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P2D is a pretrained plug-and-play discriminator that can be plugged into any adversarial framework. We compare different

discriminators in the widely used Projected GAN and StyleGAN?2 framework at different checkpoints of training. Results clearly show the
advantage of P2D in terms of accelerating the GAN training across both frameworks.

Abstract

Most image classification tasks benefit from using pre-
trained feature stacks. In contrast, the discriminator for
adversarial losses is trained at the same time as the model
because using a pretrained feature stack yields a very poor
model. Recent work has shown that an implicit regu-
larization scheme allows using pretrained feature stacks
to construct a discriminator, which improves both speed
of training and quality of results. However, we observe
that changes in hyperparameters can result in substantial
changes in generator behavior.

We show that using a modified version of the R1 regular-
ization scheme that regularizes in the feature space instead
of the image space results in a plug-and-play discriminator
— P2D. Our scheme results in a method that is highly stable
across changes in architecture and framework; that signif-
icantly speeds up training; and that produces models that

reliably beat SOTA in quality. The huge reduction in train-
ing resources required means that P2D could make training
powerful generative models over specific datasets accessi-
ble to most researchers.

1. Introduction

One of the popular trends in recent computer vision re-
search is to leverage pretrained features in various ways [2,
23,30, 32], and train-from-scratch feature stacks are be-
coming less common. We describe a method, P2D, to ap-
ply a pretrained feature stack to GAN training that is plug-
and-play. A general plug-and-play solution for accelerating
GAN training should be:

1. Generator-agnostic: It should work for all generators
in whatever codebase.

2. Framework-stable: Changes in framework should
have minimal effect. Here framework refers to the
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set of choices that apply to training a particular gen-
erator, including training procedures, hyperparameters
and choice of losses (cf. cycle loss [36] vs straightfor-
ward adversarial loss).

3. Transferable: It should be easy to integrate into dif-
ferent codebases.

4. Competitive: It should accelerate training and achieve
competitive results as measured by common metrics.

In Generative Adversarial Networks (GANs, origi-
nally [8]; major improvements in [12,14,15,22]), it is com-
mon to train discriminators from scratch. There are conse-
quences: poor discriminators affect generator performance;
training times are very long. An alternative choice would
be using pretrained feature stacks in discriminators. But
simply plugging a pretrained feature stack into GAN does
not work, because the discriminator overfits immediately,
resulting in unhelpful gradients. Recent work [17, 24, 25]
demonstrates significant speed and quality improvement by
using foundation models in discriminators by adopting a
strong implicit regularizer that makes it hard for the dis-
criminator to overfit. As we show in Section 3, the ap-
proaches of [24,25] apply well to certain architectures and
certain frameworks, but not to others due to insufficient reg-
ularization. They are thus not plug-and-play.

Our method, Plug and Play Discriminator (P2D), is a
simple drop-in discriminator that is easy to integrate and
significantly speeds up GAN training. Similar to Sauer et
al., P2D uses foundation models as feature extractors for
the discriminator. However, to make P2D plug-and-play,
we introduce a novel feature regularization loss that stabi-
lizes the training process. We demonstrate that P2D is able
to significantly improve training speed and quality across
different generators, frameworks, and codebases. For ex-
ample, training a StyleGAN2 on 256 x 256 FFHQ with a
single NVIDIA A40 GPU takes only 34 hours to match the
official reported FID [15], roughly a 23 x increase from 781
hours. As another example, P2D applied to CycleGAN (a
completely different framework) results in very strong FID
improvements on standard datasets (including halving the
FID of horse2zebra). We summarize our comparison
with Sauer et al. in Table 1.

Our contributions are

1. We introduce a novel feature R1 regularization loss
that stabilizes training P2D with foundation models.

2. We introduce P2D, a plug-and-play discriminator that
is stable during training with any generator architec-
tures, or frameworks within reasonable range of hy-
perparameters and significantly boosts training speed
and image quality.

2. Related Work

Making GAN Training Faster is widely studied.
Ngxande et al. [20] replace convolution layers with depth-

wise separable convolution layers to reduce trainable
parameters, thereby reducing computation requirements.
Zhong et al. [35] augment the training procedure with an
additional adversarial loop for the discriminator, acceler-
ating the training. Sinha ef al. [27] subsample core-sets
from large batches to improve batch coverage, leading to
improved performance. No method results in sufficient
speedup for it to be widely adopted. FastGAN [18] intro-
duces an entirely new GAN architecture that aims to im-
prove gradient signals, leading to significantly faster con-
vergence with very competitive results. These methods ap-
ply to specific architectures or frameworks. In contrast, our
method is plug-and-play — easily integrated into different
frameworks and tasks while yielding a significant boost in
training speed and image quality.

Pretrained Feature Stacks are now usual practice in
computer vision. Such models such as CLIP [21] and Ef-
ficientNet [28] are trained on millions of images and have
feature spaces that are very useful for downstream tasks.
Learning a classifier on top of the features given by these
models should be significantly easier than training a dis-
criminator from scratch. But doing so disrupts the ad-
versarial training, leading to poor results [24]. Kumari et
al. [17] overcome this instability by first performing a stan-
dard GAN training and using a foundation model after the
training has stabilized. While they show impressive quality
gains, their process is not framework-agnostic. One must
add new discriminators as the training progresses which re-
quires significant changes to how GANSs are trained.

ProjectedGAN [24] and StyleGAN-XL [25] by Sauer
et al. hypothesize that foundation models cause unstable
GAN training because their deep semantic features are eas-
ily overfitted by the discriminator. Sauer et al. propose
to obstruct overfitting by applying a fixed random projec-
tion layer to features before passing them to the discrimi-
nator. The result is more stable training. In addition, Dif-
fAug [34], a differentiable augmentation technique, is used
to reduce the discriminator overfitting. ProjectedGAN and
StyleGAN-XL share the same discriminator framework,
with StyleGAN-XL having a ViT [7] in addition to an Ef-
ficientNet [28] for its feature extractor backbone. Unlike
Kumari et al., they do not require training a separate dis-
criminator and training is the same start to finish. Section 3
demonstrates that these methods are significantly unstable
with change of framework and codebase.

3. Is the Problem Solved Already?

We investigate whether ProjectedGAN [24] and
StyleGAN-XL [25] are plug-and-play. We use Fréchet
inception distance (FID) [10], a common metric for
evaluating the quality and diversity of GANs. We evaluate
using different generators and frameworks, but confine
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P2D  Sauer et al. [24,25]

Accelerates training
Generator-agnostic
Framework-stable
Transferable

Robust to hyperparameters
Competitive results

AN N N SN
WX X X X S

Table 1. P2D is plug-and-play because it is able to achieve state-
of-the-art results across different frameworks. Projected GAN and
StyleGAN-XL by Sauer et al. do not provide this flexibility as
verified by numbers in Table 2.

the evaluation to the FFHQ dataset [14]. We do so be-
cause problematic behavior on one dataset is enough to
demonstrate plug-and-play problems, and because this is a
popular face dataset with 70k images commonly used for
benchmarking GANS.

3.1. Codebase and Generator

A plug-and-play discriminator should work for different
codebases, generators, and frameworks. As a baseline, we
test both Projected GAN and StyleGAN-XL discriminators
in the native ProjectedGAN framework which uses a Fast-
GAN generator. Note that StyleGAN-XL is built on top of
ProjectedGAN and thus shares most of the codebase, with
significant differences only in the generator. We refer to this
codebase as Sauer et al. codebase.

We also investigate StyleGAN2 [14]. StyleGAN2’s
unique style-based architecture admits a variety of inter-
esting image editing capabilities [4—6, 26,30, 33]. Because
Sauer et al. codebase is built on top of the official Style-
GAN?2 codebase, we choose to test the discriminators on
Rosinality’s reimplemented StyleGAN2 codebase [1] in-
stead. This offers a different codebase on a different genera-
tor (StyleGAN2 vs FastGAN), and for them to be plug-and-
play, ProjectedGAN and StyleGAN-XL should be expected
to perform well.

3.2. Frameworks

A plug-and-play discriminator should be robust to
change of framework. So, for example, various sensible
choices of hyperparameter should all result in good behav-
ior. There are many tweakable hyperparameters. We focus
on varying a few commonly adjusted hyperparameters that
have significant effects. For fair comparison, our baseline
hyperparameter configuration for all training is a batch size
of 8 (to fit in most GPUs) together with differentiable aug-
mentation (as advised by [17,24]).

Batch size: ProjectedGAN and StyleGAN-XL are trained
on large batch sizes, at 64 and 256 respectively. Large batch
sizes are typically unachievable without a sufficiently large

number of GPUs or specific implementation of gradient ac-
cumulation within their codebase.

Differentiable Augmentations: By default, DiffAug [34]
is used by both Sauer et al. and Kumari et al. [17] to achieve
SOTA results. This is uncommon as differentiable augmen-
tations are typically used only when training with very small
datasets and could even hurt the performance if the training
data is sufficiently large [13]. FFHQ is sufficiently large
and GANSs are able to achieve SOTA results on it without
differentiable augmentations [ 15].

3.3. Results and Discussion

As Table 2 shows, both ProjectedGAN and StyleGAN-
XL are significantly affected by the change of codebase
and the change of framework. On Rosinality’s StyleGAN2
codebase, both discriminators cause unstable training and
severe mode collapse, indicating that they are not agnostic
to the change in the generator and codebase. As detailed
in Section 5.3, we could not replicate the reported FIDs
of ProjectedGAN on their official codebase. Both methods
are very sensitive to batch sizes and DiffAug (a change in
framework), with small batch sizes and removal of DiffAug
having significantly worse FIDs. This is especially so for
StyleGAN-XL, where using small batch sizes increased the
FID from 3.22 to 27.1.

As Sauer et al. point out, it is challenging to use a
pretrained feature extractor because the discriminator can
overfit some features, providing bad gradient signals for the
generator to learn. GAN training can be regularized by
a variety of effects that are hard to account for, including
generator structure and hyperparameter details. We specu-
late Projected GAN and StyleGAN-XL perform well in their
own framework because of regularization effects in the gen-
erator. ProjectedGAN uses a FastGAN generator which
is more “stable” than StyleGAN2 due to its Skip-Layer
channel-wise Excitation module [18]. StyleGAN-XL’s gen-
erator is trained in a progressively growing fashion, which
strongly regularizes it. Changes in the generator, frame-
work, and codebase appear to confirm Sauer et al.’s dis-
criminators are not sufficiently regularized for stable train-
ing when the regularization effects in the generator itself are
less pronounced. In turn, the way to obtain plug-and-play
discriminators is to regularize the discriminator explicitly.

4. Methodology

We wish to regularize a set of discriminators, built as
learned classifiers on top of frozen pretrained feature stacks
(in our case, obtained from foundation models). The feature
space produced by a foundation model is exceptionally rich
and informative. In turn, the classifier might focus on one or
a few features early in training and ignore the rest. We ex-
pect this behavior to produce poor gradient signals, because
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Sauer et al. Codebase StyleGAN2 Codebase (Rosalinity)

Baseline +Large batch size +No DiffAug | Baseline No DiffAug
ProjectedGAN 6.81 4.70 10.13 159 217
StyleGAN-XL 27.1 3.22 10.8 132 192
P2D (Ours) 2.32 2.37 242 2.85 2.39

Table 2. We compare FIDs of training discriminators with different hyperparameters across two different codebases and frameworks for
FFHQ256. P2D is plug-and-play because it gives strong FID results for all cases while ProjectedGAN and StyleGAN-XL perform poorly
outside of their intended settings. Refer to Figure 1 for qualitative comparisons.

P2D

Feature R1 Regularization

Figure 2. P2D uses n foundation models F; as frozen pretrained feature stacks and regularizes the classifiers C; with Feature R1 Regular-
ization. P2D works well with different generators and frameworks, see Section 5.2.

Method FID criminator to use the features relatively evenly.

Baseline 4.98 The R1 regularizer [19] is commonly used as a form of
P2D (Ours) E— 2.39 gradient penalty that penalizes the discriminator for devi-
(A) No relatl\.n?tlc loss | 2.87 ating from the Nash equilibrium. Given « as the input, D
(B) Random it G 2.84 as the discriminator, and v as the weighting term, the R1
(C) Full pretrained G| 2.97 regularizer takes the form

Table 3. We look at ablations on StyleGAN2 trained on FFHQ for

. . Y
10M images Lr1 = §]E$NpD [||va($)||§:| ey

we expect each feature direction in a foundation model to
have some useful information about an image. This sug-
gests using a form of regularization that encourages the dis-

and encourages the gradient with respect to each input to
be close to zero, preventing the model from overfitting to a
particular input. We adopt a variant of this regularizer.
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4.1. Feature R1 regularization

Understanding our regularizer requires a review of how
our discriminators are integrated into the model. Figure 2
summarizes our approach. We have multiple feature ex-
tractors (as in [24, 25]); write F ) for feature extrac-
tors. Each is taken from a pretrained foundation model, and
frozen. On top of each we place a trainable classifier; write
Ch,... r, for the classifiers. Thus, given an image x, the out-
put logits for discriminator D; is

Because we keep F; fixed and only update C; during train-
ing, any instability can be caused only by C;. To prevent
this, we apply R1 regularization to C; with respect to its
input features, SO

Lewi = 3E[IV £ Ci(£:)3 ®

Unlike normal R1 regularization, we are computing the loss
with respect to the features extracted from foundation mod-
els (F;(z)) instead of image pixels (z). We call this proce-
dure Feature R1 Regularization. Computing gradients over
only C; instead of D; is cheaper as it avoids computing gra-
dients through multiple layers of large foundation models.
Furthermore, our experiments show that using R1 regular-
ization directly leads to poor results.

Heuristics for R1 weighting: A plug-and-play discrimi-
nator should not have too many hyperparameters to be sim-
ple for users. In P2D, because we are using multiple feature
extractors, their outputs f; might have varying sizes. As
a result, we could need to tune  separately for each fea-
ture extractor in Equation 3. Simple experiments show that
using the same ~y for each results in poor overall training
stability.

A simple procedure tunes -y; automatically and success-
fully. We observed that features with larger L2 norms tend
to require a larger gradient penalty (larger ), we thus scale
v; by the feature’s average L2 norm across the batch. Thus,
we set y; using

A N
7= N;Hﬂﬂb “

where f;; represents the jth feature in the batch of features
extracted by F; and A is a constant weighting term that is
used for all discriminators. Now, instead of adjusting ~y; for
each feature extractor, we only need to tune a single A for all
discriminators. Empirically, we notice that the same A can
be used across different datasets and generators, so that P2D
thus does not require any form of hyperparameter tuning.

4.2. Loss function

There is no consensus on the best loss function for
GAN:Ss, with different frameworks using different versions
of the loss function. For example, StyleGAN uses the non-
saturating loss [8] while ProjectedGAN uses the hinge loss.
In our framework, we show that using relativistic loss [11]
along with the nonsaturating loss results in better stability
and provides a substantial improvement in results (see Ta-
ble 3 A).

Relativistic loss changes the discriminator’s output to
give the probability of the real data being more realistic than
the sampled fake data, on average. It is of the form

P {D(z) ~Eq, D(ry)

if x is real
&)
D(x) — E,, D(x.)

if x is fake
Because we have several feature extractors, we have mul-
tiple discriminator outputs. To compute the final loss, we
average the losses over all discriminator outputs.

4.3. Pretrained Generator

Specifically for StyleGAN2 [15], Grigoryev et al. [9]
showed using an ImageNet-pretrained generator speeds up
the training and gives superior results compared to training
from scratch. In our experiments, we notice that initializing
with an ImageNet-pretrained generator generally speeds up
early training but gives poorer final results, see Table 3 B
and C.

We hypothesize that the drop in performance is due to the
mapping network of StyleGAN2. The mapping network is
a MLP that produces the style code used to modulate the
convolution layers of the generator. For stability reasons,
during training, the learning rate of the mapping network is
set to 100 times lower than that of the rest of the generator.
Due to this low learning rate, it is difficult for the mapping
network to change drastically if our new dataset differs from
the pretrained dataset significantly. This results in poorer
performance as the mapping network is not able to properly
disentangle the representation.

Instead of initializing the entire generator with the pre-
trained weights, we leave out the mapping network and
choose to randomly initialize them. We refer to this as par-
tial initialization. Doing so gives us a boost in training speed
and final results, see P2D in Table 3.

5. Experiments

In this section, we first talk about the implementation
details in Section 5.1. Next, in Section 5.2, we show P2D
is generator-agnostic and framework stable. After that, in
section 5.3, we show P2D generates better results than the
competing methods. Finally, in section 5.4, we compare the
wallclock time of P2D with the baseline approaches.
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Discriminators (Frameworks) FID Imgs FID Imgs FID Imgs FID Imgs
FFHQ Churches AFHQ Art Painting
StyleGAN2 (StyleGAN2)* 362 25M 339 88M - - 43.07 32M
ProjectedGAN (ProjectedGAN)* 339 7.1M 159 92M - - 280 0.8M
StyleGAN2 (StyleGAN2) 498 94M 400 94M 636 34M 467 20M
ProjectedGAN (ProjectedGAN) 470 7.0M 204 97M 216 90M 287 1.6M
StyleGAN-XL (ProjectedGAN) 322 96M 178 86M 242 96M 272 779M
P2D (ProjectedGAN) 232 94M 208 48M 165 10M 255 9.6M
P2D (StyleGAN2) 239 98M 155 94M 210 80M 262 82M

Table 4. P2D generally gets better FID for a range of datasets compared to Projected GAN and StyleGAN-XL without being sensitive
to hyperparameters and frameworks, see Table 2. Brackets indicate the framework we apply the discriminators to. * represents results
reported in [24]; the rest are reruns by us.
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Figure 3. Random samples from P2D. P2D achieves an FID of 2.19 on FFHQ1024, beating the baseline StyleGAN2 of FID 2.84.

‘ horse2zebra facades ukiyoe2photo and train a shallow classifier on top of each feature. Our
CycleGAN 63.6 108 109 classifiers consist of several ResBlocks along with a mini-
P2D (Ours) 319 81.6 87.1 batch standard deviation layer from ProGAN [12]. The ma-

jor difference between P2D and StyleGAN-XL is we re-
move the random projection layer and explicitly regularize
P2D with feature R1 regularization from Section 4.1. All
experiments with P2D implement relativistic loss from Sec-
tion 4.2. Additionally, for StyleGAN2 experiments, P2D
uses the partial initialization we discussed in Section 4.3.

Table 5. P2D even works for CycleGAN, a vastly different frame-
work from standard GANs, improving FIDs significantly from the
baseline.

5.1. Implementation

Similar to StyleGAN-XL, P2D uses two foundation
models as feature extractors, one CNN-based (Efficient-
Net [28]), another ViT-based [7]. However, instead of using
DeiT [29], we follow the suggestion of Kumari et al. [17]
and use a CLIP [21] encoder instead. Similarly, we extract
several intermediate features from the foundation models

We use the default hyperparameter settings for Project-
edGAN and StyleGAN-XL. For P2D, we use Adam opti-
mizer [16] learning rate of 0.002 and betas of 0 and 0.99.
We use the R1 weighting heuristic from Section 4.1 with a
fixed A = 0.2 for all experiments. More implementation
details are in the Supplementary Material.
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Time (hours) taken to reach target FID

FFHQ (4.70) Churches (2.08) AFHQ (2.42) Art Painting (28.7)
P2D (ProjectedGAN) 21 96 43 23
ProjectedGAN 76 106 82 18
StyleGAN-XL 47 85 151 19

FFHQ (4.98) Churches (4.00) AFHQ (6.36) Art Painting (46.7)
P2D (StyleGAN2) 25 8 9 1
StyleGAN2 240 251 92 50

Table 6. For the top table, we compare P2D trained in ProjectedGAN framework with ProjectedGAN and StyleGAN-XL. P2D reaches
target FID (in brackets) significantly faster on FFHQ and AFHQ while matching the speed for the other datasets. For the bottom table, we
compared P2D trained in StyleGAN2 framework with baseline StyleGAN2. P2D trains significantly faster across all datasets.

5.2. Is P2D generator-agnostic and framework-
stable?

Following Section 3.1, we test P2D on the same exper-
iments and show the results in Table 2. Unlike Project-
edGAN and StyleGAN-XL, P2D is stable for both code-
bases and different hyperparameters, producing strong and
consistent FIDs across all setups. Refer to Figure 1 for qual-
itative results.

P2DonI2I: We have validated that P2D works across two
GAN frameworks. However, we can take it one step further.
P2D is not just useful in a normal GAN generation task and
we demonstrate its success in the task of image-to-image
translation (I2I). We integrate P2D into CycleGAN [36], a
popular 121 framework, while keeping all hyperparameters
and settings the same. The only modification we made to
P2D is to change all convolution strides to 1 to convert it
to a patch-based discriminator which is more suitable for
I21. As shown in Table 5, P2D significantly outperforms the
CycleGAN baseline. In particular, P2D reduces the FID of
horse2zebra by half, from 63.6 to 31.9. This lends more evi-
dence that P2D is generator-agnostic and framework-stable.
Integrating P2D into ProjectedGAN, StyleGAN2, and
CycleGAN frameworks was simple and required no hyper-
parameter tweaks. We thus claim that P2D is transferable.

5.3. Does P2D produce competitive results?

A plug-and-play discriminator must produce competitive
results across different datasets. We again compare P2D
with ProjectedGAN and StyleGAN-XL under their best set-
tings (e.g. FastGAN generator, large batch size, efc.) over a
number of datasets. For P2D, we train in ProjectedGAN
and StyleGAN2 framework with a small batch size of 8
and without DiffAug. For datasets, we use FFHQ, LSUN-
Churches [31], AFHQ [3], and Art painting [24]. For Art
painting dataset, we train P2D with DiffAug because it con-
tains only 1000 images.

Table 4 reports our results. In our own experiments, we
were not able to reproduce the FIDs as reported in Project-

edGAN even when using the official codebase and default
hyperparameters. Thus in the table, we report their reported
FIDs denoting with a %, and also report our own reruns. The
brackets represent the framework we train the discriminator
on.

Even under unfavorable comparisons with the reported
FIDs that we cannot reproduce, P2D still achieves the best
FIDs across all the datasets for the two frameworks. For
FFHQ and LSUN-Churches, we achieve an FID of 2.39 and
1.55 which to the best of our knowledge, is the current state-
of-the-art for a StyleGAN2 generator.

On 1024 x 1024 resolution: While the foundation mod-
els are trained on 224 x 224 resolution images, we test its
capabilities to generalize to FFHQ1024. We again use the
StyleGAN?2 framework written by Rosinality for this exper-
iment. Because of the computationally expensive attention
layers in CLIP, we resize the images to 224 x 224 before
passing them to CLIP. This is less of a problem for Effi-
cientNet because it is a convolutional network and thus, to
ensure that we do not lose the high frequency details, we di-
rectly pass the high resolution images to EfficientNet. P2D
is able to generate high quality results, achieving an FID of
2.19, beating out the reported StyleGAN?2 baseline of 2.84.
See Figure 3 for qualitative results.

5.4. Wallclock Time

We compare the wallclock training time between P2D,
ProjectedGAN, StyleGAN-XL, and StyleGAN2. Because
ProjectedGAN and StyleGAN-XL do not work in Style-
GAN?2 framework (see Section 3.1), we compare P2D and
StyleGAN?2 separately.

We first compare P2D with ProjectedGAN and
StyleGAN-XL. For fair comparisons, we implement every-
thing in Projected GAN’s codebase and framework, with hy-
perparameters from Section 3.2 that are favorable for them.
In the first table of Table 6, we show the training time
needed to reach a target FID over several datasets on a sin-
gle NVIDIA A40. We choose the target FID as the largest
converged FID among the 3 methods so that all methods
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StyleGAN2

P2D

StyleGAN2 =

Art Painting

Figure 4. We compare P2D with baseline StyleGAN?2 at different wallclock time. Overall P2D produces better quality and more diverse
images at the same timestep. In just 1 hour, P2D produces cohesive images with good textures while StyleGAN?2 struggle to learn proper
textures. In 3 days, P2D produces very good photorealistic images while StyleGAN?2 still struggles with textures.

will achieve that FID at some point in their training. P2D
trains significantly faster on FFHQ and AFHQ, requiring
only about half the time to reach the target FID compared
to ProjectedGAN and StyleGAN-XL. On Churches and Art
Painting, P2D’s training speed is comparable with the other
methods. While we cannot claim that P2D always trains
faster than ProjectedGAN or StyleGAN-XL, P2D is sig-
nificantly more stable across generators, frameworks, and
codebases.

Next, we compare P2D and StyleGAN2 in the second
table of Table 6. For all datasets, P2D is significantly
faster than StyleGAN2 which trains its discriminator from
scratch. We visualize this in Figure 4 where we plot the im-
ages P2D and StyleGAN2 produce at different timesteps.
Within 1 hours, P2D is getting good textures and cohe-
sive images while StyleGAN?2 struggles with textures. Af-
ter training for only 1, P2D generates good quality and
diverse images, while obvious artifacts can be seen from

StyleGAN2. By day 3, P2D is already producing photo-
realistic images that beat the officially reported FID from
StyleGAN2.

6. Conclusion

In this work, we introduce P2D, a plug-and-play discrim-
inator that can be easily integrated into most GAN frame-
works to accelerate and improve their training. By stabiliz-
ing the training with the novel feature R1 regularization,
P2D is able to achieve competitive FIDs across a range
of generators, frameworks, and different hyperparameter
choices. We hope that P2D can make training state-of-the-
art GANs achievable for more people. In future work, we
will explore more variety of pretrained feature stacks for
the discriminator. We will also explore P2D’s applicability
to more tasks.
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