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Abstract

Member inference (MI) attacks aim to determine if a spe-
cific data sample was used to train a machine learning model.
Thus, MI is a major privacy threat to models trained on pri-
vate sensitive data, such as medical records. In MI attacks
one may consider the black-box settings, where the model’s
parameters and activations are hidden from the adversary, or
the white-box case where they are available to the attacker.
In this work, we focus on the latter and present a novel
MI attack for it that employs influence functions, or more
specifically the samples’ self-influence scores, to perform MI
prediction. The proposed method is evaluated on CIFAR-10,
CIFAR-100, and Tiny ImageNet datasets using various archi-
tectures such as AlexNet, ResNet, and DenseNet. Our new
attack method achieves new state-of-the-art (SOTA) results
for MI even with limited adversarial knowledge, and is effec-
tive against MI defense methods such as data augmentation
and differential privacy. Our code is available at https:
//github.com/giladcohen/sif_mi_attack.

1. Introduction

Machine learning (ML) algorithms have advanced
tremendously over the past decade and have been commonly
used for a variety of tasks, including privacy sensitive
applications, such as medical imaging [3, 25], conversa-
tions [9], face recognition [40], and financial information [8].
Most of these models are trained using sensitive user data
which can be leaked later by an adversary from the models’
parameters [37].

Membership inference (MI) attacks aim to infer whether
a specific sample was used to train a target ML model. This
information can be detrimental if it falls to the wrong hands.
For example, consider an ML model trained on blood tests
of HIV patients, for predicting their reaction to a Covid-19
vaccine. If an adversary somehow obtains a patient’s
medical record, she can only observe the patient’s blood
reading and query the model for the predicted reaction, but
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she cannot deduce if the patient has HIV. However, if the
adversary infers that the record was used to train the model,
then she would know the patient has HIV. If this adversary
is a health insurance company, it might increase the patient’s
insurance premium.

Many MI attacks make use of the class probability vector
(or logits) at the output of the target model [22,33,37,42],
since deep neural networks (DNNSs) often tend to exhibit
over-confidence for samples from their training set [31],
a phenomenon that is largely attributed to overfitting [42].
More recent studies do not assume access to model
probability vectors and still achieve state-of-the-art (SOTA)
MI accuracy by relying on the final predicted labels at the
model output [5,24].

MI attacks can operate under two threat model settings:
white-box or black-box. The white-box setting assumes that
the adversary has full information about the target model’s
architecture, parameters, activations, training process, and
training data distribution. On the other hand, the black-box
setting is more restrictive, allowing the adversary access only
to the target model’s input and output. All the aforemen-
tioned MI attacks use the black-box setting. Other works as-
sumed a white-box setting and tried to exploit other informa-
tion from the target model [20,31,32], however their white-
box methods could not achieve a significant improvement in
the MI prediction accuracy compared to black-box attacks.

Contribution. In this work we introduce a novel
white-box MI attack that can be applied to any ML model.
The core idea of our attack model is that training samples
have a direct influence on the loss of test samples, but not
vice versa. For quantifying this effect, we use influence
functions [15], which determines how data points in the
training set influence the target model’s prediction for a
given test sample. This measure quantifies how much a
small upweighting of a specific training point in the target
model’s empirical error affects the loss of a test point. To
speed up computation time, we utilize the self-influence
function of a sample point on it own loss.

Given a sample point, we calculate its self-influence func-
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tion (SIF') score, and query the target model for its label pre-
diction. These two values alone are sufficient to infer if the
sample belongs to the training set. Our attack model makes
use of only two parameters and thus exhibits fast inference
time. We evaluate our MI attack on several datasets trained
on various target models with different architectures, show-
ing its advantage over current SOTA attacks. Moreover, we
also consider the MI defense of training with data augmenta-
tions, which is a common practice in neural network training,
and present an adaptive attack model that negates it. Specif-
ically, we introduce the adaptive SIF (adaSIF), which takes
into account also the used augmentations in its calculation.

2. Related work

Membership inference. Shokri et al. were the first to
propose an MI attack against ML models [37]. Their attack
model includes a bundle of ”shadow models” which are
trained to mimic the classification output vector of a black-
box target model h, for training (members) and test (non-
members) samples. These shadow models are then used to
generate a shadow dataset. For a given shadow model S ,’j and
a sample (x¥,y¥), where x¥ is an input and y¥ is its label,
they predict the output vectory = S| f’f (x) and save the record

(y¥,yK,m;), where m; equals 1 if (x¥,y¥) is a member
1<k<p

and 0 otherwise. The shadow dataset {(yf, vE, ml)}
1<i<n

obtained from n samples and p shadow models is utilized to
train a binary classifier as an attack model for MI prediction.

The aforementioned attack requires training the .S, }’f mod-
els on similar architecture as h, with samples distributed
similarly to the training set of h. Salem et al. later showed
that the exact architecture knowledge is not needed, and any
sample distribution of a similar task (e.g., vision task) is
sufficient [33]. Moreover, they achieved a comparable MI
attack performance using a single shadow model.

Yeom et al. showed that overfitted target models are
necessarily vulnerable to MI attacks [42], and proposed a
simple baseline heuristic that predicts a sample z = (z,y)
to be a member if the target model prediction § = h(x)
matches y, and a non-member otherwise. This baseline is
named the ”Gap attack™ since its accuracy is correlated with
the generalization error, which is the gap between h accuracy
on the training data (A,,,er,) and the held out data (A,,¢):

1 1
7+7(Amem*

515 Aout), where A,,em, Aout € [0, 1].

As an attempt to mitigate MI attacks, several defenses
were proposed to alter i output confidence vector [13,27],
however recent works presented SOTA MI attack perfor-
mance on black-box models that only output hard labels,
without accessing the class posterior probabilities [5,24]. To

I'SIF refers both to the self-influence function score and the attack model
that is based on it interchangeably, depending on the context.

that end, they applied a black-box adversarial attack [4,21]
on the input image x image until its label y was flipped, and
inspected the Ly distance d = ||z — || where 2’ is the
adversarial image. Next, they predicted the sample (x,y) to
be a member if d > 7 for some threshold 7.

Sablayrolles et al. explored MI attacks in a white-box
setting [32]. They showed that optimal membership infer-
ence only depends on the loss function, and thus claimed
that white-box attacks cannot perform better than black-box
attacks. Rezaei and Liu also assumed white-box setting and
utilized hidden layers activations and gradient norms in their
attack models, and observed only a marginal improvement
compared to the black-box attack baseline [31].

Leino and Fredrikson constructed white-box MI attacks
that can be calibrated for its output confidences [20] (the
member/non-member classes) and showed that they can ob-
tain higher precision than a black-box attack. However, tun-
ing the MI attack for precision greatly reduced their recall
score. Our work shows that white-box information can assist
the adversary and perform SOTA MI, without sacrificing the
member recall or the accuracy on the non-member class.

Nasr et al. utilized a white-box attack that trains a DNN
attack model on features collected from all the target model
layers, for both the forward pass (activations) and backward
pass (gradients) [26]. Their approach surpassed the perfor-
mance of a baseline black-box. We show that our attack
method achieves even superior results on CIFAR-100 [17]
using their target model training setup.

Defense against MI attacks. Multiple defenses were
proposed against MI attacks for ML models. Regularization
defenses reduce the overfitting of target models, lowering
the gap between train and test accuracy. Such defenses are
data augmentation [ 4], Lo weight regularization [37], and
early stopping [38]. Based on knowledge distillation [ 1],
Shejwalkar & Houmansadr [36] proposed the Distillation
for Membership Privacy (DMP) defense which first trains
a teacher model and uses it to predict an unlabeled refer-
ence dataset. Next, only the predictions with the lowest
entropy are selected to train the final target model. Such
training records are classified more easily and thus reduce
membership information leakage. Differential Privacy (DP)
in DNNs [1] avoids overfitting of the model parameters by
clipping the gradients and adding Gaussian noise to them in
the backward pass during training. DP has been shown to
mitigate MI attacks on ML models [5,30].

Influence functions. Koh and Liang proposed to
interpret the predictions of an ML model by tracing them
through its learning algorithm and training data [I5].
They quantify the influence a train sample z;.q;, has on
a specific loss value of a test sample z;.5:. Aside from
interpretability, this measure had been shown to improve
classifier training [35], defend against adversarial attacks [6],
and fix mislabeled training data [16].
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The disadvantage of influence functions is that their com-
putation is computationally demanding. To mitigate that,
we use the self-influence measure, which calculates the in-
fluence an example has on itself and has been used to fix
erroneous training labels [29,34]. It allows us to perform the
MI attack in a computationally efficient manner.

3. Method

In order to describe our approach, we start by formally
defining influence functions in general and their derived self-
influence functions (SIF) that we use in the paper. Next, we
introduce our proposed SIF attack model for neural networks
that have been trained without data augmentation. Lastly, we
modify our approach to attack target models that are trained
with data augmentation.

We study a classification task from an input space X
(e.g., images) to an output space Y (e.g., labels). For a
sample point z = (x,y) € X x ) and model parame-
ters 6, we denote the loss by L(z,0). Let {z1,..., 2, } be a
training set of size n, and let £ Y% | L(z;, #) be the empir-

ical risk. The empirical risk minimizer is defined by 6L

argmind 3" | L(z;,0). We assume that the empirical risk
)

has first and second gradients and it is strictly convex in 6.

3.1. Influence functions

We study the change in model parameters due to up-
weighting a specific training sample z by a small € in the
training process. Upweighting z adjusts the model parame-

ters to be . o argmin® 3" | L(z;,6) 4 eL(z,0). Cook
0

and Weisberg [7] showed that the influence function of up-
weighting z on the model parameters 6 is given by

ger db. ..

Lupparams(2) = 5| = —H7'VoL(2,0), (D

e=0
where Hy = L ™% | VZL(2;,0) is the Hessian.

Influence functions interpret an ML model by indicating
which of the training samples assisted it to make its pre-
diction, and which training samples were destructive, i.e.,
inhibited the model from its prediction. Koh and Liang [15]
proposed to measure the influence a train sample 2,4, has
on the loss of a test sample z, using the term:

et L2, 0 z1rn)
o de

Iup,loss(ztrain7 Z) 0
€=

i,
— T 7762 train
- VQL(Z7 0) dE e=0
= 7V9L(Z, é)THé_1V0L(Ztraina é)
2)

The influence function Iop ioss(2train, ) measures how
much the test loss L(z,0) would change if we were to

“upweight” the training sample 2,4, in the empirical risk.
The influence function is composed of three components:
the gradient of the training sample z;.q;n, the gradient of
the test sample z, and the ’similarity” of these samples
with respect to the model perspective that is expressed
by the term H{;l, which is a positive definite matrix. In
the influence functions formulation, larger gradients and
similarity are correlated to larger influence.

3.2. SIF values

Our goal is to build an attack model that is a binary clas-
sifier that predicts whether a sample was used to train the
target model or not. The hypothesis that underlines our ap-
proach is that if an image has been used to train an ML target
model, then it would have a large influence measure on test
images’ loss with the same label. If so, in order to infer
whether a specific image is a member (used in training), we
need to examine its influence measure (Eq. (2)) on other
images with the same label.

Given an unseen sample z = (z,y) (either member or
non-member) and a set of samples known to be non-members
{zl, ceey zm} with the same label y, a rigorous influence
function analysis requires applying Eq. (2) to every pair
(2,2;) for 1 < i < m, and inspecting the m obtained influ-
ence measures. Alas, the expression Iy, 10s5(2, 2;) requires
calculating a Hessian vector product (HVP) and thus it is
not scalable for large datasets due to the large computational
cost. To make our attack model practical with low computa-
tional time, we propose a faster approach that utilizes only
the influence of a sample z on itself by merely calculating
its SIF measure:

Istr(2) = =VoL(z,0)" H; 'V L(z,0). 3)

This measure stands for the influence a single sample point
has on its own loss. We calculate Is;p(2) and classify
z as member if it satisfies the conditions: (i) Isrr(z) €
[Tmm, Tmax] and (ii) y = ¢, where  is the prediction of the
target model and 7,5y, Tinas are some thresholds. If any of
(1) or (ii) is violated, then we classify z as non-member. The
pseudo code of our attack model training (7in, Tmaz) and
inference is detailed in Section 3.3.

Notice that our framework operates in the white-box set-
ting, requiring access to the model’s parameters, activations,
and to its first/second order gradients. Therefore, it is not a
label-only attack and cannot be applied to black-box models.

3.3. SIF MI attack model

Our attack model fits only two parameters, 7, and 7o
which denote the SIF value range a sample can be considered
as a “member”. For every sample in the training set D79
or Dirain (defined in Section 3.2), we collect the Is7p

measure (Eq. (3)) together with a variable m that indicates
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Target Model | M-1
| D'mem | 100

M-2 M-3
1000 5000

M4 M5 M6 M-
10000 15000 20000 25000

Table 1. The number of the training set size |Dmcm’ for each of the target models.

if the target model h predicted the same class as the ground
truth label. These values are then used to calculate 7; and 7».

We aim to find an interval (71, 72) that best encapsulates
only the members, i.e., we want to have that most of the
members’ SIF values are inside (771, 72) and most of the non-
members’ SIF values are outside this range. For every candi-
date pair 71, 7 we calculate the balanced accuracy as defined
in Eq. (5). The optimal threshold pair is selected based on
a maximization of the balanced accuracy on the training set.

In inference time, given a target model / and data sample
z = (z,y), we calculate the SIF value s and query h for its
class prediction. If both conditions are met: (i) s € (71, 72)
and (ii) y = ¢ (where § = h(x;0)), then we predict z as a
member. Otherwise, z is predicted as a non-member.

Detailed pseudo codes of the target model fitting and
inference appear in the supp. mat.

3.4. Adaptive attack to augmentations

The SIF attack model assumes that a given sample z either
belongs to the training set (member) or not (non-member).
Alas, most computer vision training schemes employ data
augmentation. Thus, the target model might have been in-
troduced to some transformations of the image x, instead
of the original image. Training with augmentation can be
considered as a defense against our SIF-based method since
Eq. (3) assumes that a data point z remains unchanged in
the training process. Thus, we propose an adaptation to SIF
(Eq. (3)) to better estimate the influence of a training sample
z on itself, assuming that z is augmented during training.

Calculating the Hessian and its inverse for a DNN is too
expensive due to the millions of parameters involved. Note
that for n training points and 6§ € RP, this calculation has
a complexity of O(np? + p®). To overcome this problem,
we avoid the explicit calculation of H, ' and use HVPs
with stochastic estimation, as proposed by [15]. Specifically,
we approximate the vector s(z) = H, 'VyL(z,0) using
a stochastic estimation method proposed by [2] and then
rewrite Eq. (3) as:

Isip(z) = =s(z) - VoL(z,0).

With this approximation at hand, we turn to describe our
adaptive attack to augmentations, adaSIF. Let z = (Jj, y)
denote the original training sample and I be a random data
augmentation operator sampled from the family of training
augmentation distribution 7 (I ~ T). Then, we define the

adaptive self-influence measure of z on Eq. (3) as:
Ligasir(z) = —s(z) - Eror {VgL(I(x),y, 9)} 4)

Note that in adaSIF, we average the influence of differ-
ent augmentations of z on itself. For calculating the term

Eror [V(;L(I(az), Y, 9)] , we followed the same implemen-

tation of [15], but instead of sampling the training set sam-
ples (the goal in [15] was to check the influence of the train-
ing examples on z), we sampled different augmentations of
z, I(z), as our goal is to check the influence of the augmen-
tations on z. We compared adaSIF with a naive ensemble of
SIF measures calculated on data augmentations assemble and
found that adaSIF is slightly better in most cases. More de-
tails on adaSIF and the naive ensemble are in the supp. mat.

4. Experimental setup

Here we list the seven target models we used for evalu-
ating our work, provide technical details on how they were
trained, and describe the dataset split done to fit our attack
model and present the balanced accuracy metric used to
compare between all attack models. The hardware apparatus
used in our experiments is detailed in the supp. mat.

4.1. Target model and implementation details

Since overfitted machine learning models are more sus-
ceptible to membership leakage [33,37,39], we trained seven
different target models M-1, ..., M-7, where each model
differs only by the training set size. A similar target model
setup was also utilized in previous works [24,41]. The sizes
of the target models are summarized in Table 1. The Tiny
ImageNet [19] dataset was not evaluated on M-1 since it
has 200 labels which exceed M-1 training set size.

We split the full official training set of CIFAR-10, CIFAR-
100, and Tiny ImageNet into training and validation sets.
The training size is set by Table 1 and validation was set to
5% of the official training set. Three DNN architectures were
used in our experiments to train the target models: Resnet18
[10], AlexNet [18], and DenseNet [ 12]. We applied ReL.U ac-
tivations for all models and optimized the cross entropy loss
while decaying the learning rate using the validation set’s ac-
curacy score, for 400 epochs, batch size 100, with Ly weight
regularization of 0.0001, using a stochastic gradient decent
optimizer with momentum 0.9 and Nesterov updates. For the
data augmentation adaptive attack in Section 5.4 we trained
the target models with random crop and horizontal flipping.
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Figure 1. SIF and adaSIF values distribution for CIFAR-10 and CIFAR-100 images within the training set (members) and images outside
it (non-members) for target model M-7 trained on Resnet18. The top and middle rows correspond to SIF values (Eq. (3)) obtained from
models trained without and with data augmentation, respectively. The bottom row corresponds to adaSIF values (Eq. (4)) obtained from a
model trained with data augmentations. All members reside in a short range near 0; non-members seldom share the same distribution in this
range, and they can attain extreme values. This information is exploited by our attack. (e) and (g) show that data augmentations expands the
SIF values for members and mitigate our vanilla SIF attack. (i) and (k) show that applying adaSIF can recover the short range property for

the members and therefore facilitate the attack.

We applied early stopping by selecting the model checkpoint
with the best (highest) accuracy on the validation set. For
the DP training in Section 5.5 we used DP-RMSProp [23]
on M-7. The full DNN ftraining, validation, and official test
accuracies of the target models are reported in the supp. mat.

4.2. Attack model training and evaluation

To train and evaluate our SIF attack model, we split each
dataset into D,,,ern, and Do —mem subsets. The former
is the training set defined in Section 4.1, whereas the latter
holds only images that are outside the training and validation
sets. D,em and Dy, on—mem Were further divided to D;;g;’;,
Dirain ., and Diest o piest - where the first two
subsets were used to fit the attack models and the last two
subsets were used to evaluate membership inference by the
attack models. For simplicity, we matched the test set size

to the training set size. More explicitly we set ’Dt’"‘”” =

mem
’Dtest Pptrain PDtest

mem‘ _‘ non— mem‘ ‘ non— mem‘

The attack model’s thresholds 7,in, Tmaz (Section 3.2)
are chosen to optimize the Balanced accuracy in Eq. (5) on

Dirain and pirein - similarly to [24]. The threshold
choosing algorithm is provided in the supp. mat. Since
the SIF attack requires setting two thresholds, we choose
to evaluate our MI attack using balanced accuracy as done

in [5,31] instead of the AUC of the ROC curve. We denote

1 = |Diest = |Dist _em|- Our MI test sam-

ples are denoted as D¢t = {(x}n,y}n), oy (N1 )}
11 N

and szeosé mem {(xnrrw Ynm)s s (T ynm) , where

x denotes an image and ., Ynm, labels denote member (1),
non-member (0) labels, respectively. The balanced accuracy
of an attack model is then defined by:

Balanced Acc = =) |

S Z Z
i=1
o ©
where ¢, and 7}, are the attack model’s predictions for y;,
and y!,,, respectively.
For the baseline comparison, in our experiments we used
the Gap, Black-box, and Boundary distance MI attacks im-
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Figure 2. Comparison of our SIF attack with some baseline MI attacks: Gap, Black-box, and Boundary distance. The x-axis indicates the
attacked target model and the y-axis shows the balanced attack accuracy (Eq. (5)). Our SIF method surpasses previous SOTA attacks for

most target models.

plementation from ART [28]. The Boundary distance at-
tack was implemented with the HopSkipJump adversarial
attack [4]. Due to the very long computation time of the
Boundary distance attack and our adaSIF attack (Section 3.4),
we limited the size of the fitting and evaluation subsets to
1000 and 5000, respectively, for these attack models only.

5. Results

We start by presenting histograms for SIF and adaSIF
values to motivate the use of our method. We then evaluate
the performance of our SIF MI attack and compare it to
current SOTA attack methods. Next, we conduct ablation
studies aimed at improving the adaSIF attack with minimal
run time. Next, we test our adaSIF attack on target models
trained with data augmentation or differential privacy, which
are defenses that aim to mitigate our vanilla SIF attack.
Lastly, we show the fitting and inference time for all the
attack models used in this paper.

5.1. SIF distribution of membership

To better understand how our attack works, we show in
Figure 1 the SIF values (Eq. (3)) distribution for members
and non-members of CIFAR-10 and CIFAR-100, calculated
on the target model M-7 trained on Resnetl8. The top
row shows SIF values on a model trained without data aug-
mentation. We observe that members are distributed solely
within a short interval around 0, whereas non-members can
attain very large absolute values, and their distribution in the
aforementioned interval seldom matches the members’ dis-
tribution. This shows that member samples have negligible
influence scores on themselves, while non-member samples
have a large impact on their test loss. Our SIF attack exploits
that property and sets thresholds 7; and 7 to encapsulate
most of the members.

The middle row shows the same SIF values when calcu-
lated on a model trained with data augmentation. In this

case the non-members still exhibit extreme values, but the
members’ range spans to a larger interval (see Figure 1(e)
and Figure 1(g) compared to Figure 1(a) and Figure 1(c),
respectively). Thus, data augmentation can be considered as
a defense against SIF since it requires setting an expanded
range [72, 73] which hampers our attack.

The bottom row shows adaSIF values (Eq (4)) calculated
on the same data augmented target model that is used in the
middle row. We observe that adaSIF restores the short range
characteristic for the members, and therefore negates the
effect of the data augmentation on the target model defense.

5.2. Comparison of MI attacks

Figure 2 shows the attack power (balanced accuracy) of
the four inspected attacks: Gap (black), Black-box (blue),
Boundary distance (green), and SIF (red), on three popular
classification tasks: CIFAR-10, CIFAR-100, and Tiny
ImageNet. We compare the attack scores calculated on
seven different Resnet18 target models (Table 1), where each
model was trained on a different number of samples. Our
SIF attack achieves higher MI accuracy than the baselines
for most of the target models. Table 2 summarizes the attack
scores for all the MI methods presented in Figure 2, and
also details both the member and non-member accuracy. We
observe that SIF almost always achieves perfect accuracy
(~ 1.0) for the members, which is crucial for a reliable
membership inference. We run the same comparison for
AlexNet and DenseNet in the supp. mat and show that
SIF achieves new SOTA for these architectures as well. A
detailed analysis with precision and recall values is also
presented in the supp. mat.

5.3. Ablation studies

Adversarial knowledge. Throughout this paper, we train
our SIF and adaSIF attacks with thousands of data samples
as explained in Section 4.2. Alas, such data knowledge might
not be available to the adversary. Therefore, we repeat our
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Target Gap

Dataset Model | Member Non-mem Balanced

Black-box
Member Non-mem Balanced

Boundary dist SIF (ours)
Member Non-mem Balanced | Member Non-mem Balanced

M-1 1.000 0.780 0.890 0.600 0.480
M-2 1.000 0.614 0.807 1.000 0.616

0.540 0.980 0.920 0.950 1.000 0.980 0.990
0.808 0.994 0.814 0.904 0.996 0.906 0.951

M-3 1.000 0.414 0.707 1.000 0.666 0.833 0.946 0.752 0.849 1.000 0.818 0.909

CIFAR-10 M-4 1.000 0.356 0.678 0.986 0.646 0.816 0.914 0.684 0.799 0.989 0.749 0.869
M-5 1.000 0.254 0.627 1.000 0.515 0.757 0.950 0.588 0.769 0.987 0.639 0.813

M-6 1.000 0.244 0.622 0.886 0.631 0.758 0.970 0.504 0.737 0.976 0.624 0.800

M-T7 1.000 0.231 0.616 1.000 0.578 0.789 0.910 0.618 0.764 1.000 0.553 0.777

M-1 1.000 1.000 1.000 0.140 0.780 0.460 1.000 1.000 1.000 1.000 1.000 1.000

M-2 1.000 0.846 0.923 1.000 0.852 0.926 1.000 0.954 0.977 0.998 0.994 0.996

M-3 1.000 0.763 0.882 1.000 0.935 0.967 0.988 0.938 0.963 0.999 0.982 0.990

CIFAR-100 M-4 1.000 0.692 0.846 1.000 0.913 0.957 0.998 0.896 0.947 1.000 0.960 0.980
M-5 1.000 0.601 0.801 1.000 0.907 0.953 0.974 0.862 0918 1.000 0.953 0.976

M-6 1.000 0.535 0.767 0.993 0.891 0.942 0.986 0.840 0.913 1.000 0.932 0.966

M-T7 1.000 0.524 0.762 0.993 0.861 0.927 0.978 0.798 0.888 0.999 0.900 0.949

M-2 0.996 0.962 0.979 0.944 0.914 0.929 0.992 0.976 0.984 0.992 0.978 0.985

M-3 1.000 0.905 0.953 1.000 0.957 0.978 1.000 0.976 0.988 1.000 0.994 0.997

Tiny ImageNet M-4 1.000 0.855 0.928 1.000 0.976 0.988 1.000 0.964 0.982 1.000 0.989 0.994
M-5 1.000 0.808 0.904 1.000 0.974 0.987 0.992 0.958 0.975 1.000 0.992 0.996

M-6 1.000 0.780 0.890 0.999 0.950 0.975 0.988 0.944 0.966 1.000 0.966 0.983

M-T7 1.000 0.754 0.877 0.994 0.962 0.978 0.996 0.946 0.971 1.000 0.928 0.964

Table 2. Comparison of accuracies for various MI attack methods: Gap, Black-box, Boundary distance, and SIF. We detail for every attack
the accuracy on the members, the non-members, and the balanced accuracy.

evaluation with merely 10 training data points and show that
our attacks obtain marginally lower performance compared
to the vanilla training, demonstrating the strength of our
methods in realistic setups (see supp. mat).

Adaptive attack. To better understand the impact of the
different terms on our method, we performed several abla-
tion experiments. The adaSIF attack described in Section 3.4
requires a proper approximation of the s(z) term in Eq. (4);
this approximation is controlled by two parameters: (i) r, the
number of iterations used to estimate s(z); and (ii) the recur-
sion depth d, i.e., the number of augmentations performed
during one iteration of s(z) calculation. Increasing either
parameter prolongs the attack’s inference time so we aim for
the smallest values of r, d for a successful adaptive attack.

Figure 3(a) shows the effect of d on the balanced accuracy
of our adaptive adaSIF attack, for CIFAR-10, CIFAR-100,
and Tiny ImageNet trained on the target model M-7 with r
set to 1. The width of each line corresponds to the measured
standard deviation of five experiments. We set adaSIF with
d = 8 since it achieves a good balanced accuracy with high
confidence (narrow interval).

MI Attack CIFAR-10 CIFAR-100 Tiny ImageNet
Gap 0.5221 0.5276 0.5150
Black-box 0.5053 0.5006 0.5000
Boundary dist 0.5140 0.5238 0.5122
SIF 0.5228 0.5276 0.5152

Table 3. MI attack performance on target models M-7 trained with
differential privacy.

Next, we inspect the effect of 7 on the balanced accuracy
with d set to 8. Figure 3(b) shows that  has a marginal
impact on the balanced accuracy for CIFAR-100 and Tiny

(@) (b)
0.95 0.95
0.90
1 \ 0,00 e s
_______ A =S
0.85 \
\
8 \ goes
3 0.80 \\\ 3 CIFAR-10
g \ % 080 ~-- CIFAR-100
& 0.75 CIFAR-10 - & Tiny ImageNet
3 ~~- CIFAR-100 1550 3
0.70 Tiny ImageNet NN 0.75
0.65 0.70
0.60 0.65
1 2 4 8 16 32 64 128 1 2 4 8 16

Recursion depth (d) Number of iterations (r)

Figure 3. Ablation study on the recursion depth (d) and number
of iterations () used to estimate s(z) in Eq. (4). The balanced
accuracy of our adaSIF attack was calculated for target model M-7
as a function of: (a) d where r = 1 and (b) » where d = 8. Both d
and r are shown in logarithmic scale.

ImageNet and some improvement for CIFAR-10. We there-
fore select d = 8 and r = 8 for our adaSIF method. Yet, one
may gain very similar results using our attack by usingr = 1,
which reduces the computational time by a factor of 8.

5.4. Data augmentation adaptive attack

We repeat the same comparison of MI attacks in Sec-
tion 5.2, where the target models are trained with data aug-
mentation. Figure 4 shows the balanced accuracy (Eq. 5)
of the attacks: Gap, Black-box, Boundary distance, SIF,
and our adaptive adaSIF, on CIFAR-10, CIFAR-100, and
Tiny ImageNet, for the different target models trained on
Resnet18. As expected, our vanilla SIF attack efficacy is
attenuated and surpassed by a baseline in most cases. On
the other hand, adaSIF boosts our SIF attack to a new SOTA
(red bar) for all datasets. Similar results for AlexNet and
DenseNet are shown in the supp. mat.

In another experiment, we trained target models for
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Architecture Gap Black-box Boundary dist SIF (ours) adaSIF (ours)
Fitting Inference | Fitting Inference | Fitting Inference | Fitting Inference | Fitting Inference
Resnet18 - 0.19ms | 16528s 0.22ms | 7.87hr 22.51s | 4.67 hr 0.66 s 5.31 hr 16.11s
AlexNet 0.10ms | 169.35s 0.14ms | 6.68hr 2040s | 4.19 hr 0.62s 4.27 hr 12.20 s
DenseNet 0.13ms | 169.26s 0.20ms | 841 hr 2557s | 472hr 0.68 s 7.42 hr 16.39 s

Table 4. Time required for fine-tuning (’fitting”) an attack model on its training points and running a single membership inference
("inference”). Our SIF attack takes a considerable amount of time to fit, but its inference is shorter than the Boundary distance attack.

(a) CIFAR-10 (b)

l . Gap 1.0

i mm Black-box - ’I

= Boundary dist Y I

0.8 1 SIF (ours) I
n B adaSIF (ours)

CIFAR-100

0.9

Balanced Acc
Balanced Acc

12 3 4 5 6 71 12 3 4 5 6 7
Target Model M Target Model M

(C) Tiny ImageNet

1.0

Balanced Acc
°
©

wILGILI LI

Target Model A

Figure 4. Similar comparison of MI attack as in Figure 2 when
the target models are trained with data augmentation. The vanilla
SIF value from Eq. (3) performs on par to previous SOTA. When
implementing the adaptive attack from Eq. (4) (red bar) we surpass
all previous attacks by a large margin.

CIFAR-100 with 50000 training samples, similarly as [26].
We show that our adaSIF attack surpasses their reported
white-box MI attack accuracy (see supp. mat).

5.5. Attacking differential privacy

We repeat the same comparison of MI attacks in Sec-
tion 5.2, where the target models are trained using DP-
RMSProp with e = 50. Table 3 shows the balanced accuracy
(Eq. 5) of SIF attack compared to the previous MI attack
baselines, for target models M-7 trained on Resnet18. SIF
marginally surpasses or on par with previous MI attacks.
Note that although in this case, differential privacy provides
a good defense against all attacks, training with very large
€ as done here also degrades the performance significantly,
which is a remarkable drawback of this defense approach.

5.6. Computational cost

Computation time is particularly an issue for calculating
the HVP values for the influence function in large datasets

[15]. Table 4 shows a comparison of the fitting and inference
time for our SIF attack, adaptive adaSIF attack (with d = 8§,
r = 8), and other baseline attacks used in our experiments,
on Tiny ImageNet trained using the M-7 target model. “Fit-
ting” indicates the time used to fine-tune the attack model’s
parameters, and inference” indicates the average cost time
for membership inference on a single data point.

The Gap attack model has no parameters and thus does
not need fitting. In addition, Gap and Black-box attacks
have negligible inference time. Since the Boundary distance
and adaSIF attacks are very slow, we fitted and evaluated
them on 1000 random samples from D!"%n  pirain

mem non—mem

and on 5000 random samples from Dest U Diest
respectively. The vanilla SIF was fitted and evaluated on all
the attack model’s samples, similarly to Gap and Black-box.
We observe that SIF and adaSIF take less time to fit than
the Boundary distance, and their inference cost is also lower,
particularly for the SIF attack which runs a single MI attack

in less than a second.

6. Conclusions

In this paper we addressed the task of membership in-
ference, which is the prediction of whether a data sample
was used to train a model or not. We showed that the self-
influence function in Eq. (3) is an excellent indicator of mem-
bership inference. The aforementioned SIF values combined
with the target model’s prediction were used to achieve new
SOTA MI attack performance for CIFAR-10, CIFAR-100,
and Tiny ImageNet, on Resnet18, AlexNet, and Densenet,
for various target models (Table 1).

Furthermore, we showed that our SIF attack can be
adjusted to address the common MI defense of training the
target model with data augmentation. This refined adaSIF
attack surpasses all other baselines by a large margin, for
every dataset, architecture and target model listed above,
while requiring an inference time of 15 seconds. We also
showed that our attacks can be fitted using only 10 members,
making them feasible in realistic setups.

One possible direction to form a more sophisticated de-
fense method against our SIF and adaSIF attacks is to ”shift”
the members distributions towards the non-members. Yet,
this involves Hessian estimation which makes such a method
computationally demanding.
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