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Abstract

In smartphones and compact cameras, the Image Sig-
nal Processor (ISP) transforms the RAW sensor image
into a human-readable sSRGB image. Most popular super-
resolution methods depart from a SRGB image and upscale
it further, improving its quality. However, modeling the
degradations in the sSRGB domain is complicated because
of the non-linear ISP transformations. Despite this known
issue, only a few methods work directly with RAW images
and tackle real-world sensor degradations.

We tackle blind image super-resolution in the RAW do-
main. We design a realistic degradation pipeline tailored
specifically for training models with raw sensor data. Our
approach considers sensor noise, defocus, exposure, and
other common issues. Our BSRAW models trained with our
pipeline can upscale real-scene RAW images and improve
their quality. As part of this effort, we also present a new
DSLM dataset and benchmark for this task.

1. Introduction

The specialized on-board Image Signal Processor (ISP)
transforms RAW sensor readings into more refined and per-
ceptually meaningful RGB representations [20, 45,52, 68].
Photographers often opt for RAW over RGB processing to
yield perceptually superior images, attributing this prefer-
ence to two key benefits of RAW data: (i) RAW information
carries a broader data range, generally ranging from 12-14
bits, compared to the 8-bit RGB output from the ISP. (ii)
RAW data linearly correlates with scene radiance, which
simplifies the correction of degradations such as noise.
Conversely, ISP operations are non-linear and undergo an
irrevocable loss of information across various stages [6,27],
complicating subsequent image restoration [0, 54]. For
these considerations, RAW imagery is a more advantageous
starting point than RGB for a multitude of low-level vision
applications like image denoising [ 1,6, 36,38,59,62], color
balance [21], deblurring [30], exposure adjustment [ 1, 19,

], and image super-resolution [42, 54,60, 68].

Nevertheless, only a small fraction of low-vision re-
search directly engages with RAW data, mainly due to
the greater abundance and accessibility of general-purpose
sRGB images. Consequently, the most popular deep learn-
ing architectures for image restoration predominantly op-
erate on RGB images [13, 51, 61, 62]. The majority of
cutting-edge Single Image Super-Resolution (SISR) tech-
niques [4,15,26,31,63] rely on deep convolutional networks
or Transformer [47] architectures, and operate in the RGB
color space. Yet, these approaches have notable drawbacks.
Primarily, they are often trained on artificially generated
data, leading to poor generalization on real-world scenes.
Secondly, modeling accurately the degradations in RGBs is
challenging due to the non-linear transformations and infor-
mation loss incurred during ISP processing (RAW to RGB).

The classical single-image super-resolution model [17,

,006] is formulated as:

y=x®k)ls+n (1)

It assumes the observed -or captured- low resolution
(LR) image y is obtained from an underlying high reso-
lIution (HR) image x by applying a degradation kernel (or
PSF) k [16], followed by a downsampling operation |5 with
scale factor s (e.g. Bicubic [46,57]), and the addition of the
noise n [18]. The more realistic these factors are modelled
and applied, the better the restoration and SISR models per-
form and generalize in real-world scenarios [54, 66].

This introduces the need for more complex degradation
pipelines, to reduce the generalization gap observed in the
real world domain. Recently, Zhang et al. [66] designed a
practical degradation pipeline for the RGB domain SISR,
achieving promising results in real scene super-resolution.

RAWSR from Xu et al. [54, 55] is one of the first
works that apply a simple degradation pipeline (Eq. 1) for
synthesizing low-resolution RAW images and train SISR
models that successfully generalize on real scenes. Their
approach is illustrated in Figure Ic, ultimately they aim at
enhancing RGB images by leveraging both the sensor RAW
data and the RGB produced by the ISP. For this reason,
their studies are performed on the resultant RGBs, and their
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(a) Professional photography image editing [8, 27]. The software (e.g.
Adobe Lightroom) usually applies restoration on the RAW image, and fur-
ther ISP and enhancement steps.
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(b) Image Restoration and Super-Resolution in the RGB domain as offline
post-processing [13,31,51,61,66] — most popular.
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(c) Xuetal [ ] approach leverages RAW and RGB images for real
scene super-resolution using a double-branch network.
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(d) Our approach BSRAW. We focus on Blind Super-Resolution of RAW
images. Our model operates before the ISP as a plug & play block, not as
post-processing (b,c), thus it can benefit other downstream tasks.

Figure 1. Comparison of image restoration and SISR pipelines.
Note that previous approaches (b) and (c) depend on the in-
camera ISP, meanwhile our BSRAW method can complement any
(learned) ISP, as a pre-processing block. We refer as RAW* and
RGB* to the enhanced images. Sample image from the Adobe
MIT5K dataset [8].

method can be seen as an offline post-processing (always
after the ISP) for image enhancement and photo-finishing.
This is similar to most popular image restoration and SISR
techniques [13,31,61,66] -see Figure 1b-.

In this work we study RAW SISR -see Figure 1d-, us-
ing exclusively RAW sensor data, thus, the signal depends
only on the scene and the imaging system (e.g. light sources,
user-camera interaction). Moreover, the degradations such
as noise [, 6] are not altered by the ISP stages [14, 27].
We build a realistic RAW degradation pipeline that extends
and improves previous methods from Zhang et al. [66] and
Xu et al. [54,55]. Our baseline model, BSRAW, is an effi-
cient blind RAW SISR method, trained using our degrada-
tion pipeline, and real data from DSLR and DSLM cameras.
The main contributions of this paper are:

1) A controllable degradation pipeline to train deep neu-
ral models using RAW images and considering realis-
tic downsampling, noise and blur.

2) A new dataset for RAW SISR including digital single-
lens mirrorless (DSLM) cameras.

3) We study BSRAW and other methods for this task, and
we provide a new benchmark for RAW SISR.

2. Related Work

Image Signal Processing Digital camera systems incor-
porate a specialized in-camera Image Signal Processor
(ISP) [14,20,27,45,52], which converts the captured RAW
sensor data into images that are both less deteriorated and
visually appealing to human perception.

In the recent years many deep learning approaches have
been proposed to learn the ISP transformation [12, 34].
Some popular methods in this direction are CycleISP [62],
CameraNET [32], and PyNET [25].

In this work, we use ISP pipelines [27] with known pa-
rameters and operations, however, our proposed method can
help to improve learned ISPs for real scene processing.

Degradation Models Creating authentic degradation
models for synthesizing data is a critical endeavor in the
field of low-level vision. Standard degradation models fre-
quently adopt a sequential approach involving blur, down-
sampling, and noise injection (as described in Eq. 1). Since
most degradation models are far from the real-world com-
plexity, some works aimed at solving such problem by de-
signing complex degradation pipelines [7, 35, 54, 60].

Zhang et al. [64, 60] devised a pragmatic degradation
methodology specifically tailored for training SRGB image
restoration models, achieving encouraging outcomes in Sin-
gle Image Super-Resolution (SISR). Extensions of this ap-
proach to video denoising have also been reported [10].

Xu et al. [54, 55] implement the degradation equation
(Eq. 1) to synthesize low-resolution RAW images and then

8501



train models that exhibit strong generalization capabili-
ties in real-world scenarios. In their work, they use het-
eroscedastic Gaussian noise, varying disk kernels for defo-
cus blur, and minimal motion blur.

Little research exists on elaborating more intricate degra-
dation phenomena, apart from noise, in the RAW image
space [1, 18,30]. In response, we introduce improvements
such as enhanced noise profiles, anisotropic defocusing,
motion blur variation, exposure inconsistencies, and com-
pression artifacts. Details of our enhanced degradation
model are elaborated in Section 3.

2.1. Image Super-Resolution and Restoration

In the recent years blind image restoration and super-
resolution using deep learning has become a popular
task [13,15,31,49,65,606,71], this is because blind meth-
ods do not require prior knowledge about the degradation
factors or the camera sensor, therefore they are general pur-
pose models i.e. practically, such methods can process any
degraded RGB image. SwinlR [31] is an example of gen-
eral purpose SISR and restoration method.

The vast majority of blind restoration and SISR methods
operate in the RGB color space. We also focus on the blind
super-resolution problem, yet, in the RAW domain.

There are far fewer works that solve complex inverse
problems in the RAW domain. Most methods focus on
RAW image denoising, since estimating and removing
the noise on linear raw data is well-studied [1, 6, 12, 38].
SIDD [1] and DND [40] are the most popular RAW de-
noising benchmarks. These benchmarks show that state-of-
the-art methods can achieve high reconstruction (> 50dB
PSNR) given a noisy RAW image, indicating that new
challenging data should be used. Liang et al. studied
RAW image deblurring on a simple setup using images
from one DSLR camera [30]. We also find works fo-
cused on exposure correction for low-light image enhance-
ment [11,12,19,23]. Xu et al. introduced RAWSR [54, 55]
for super-resolution and enhancement using both RAW and
RGB images as inputs.

We aim to study the RAW SISR problem assuming
(i) unknown real-world degradations, and (ii) cross-device
generalization i.e. our method can be applied to images
from different sensors, as the most popular RGB restoration
models [13,31,61].

3. Controllable RAW Degradation Pipeline

We improve previous degradation models to synthesize
realistic degraded RAW images [54] for training SR mod-
els. We consider the most common limiting factors related
to the acquisition and the processing of high quality RAW
images: (i) noise and low resolution — related to the size
of the sensor [27]. (ii) exposure. (iii) motion and defo-

cus blur — related to stabilization issues. Note that previous
methods [54, 55] did not consider multiple noise profiles,
or complex blur and PSFs. We provide samples from our
dataset in Figure 2.

3.1. Noise

Noise (n) is an omnipresent element across all stages
of image capture and processing [, 18]. Its occurrence is
influenced by a multitude of variables, such as exposure
duration and lighting conditions. In the domain of pho-
tography, noise removal —or denoising— commonly takes
place in the RAW stage, where its linear characteristics have
been thoroughly investigated [ 1, 6, 18, 19,37]. This makes
it more manageable to address prior to the non-linear trans-
formations introduced by the ISP [27]. Most methods use
Homoscedastic Gaussian noise [65—67] in their degradation
models. Xu et al. [54] use sharper Heteroscedastic Gaussian
distribution [1,40].

We adopt a more practical shot-read noise [6, 18,70]. In
Equation 2, we can observe the intensity y as a sample of
a Gaussian distribution having as mean the input signal x
and the variance depending on the A, (shot) and A, (read)
parameters [0]. This is derived from a Poisson-Gaussian
noise model [50]:

y~N(p=1z0%=N\ + ) )

Utilizing Zhang et al. methodology [70], we derive
noise profiles specific to our imaging devices, in addi-
tion to adopting established profiles from SIDD [1, 2] and
DND [40] for smartphone and DSLR sensors, respectively.
This diverges from earlier works that relied on a singular
noise distribution [0, 54]. Our approach incorporates var-
ied real-world noise profiles, which manifest stochasti-
cally. We also emulate the interaction effects (e.g., atten-
uation, amplification) between introduced noise and other
image degradations (e.g., blur).

3.2. Blur

Blur (By) is also one of the most common degradations
appearing in image capturing e.g., camera shake in hand-
held photography, motion blur, and defocus blur [3,22,58].
Capturing aligned blurry-clean pairs in real scenarios is
extremely difficult, for this reason, the most popular de-
blurring datasets are synthetic. Most approaches adopt a
uniform blur by convolving the image with iso/anisotropic
Gaussian kernels [66]. Xu et al. [54,55] implemented defo-
cus blur as a disk kernel, and a modest motion blur [44].

We create our blur degradation by convolving the im-
age with a diverse pool of kernels: classical isotropic and
anisotropic gaussian blur kernels [29, 66], real estimated
motion blur kernels [39, 43, 56], and real estimated PSFs
(point-spread-function) from [53,63,72].
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Figure 2. Different variants of our dataset test images, after applying our degradation model. (Up) Degraded images, (Bot.) Clean images.
The RAW images were acquired from multiple sensors (e.g. Nikon D700 and Nlkon Z7). RAW images are visualized after demosaicing,

gamma correction and tone mapping. Best viewed in electronic version.

This task is fundamental since the current trend in reduc-
ing size and weight observed for the most popular DSLR or
mirrorless cameras, and for the smartphone cameras, makes
it challenging to implement sensor stabilization systems
handling extreme levels of sensor instability during point-
and-shoot acquisition.

3.3. Exposure

Exposure levels (EE) can introduce undesirable artifacts
in photographic images. Both underexposure and overex-
posure can result in signal loss or increased noise in the
imagery [ 1,12, 19]. While our inclusion of this degrada-
tion isn’t intended to address HDR issues [19], it does allow
the model to acquire exposure correction skills. Addition-
ally, the interplay between simulated exposure levels and
noise augments the complexity of the degradation environ-
ment. We adopt a low exposure model inspired by the work
of Punnappurath et al. [41], employing a linear ISO scal-
ing technique to generate the resultant darkened image. It is
worth noting that our real-world testing dataset comprises
images with exposure-related challenges, along with their
respective, carefully-selected ground truth.

3.4. Downsampling

One of the most important differences between cameras
is the size of the sensor [14,25,27]. Photographers can use
telephoto lenses to obtain HR images, but the resolution of

the scene is limited by the size of the sensor. Thus, it is
more common to capture a wide-range scene as a LR image
using a wide-angle lens, and then apply SISR [54,55]. Con-
sidering this, it is desirable to be able to upscale RAW im-
ages [54,55]. However, this is not a trivial task -as for RGB
images- since most traditional methods do not preserve the
Bayer pattern (RGGB).

Since obtaining real LR-HR pairs is extremely expen-
sive and time-consuming, we follow [54, 60] to synthesize
LR RAW images from the assumed HR real captures (e.g.
60MP RAWSs). We downsample the high-quality RAW im-
ages so that each pixel could have its ground truth red, green
and blue values. We denote this operation as | ;.

3.5. Complete RAW Degradation Model

The degradation pipeline covers most of the factors af-
fecting the quality of RAW images. One important aspect
is the noise sampling from multiple noise profiles, as well
as the PSF sampling (and even application of two PSFs).
The order of the degradations is defined by the optics the-
ory [17] i.e. first we apply the kernel (k) to the RAW signal,
then we simulate a small sensor with downsampling and
noise injection -that can be influenced by the exposure- and
later we apply the other degradations inclusing additional
motion blur and downsampling.

We define four different degradation levels in our exper-
iments: I) classical image restoration [17,31]. Only blur
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Ground truth

Defocus blur

High ISO noise

Figure 3. Real world samples representing usual RAW image defects. Best in the electronic format. Images captured manually with our
Nikon Z7 on a tripod. Illumination and stabilization are controlled to ensure proper alignment.

Device Sensor # Train # Test  Res.
DSLRs [8,54] Diverse 1000 150 10MP
Sony a7R4 IMX551 90 10 2MP
Nikon Z7 IMX309BQJ 90 10 2MP

Table 1. Dataset split. We use diverse DSLR images from the
MIT5K as previous works [8, 54] (Canon EOS 5D and Nikon
D700). The sensors highlighted in gray correspond to our new
dataset of real-world captures. The train/test split ensures no over-
lap and proper evaluation.

and noise are considered. IT) SISR degradation model (see
Eq. 1) IIT) SISR considering additional exposure degrada-
tions IV) Finally we apply our complete realistic degrada-
tion pipeline, including multiple noise profiles, the applica-
tion of multiple kernels, exposure, and downsampling. We
provide more details about the pipeline in the appendix.

4. Experiments

We conduct several experiments to prove the benefits of
our approach for RAW image restoration and SISR. We pro-
pose BSRAW as an efficient baseline method for this task.
Due to the pages limit, we provide additional implementa-
tion details, dataset information, and results in the supple-
mentary material.

4.1. BSRAW Dataset

Our goal is to to solve blind super-resolution for RAW
images, and apart from a realistic degradation prior (Sec. 3),
an image prior also contributes to the success of the deep
model [66]. Our sources of real RAW data and our train/test
split are summarized in Table 1. The quality of the DSLR
RAW images is substantially better than in smartphones due
to the larger optics and sensor, this implies that the RAW
images show less noise and minimal optical aberrations.

Following previous work [52, 54, 55], we use images
from the Adobe MIT5K dataset [8], which includes two
DSLR cameras. The DSLR images are manually filtered

to ensure diversity and natural properties (i.e. remove ex-
tremely dark or overexposed images), we also remove the
blurry images (i.e. we only consider all-in-focus images).

The pre-processing is as follows: (i) we normalize all
RAW images depending on their black level and bit-depth.
(i) we convert (“pack”) the images into the well-known
RGGB Bayer pattern (4-channels), which allows to apply
the transformations and degradations without damaging the
original color pattern information [33]. (iii) Following pre-
vious work on RAW processing and learned ISPs [24, 54],
we train using image patches of dimension 248 x 248 x 4.

Synthetic Dataset We apply our complete degradation
pipeline (see Sec. 3.5) to the training images to generate
aligned degraded-clean pairs. The synthetic test dataset is
generated by applying our degradation pipeline, at different
levels, to the corresponding test images — see Table 1.

Real-World Captures We believe the models trained us-
ing our pipeline have notable generalization capabilities
(also concluded in [54, 66]), therefore, we collect a novel
dataset with challenging real scenes. As indicated in Ta-
ble 1, we capture images using two mirrorless full-frame
cameras: Sony a7R4 (60MP) and Nikon Z7 (45.7MP). In
Figure 3 we show samples from our data capturing setup.

This is a paired dataset consisting of variations over 100
real-world indoor and outdoor scenes. All the devices used
for data capturing allow for manual operation of the cam-
era ISP parameters and optics, and are fixed on a tripod.
For each “clean” reference image, we capture several varia-
tions, where each variation represents a degradation with a
different degree of intensity. The scene variants represented
there are degraded in terms of defocusing blur, exposure
time, high ISO noise, and motion blur. Since interaction
with the camera device was needed during the acquisition,
we perform a post-processing alignment (similar to [5]) to
further improve the quality and usability of the data.
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Figure 4. Architecture of the proposed BSRAW inspired in
NAFNet [13]. We simplify the encoder blocks and use Dynamic
convolutions to process images more efficiently.

4.2. Experimental Results

We propose BSRAW as an efficient baseline, able to pro-
cess 4K resolution images in standard GPUs (120 ms for a
4K image on a Nvidia 3090Ti 24GB GPU), without patch-
ing or tiling strategies. The architecture is illustrated in Fig-
ure 4. BSRAW combines NAFNet [ 13] baseline blocks with
dynamic convolutions and simplified stereo channel atten-
tion in the decoder part of the model. In comparison to
NAFNet [13] -already quite efficient- our method has 10x
less parameters and ~ 20% less MACs. We upscale the
images using an adapted pixel-shuffle head.

SISR results We compare with previous method
RAWSR [54] for SISR. Our realistic degradation pipeline
helps our efficient model BSRAW to generalize better
on complex degradations. We upscale the images using
BSRAW, and later process them using a basic ISP [27] e.g.
Dcraw as [54] to obtain the resultant RGB. Note that the
training dataset derived from MITSK [8] from Xu et al.
RAWSR [54] is not publicly available. Therefore we train
using our own curated DSLR dataset (see Table 1); this,
together with BSRAW being trained using our degradation
pipeline, allow us to achieve notably better results. We also
compare with TENet [42] (based on RDN [71]) pipeline
for “Denoising (DN) — SR” for RAWS.

Methods PSNR 1 SSIM t Domain
DeepISP 21.71 0.7323 RAW
RDN [71] 29.93 0.7804 RGB
TENet [42] 30.20 0.800 RAW
BSRGAN [66] 30.01 0.794 RGB
RAWSR [54] 30.79 0.804 RAW+RGB
BSRAW 1II (Ours) 31.02 0.812 RAW
BSRAW IV (Ours)  31.40 0.843 RAW
BSRAW 7 (Ours) 31.86 0.860 RAW

Table 2. Comparison for RAW SISR x2. We use the DSLR test-
set from [54], which consists on 150 images from MITS5K [§]
degraded with a simple SISR model [54]. Our model BSRAW
achieves state-of-the-art results thanks to our degradation pipeline
and our dataset. Metrics calculated on RGBs. We process the up-
scaled RAWs using a fixed ISP and metadata [54] e.g. Dcraw.

We present the results in Table 2. We distinguish three
variants of our model, the ablation study is as follows:

(i) BSRAW 1I is trained using a simple SISR degrada-
tion pipeline, similar to [54] -our level II-. (ii)) BSRAW IV
is trained using our complete degradation pipeline. We can
appreciate how this helps to improve results notably. Fi-
nally, (iii) BSRAW 7 extends the previous variant, and we
include training data from our dataset. This leads to the best
results in terms of fidelity metrics.

In Table 3 we show the results from our model on the
synthetic dataset at each degradation level.

Effectiveness on Real Images As we show in Figures 6
and Table 2 for RAW restoration and SISR, our model can
generalize and provide reasonable results on real scenes.
Figures 5 and 6 qualitative results show that BSRAW is able
to produce noise-free sharp images with proper textures and
color distributions, even using RAW images from unseen
sensors such as Sony Quad sensors or SIDD phones [1].

Super-Resolution, RAW or RGB? We also compare the
following two strategies for image processing:

(I) SwinIR [31] and BSRGAN [66], general-purpose
models trained for real-world blind SISR on RGBs. Their
input is a degraded RGB image obtained after applying an
ISP to the original degraded RAW image. We use images
from the SIDD dataset [ 1] with noise and low exposure.

(IX) Our approach. BSRAW takes directly the degraded
RAW image, applies restoration and upsampling, then we
apply the ISP with known parameters and operations.

The ISP [27] is fixed for a fair comparison. The images are
real-world captures from “unknown” sensors to the model.
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In Figure 6 we compare these two possible variants of
super-resolution. The quantitative results form Table 2, and
qualitative results (Figure 6) show the advantages and po-
tential of our approach. We provide further analysis and
samples in the supplementary material.

4.3. Implementation Details

The method was implemented in PyTorch. We use the
basic £ loss between the ground-truth and the restored im-
age. We set the minibach size to 32. We use Adam [28]
optimizer with standard hyper-parameters. The initial learn-
ing rate is set to 1e~%, we use a linear LR decay scheduler,
until a minimum of 1e~5. We perform experiments using
multiple NVIDIA RTX 3090Ti and 4090Ti.

The degradation pipeline can be integrated into the dat-
aloader as an augmentation. All the degradations are ap-
plied on 4-channel RAW images (RGGB).

Note that the training dataset derived from MIT5K [§]
from Xu et al. RAWSR [54] is not publicly available, and
therefore cannot be used for comparison. We cannot per-
form a qualitative comparison because RAWSR weights
and results are not publicly available i.e. the material at '
is obsoleted and links do not work.

In the RAW domain, we can compare the HR RAW
(14602192 x4) and the LR RAW (365 %548 x4) — which
correspond to RGBs of resolution (2920 x 4384 x 3) and
(730x 1096 x 3) respectively. Upscaling the LR RAW using
Bicubic interpolation implies a reconstruction of 27.13dB
(and 0.81 SSIM) w.r.¢ the HR RAW.

4.4. Limitations

Downsampling RAW images is not trivial, this operation
can cause color artifacts besides blurriness, and irreversible
structure loss. Also, the MITSK [8] images were capture
with “old” cameras, for instance, 12MP DSLRs, in com-
parison with our 60MP DSLM cameras. We need further
analysis using modern cameras, specially smartphones.

5. Conclusion

In this paper we discuss a controllable degradation
pipeline to synthesize realistic degraded RAW images for
training deep blind super-resolution models. We have cu-
rated a dataset with different DSLR cameras. As part of
this effort, we provide a new dataset of diverse real scenes
captured using DSLM cameras. Our experiments demon-
strate that models trained with our degradation pipeline can
restore real-world degraded RAWSs. This represents a pow-
erful alternative in image signal processing, and can be of
benefit to other low-level downstream tasks.

https://github.com/xuxy09/RAWSR

Interpolation BSRAW (Ours)

Figure 5. Our BSRAW model, thanks to the proposed degradation
pipeline, can perform 2x (red) and SISR and restore
RAW images in the wild. We use images from a smartphone Sony
IMX586 Quad Bayer sensor [24], which was not used for training
(neither similar sensors). This proves certain generalization capa-
bilities, even on unseen sensors.

Future Work We plan to extend this analysis to smart-
phone images, where the ISP is more challenging, and the
possible degradations in the RAW images might be more
complex due to the limited optics i.e. more noise and blur.

Acknowledgments This work was partly supported by
the The Alexander von Humboldt Foundation (AvH).
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Super-Resolution x 2 Super-Resolution x4
Degradation BSRAW-light BSRAW BSRAW-light BSRAW
PSNR? | SSIM? | PSNRT | SSIM?T || PSNRT | SSIM?T | PSNRt | SSIM?T
I 42.57 0.949 43.30 0.952 40.08 0.929 40.51 0.937
II 43.26 0.961 43.98 0.965 40.42 0.941 41.28 0.949
I 43.53 0.962 43.96 0.966 40.51 0.939 41.34 0.951
v 43.78 0.964 44.25 0.971 39.71 0.927 41.45 0.957

Table 3. Ablation study for BSRAW on different degradation levels using our synthetic MIT5K testset. The metrics are calculated in the
RGB domain, thus, the ISP setting was fixed for all the compared configurations, to avoid possible biases, we use a simple ISP with the

canonical steps (demosaicing, white balance, color correction, gamma and tone mapping correction.) [

less encoder blocks and channels, described in the supplementary material.

Input image

BSRAW (Ours)

BSRGAN [

]

]. BSRAW-light is a variant with

Real-ESRGAN [9, 48]

Figure 6. From left to right: SRGB rendered using the input RAW and a simple ISP [1], our restored RAW (we apply the ISP after restoring

and upsampling), BSRGAN [

| and Real-ESRGAN [9,

8507

] restored images. The approaches are illustrated in Figure 1. We believe both
blind single image super-resolution (SISR) approaches might be complementary and represent future research.
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