNR, SSIM). Bold: best, under: second best.

Figure 3. Synthetic metal-corrupted CBCT MAR qualitative results. (First row: axial, Second row: coronal, Third row: sagittal) Red:
metal inserts. (a) Metal-corrupted CBCT, (b) InDuDoNet+ (c) FEL (d) Blind DPS (e) Ours, (f) GT. HU values were clipped between
-1000, 2500.

To train the diffusion model, synthetic metal artifacts
were created in the CBCT volumes. To simulate synthetic
implants or crowns, whole tooth or enamel was segmented
from the CBCT scans, and metal inserts were generated by
randomly selecting 1 to 8 teeth. Metal inserts were assumed
to be Au or Zr. 3D cone beam projections were conducted
using 120 kVp tube voltage and 5 mA tube current, and
the polychromatic model described in Eq. (1). The atten-
uation coefficient values were adopted from previous re-
search [14]. Poisson and electronic noise were added to the
generated metal projections. The electronic noise was mod-
eled as Gaussian noise, similar to the method by [16, 22].

The metal projections were added to CBCT projections,
and the FDK algorithm was employed to reconstruct metal-
affected 3D CBCT volumes. For the projections and FDK
algorithm, We adopted the Tomosipo library [11]. Metal ar-
tifacts were created by subtracting the CBCT volumes with-
out metal presence from the metal-affected CBCT volumes

of the same patient.
For the training process, we utilized 23 out of 48 artifact-

free CBCT scans to create the diffusion model for generat-
ing CBCT and the diffusion model for generating metal ar-
tifacts. The remaining 25 scans were used as a test set. Each
CBCT slice was resized to 384×384 for computational ef-
ficiency like [4], and only the slices from 250 to 506, where
teeth were consistently present among the total 576 slices,
were used for training and evaluation.

Clinical Dataset. The CBCT volumes of 3 patients with
actual metal artifacts were obtained using the same equip-
ment as the synthesized dataset. These CBCT volumes were
used as a test set to verify the clinical validity. The number
and types of metal inserts in the 3 CBCT volumes were di-
verse, including implants, crowns. The number of inserts
ranged from a single instance up to nearly the entire tooth
in severe cases.

Out of Distribution Dataset. Cui et al. collected 4938
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Figure 4. Clinical metal-corrupted CBCT MAR qualitative results. (First row: axial, Second row: coronal, Third row: sagittal) Red: Metal
inserts. (a) Metal-corrupted CBCT, (b) InDuDoNet+ (c) ACDNet (d) FEL (e) Blind DPS (f) Ours, HU values were clipped between -1000,
2500.

Method PSNR↑ SSIM ↑
Axial Coronal Sagittal

InDuDoNet+ [29] 21.50 0.9314 0.9252 0.9265
ACDNet [32] 22.60 0.9397 0.9385 0.9404

FEL [22] 20.77 0.7499 0.7212 0.7309
Blind DPS [2] 26.40 0.8770 0.7754 0.7794

Ours 31.83 0.9565 0.9533 0.9557

Table 2. Synthetic out-of-distribution metal-corrupted CBCT MAR evaluation results (PSNR, SSIM). Bold: best, under: second best.

Method Blind DPS [2] Ours
Memory (GB) 5299.7 9.3

Table 3. Memory usage of Blind DPS and ours when a CBCT is
256×384×384 size, and dual domain guidance is considered.

CBCT volumes from 15 different hospitals for CBCT seg-
mentation work [5,6] and provided 50 volumes publicly for
research purposes. Among them, we selected 6 clean CBCT
volumes without any metal artifacts to create the synthetic
dataset. The imaging equipment, projection geometry, and
resolution were all different from ours. The size of a single
CBCT slice was 400×400, with the number of slices vary-
ing between 240 and 280. Out of these, we cropped and
resized the volumes to the dimensions of 200×256×256,
and then generated synthetic metal-corrupted CBCT images
using the method described in Eq. (13).

4.2. Implementation Details

For training, metal-free CBCT images, metal-affected
CBCT images, and metal artifact residuals were clipped
from -1000 to 2500 HU, from -1000 to 13,000 HU, and
from -3500 to 14,000 HU, followed by normalization.

Both diffusion models employed VE-SDE and ncsnpp
models [25]. With a batch size of 4, two A100 GPUs were
utilized to train each model, through 320K and 190K train-
ing iterations respectively. Sampling was discretized with
N=1000 and performed using ancestral sampling [12]. For
sampling, the parameters α1 and α2 were set to 0.01 and
0.003, while β1 and β2 were both set to 0.1 experimentally.
K was set to 10.

4.3. Comparison

Comparison methods. In our study, we compare the 3D
CBCT MAR with various state-of-the-art (SOTA) methods.
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Figure 5. Synthetic out of distribution metal-corrupted CBCT MAR qualitative results. (First row: axial, Second row: coronal, Third row:
sagittal) Red: Metal inserts. (a) Metal-corrupted CBCT, (b) InDuDoNet+ (c) FEL (d) Blind DPS (e) Ours, (f) GT, HU values were clipped
between -1000, 2500.

We evaluated our method against 2D CT MAR approaches,
which include InDuDoNet+ [29] that performs dual domain
optimization and ACDNet [32] that employs metal kernel
modeling. As for 3D CBCT MAR method, we compare our
work with FEL [22], which utilizes 2D CNN and 3D cone
beam projection domain optimization. Finally, we compare
our approach against Blind DPS [2], which models kernel
prior and image prior using a diffusion model to solve the
blind inverse problem.

Synthetic dataset Results. Tab. 1 presents the quantita-
tive results for synthetic data. Both PSNR and SSIM show
significant improvements over existing methods. 2D MAR
approaches, such as InDuDoNet+ [29] and ACDNet [32],
exhibit a considerable drop in PSNR, which is due to the
change of the HU value distribution, as illustrated in Fig. 3.
Our method outperforms FEL [22] and Blind DPS [2] in
terms of both PSNR and SSIM. As demonstrated in Fig. 3
(e), our method effectively removes metal artifacts across
axial, coronal, and sagittal planes. Traditional CNN-based
methods, such as InDuDoNet+ (Fig. 3 (b)), and FEL (Fig. 3
(c)), tend to blur CT during the MAR process. Meanwhile,
Blind DPS (Fig. 3 (d)) creates weird artifacts and exhibits
reduced connectivity in the coronal and sagittal planes.

Clinical dataset Results. Fig. 4 shows the results of a
clinical case. InDuDoNet+ [29], ACDNet [32], and FEL
[22] effectively remove metal artifacts in coronal and sagit-
tal planes; however, they produce some smoothing or resid-

Figure 6. Synthetic and clinical MAR results of Blind DPS and
ours w/o projection domain guidance. (a) is the synthetic output
of Blind DPS, (b) is the synthetic output of ours w/o projection
guidance. (c) shows the clinical output of Blind DPS and (d) shows
the clinical output of ours w/o projection domain guidance. HU
values were clipped between -1000, 2500.

ual scattering around the metal insert and exhibit poor per-
formance in removing artifacts around metal inserts in the
axial plane, see Fig. 4 (b), (c), (d). Blind DPS [2] introduces
strange artifacts and poor connectivity in coronal and sagit-
tal planes, (Fig. 4 (e)). In contrast, our method effectively
removes metal artifacts in all three planes (Fig. 4 (f)).
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Method PSNR SSIM
Axial Coronal Sagittal

w/o image domain guidance 25.31 0.8543 0.8103 0.8154
w/o projection domain guidance 37.08 0.9841 0.9594 0.9595

Ours 38.21 0.9887 0.9878 0.9873

Table 4. Ablation results of synthetic metal-corrupted CBCT MAR. (PSNR, SSIM)

Figure 7. Ablation results of Synthetic metal-Corrupted CBCT
MAR sagittal view. Red: Metal inserts. (a) w/o projection do-
main guidance (b) w/o image domain guidance (c) Ours, HU val-
ues were clipped between -1000, 2500.

Synthetic out-of-distribution dataset Results. Tab. 2
presents the quantitative results for out-of-distribution syn-
thetic data from [5]. Overall performance is slightly lower
due to the smaller margin in the CBCT volume compared
to our synthetic dataset, and the use of different imaging
equipment. InDuDoNet+ [29] and ACDNet [32] exhibit
similar trends as our synthetic dataset. As shown in Fig. 5,
they face challenges in handling changing HU value distri-
butions and accurately removing artifacts around metal in-
serts. FEL [22] experiences a significant performance drop
in the out-of-distribution dataset, suggesting a poor gener-
alization capability. Blind DPS [2] produces strange arti-
facts in the CT image, and the SSIM performance sharply
drops in the coronal and sagittal planes compared to the ax-
ial plane. Conversely, our method effectively removes metal
artifacts in out-of-distribution datasets, demonstrating con-
sistent results across axial, coronal, and sagittal planes.

Posterior mean Guidance for efficient sampling. As
exhibited in Tab. 3, our method shows significantly reduced
memory usage compared to Blind DPS. When there are M
slices of CBCT, it uses more than 2M× less memory. How-
ever, as observed in Fig. 6, our method presents superior
performance. The posterior means x̂∗

0 and x̂m
0 gradually ap-

proximate the desired x∗
0 and xm

0 . By providing guidance to
these posterior means that approach the final values of inter-
est, rather than to x∗

t and xm
t , we can remove metal artifacts

more efficiently and effectively.

4.4. Ablation

To demonstrate the necessity of dual guidance, we con-
ducted an ablation study. In w/o projection domain guid-
ance, the parameters α1, α2, β1, β2 were set to 0.01, 0.003,
0, 0, and in w/o image domain guidance, the parameters

were set to 0, 0, 100, 35. To compensate the absence of
image domain guidance, the scale of β1,β2 was increased,
and k was set to 1. As shown in Tab. 4, when both guidance
is added, the SSIM of the axial, coronal, and sagittal planes
increase to similar levels. When one of the guidances is ex-
cluded, the SSIM values for the coronal and sagittal planes
drop. The reason why the SSIM for the coronal and sagit-
tal planes drop when projection domain guidance is missing
is that while connectivity along the z-axis increases, SSIM
of the axial plane increases more significantly because the
learned view of the diffusion model is an axial plane. With-
out projection domain guidance, there exists a problem with
connectivity along the z-axis which results in lower SSIM
for coronal and sagittal planes compared to axial. As shown
in the Fig. 7, when there is no projection domain guidance,
the 3D connectivity drops. When image domain guidance
was not used, 3D connectivity was present but strange arti-
facts occurred because the guidance of the diffusion, which
was directly learned from the image domain, was absent. In
contrast, when dual domain guidance was present, the 3D
connectivity was improved, and flickering did not occur.

5. Conclusion

In this work, we proposed a dual domain guided
diffusion model for 3D metal artifact reduction. The
diffusion model that models the metal-free CBCT prior
and the metal artifact prior were used to model each
distribution. Using image domain guidance, we remove the
metal artifacts on each slice, and the cone beam projection
domain guidance ensures 3D continuity. This approach
provides excellent results in 3D MAR not only for dataset
with the same distribution as the training data but also
for out-of-distribution dataset and clinical dataset, thereby
achieving state-of-the-art performance.
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