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Figure 1. Sample properties from our proposed ZRG dataset. The dataset contains (top to bottom) high resolution RGB orthomosaics,
digital surface models (DSM), 3D rooftop geometry wireframes, and 3D colored point clouds acquired from roof inspections of over 20k
residential properties across the U.S.

Abstract

A crucial part of any home is the roof over our heads
to protect us from the elements. In this paper we present
the Zeitview Rooftop Geometry (ZRG) dataset for residen-
tial rooftop understanding. ZRG is a large-scale residen-
tial rooftop dataset of over 20k properties collected through
roof inspections from across the U.S. and contains multiple
modalities including high resolution aerial orthomosaics,
digital surface models (DSM), colored point clouds, and 3D
roof wireframe annotations. We provide an in-depth anal-
ysis and perform several experimental baselines including
roof outline extraction, monocular height estimation, and
planar roof structure extraction, to illustrate a few of the
numerous potential applications unlocked by this dataset.1

1Subsets of the dataset will be released for academic benchmark-
ing purposes only in the future here https://github.com/
isaaccorley/zrg

1. Introduction

The roof is a vital component of a home and serves to
protect owners from various environmental elements, such
as rain, snow, and wind, while also contributing to the
overall aesthetics and energy efficiency of the structure.
A thorough understanding of a roof’s condition is critical
for homeowners as it allows them to make informed deci-
sions about repair, replacement, or maintenance and the cost
thereof. However, traditional methods of roof inspection are
often time-consuming, labor-intensive, and subject to hu-
man error. Rapid developments in cost-effectiveness of un-
manned aerial vehicles (UAV) have created safer and more
efficient alternatives to manual roof inspections which cap-
ture high-resolution images of residential roofs from var-
ious angles and perspectives. As a result, there is an in-
creasing need to augment and/or automate the roof analysis
process by combining the latest advancements in machine
learning and computer vision learning with large-scale res-
idential rooftop datasets.

Given a sufficiently large residential rooftop dataset with
multiple modalities, what are some of the potential appli-
cations which can be automated to further benefit society?

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Dataset Task 3D Synthetic Samples Size (px) Resolution (cm) Modality
VWB [35] R × × 2,001 256 30 RGB
Enschede [52] R × × 2,000 512 8 RGB
RID [25] S × × 3,648 512 10 RGB
MIPD [39] R ✓ ✓ 2,539 - - RGB,Mesh
BuildingWF [30] R ✓ ✓ 3,600 - - RGB,Mesh
ZRG (Ours) S/R/H ✓ × 22,334 4,096+ <1 RGB,DSM,PC

Table 1. Comparison of the ZRG dataset to related datasets containing residential buildings and rooftop geometry related annotations.
(S = segmentation, R = rooftop structure extraction, H = height estimation, PC = point cloud)

The primary objective of this research is to answer this
question by introducing a novel large-scale rooftop dataset,
which we name the Zeitview Rooftop Geometry (ZRG)
dataset, for the analysis and understanding of residential
rooftops.

In this work our contributions can be described as fol-
lowing:

• Zeitview Rooftop Geometry (ZRG) Dataset - We
present a novel large-scale, high quality, high resolu-
tion, multimodal dataset for residential rooftop under-
standing and analysis. The dataset consists of high
resolution RGB orthomosaics, digital surface models
(DSM), 3D rooftop geometry wireframes, and 3D col-
ored point clouds acquired from roof inspections of
over 20k residential properties across the U.S. We per-
form an in-depth analysis to highlight the value of our
dataset.

• Baseline Experiments - We provide baseline experi-
ments for several common rooftop understanding tasks
to display a few of the potential applications of our
proposed dataset, including roof outline extraction,
monocular height estimation, and planar roof structure
extraction.

2. Background
While there is significant prior research into the map-

ping of building structure [19, 45], building height estima-
tion [28, 34], and building change [7, 8, 10, 44] from re-
motely sensed imagery, the understanding of rooftop geom-
etry and structure in particular is typically neglected from
these works. Furthermore, there are few works and little fo-
cus specifically on residential buildings as opposed to com-
mercial or industrial buildings. To further highlight the im-
portance of automated residential rooftop understanding we
detail the following notable applications:

Roof Damage Inspection and Detection Automatic iden-
tification and categorization of various types of roof
damage from aerial imagery [16], such as missing or
damaged shingles, cracks, or leaks, enables rapid and

Figure 2. A visual example of the anatomy of a residential
rooftop [41]. Each rooftop is annotated with 3D wireframe poly-
gons for each roof face. Individual wireframe edges are also la-
beled with 18 edge categories.

accurate damage assessment, significantly decreasing
the cost of inspections and ultimately reducing the risk
of further damage to the property.

Residential Solar Rooftop Potential Planar rooftop sur-
face and structure extraction can assist in determin-
ing the feasibility of the installation of solar pan-
els [2,4,20,25,46], by taking into account factors such
as roof orientation, shading, and estimating the avail-
able surface area. Understanding the 3D geometry of
roof structures allows for the optimal placement and
configuration of solar panels to maximize energy pro-
duction and reduce unnecessary costs to the homeown-
ers.

3D Modeling and Digital Twins The automatic transla-
tion of man-made structures from aerial imagery to 3D
models enables the ability to simulate a realistic vir-
tual environment for various applications such as urban
planning [22] and humanitarian assistance and disaster
response (HADR) [16].

3. Related Work

Residential rooftop understanding datasets are scarce.
The available datasets are typically generated from either
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Figure 3. Residential property locations of the ZRG dataset. The
dataset consists of a diverse set of samples from various popula-
tion settings (urban vs. rural), property type (single-family (SFH)
vs. multi-family homes (MFH)), and regions across the U.S. (pri-
marily northeast, south, midwest)

multiple view reconstruction techniques [15] or from Li-
DAR [30] scans which typically contain only point clouds
without corresponding high resolution orthomosaics. Addi-
tionally, LiDAR comes with a high data acquisition cost, is
generally low resolution, and can contain significant noise.
On the other hand, aerial rooftop datasets typically do not
contain any 3D modalities such as DSM or point clouds or
are too low resolution to perform accurate planar rooftop
structure extraction. While there are some datasets [30, 39]
which contain full 3D meshes of residential buildings and
rooftops, they are generated using synthetic height and tex-
tures which may lead to undesirable performance in a real
world roof analysis setting. The following datasets are the
most closely related works in the area of residential rooftop
geometry and scene understanding

Vectorizing World Buildings The VWB dataset [35] is a
modification of the SpaceNet 1 challenge dataset [47]
which consists of 30cm spatial resolution Maxar
WorldView-3 satellite RGB imagery. Patches of size
256 × 256 were manually cropped from the larger im-
ages around individual building instances. 2D planar
graphs of building roof structures are annotated for
2,001 buildings from the cities of Atlanta, Paris, and
Las Vegas. This dataset only contains RGB imagery
and 2D wireframe annotations, but no 3D information.

Enschede The Enschede dataset [52] consists of inner and
outer roofline vectors of buildings in 8cm spatial res-
olution aerial orthomosaics taken over the Enschede,
Netherlands area. The vector annotations were ex-
tracted from the BAG dataset [37] and overlayed onto
the georeferenced imagery instead of performing man-
ual annotation which can lead to inaccurate labels.
The dataset contains 3,648 512 × 512 image patches
cropped around individual buildings. This dataset only

(a) (b)

(c) (d)

(e) (f)

Figure 4. Distribution plots of ground sampling distance (GSD)
(cm/px) for (a) orthomosaic and (b) DSM, image sizes (height &
width) (px) for (c) orthomosaic and (d) DSM, (e) roof faces per
property, and (f) surface area per roof face (m2).

contains RGB imagery, 2D wireframe annotations, but
no 3D information.

Roof Information Dataset (RID) The RID [25] is a
dataset of image patches centered around rooftops con-
taining solar panel installations and is intended for
photovoltaic potential analysis. This dataset contains
some rooftop features within the semantic segmenta-
tion categories such as roof dormers and chimneys.
However, due to the focus on solar panel detection and
low spatial resolution, this dataset becomes insufficient
for accurate roof structure extraction and wireframe
generation. This dataset only contains RGB imagery,
2D wireframe annotations, but no 3D information.

BuildingWF The BuildingWF dataset [30] is composed
of 3,600 polygon meshes of residential buildings with
synthetic textures along with ground truth 3D wire-
frames of the synthetic meshes.

Mesh-Image Paired Dataset The Mesh-Image paired
dataset [39] consists of 2,539 samples of roof geome-
tries extracted from 2D images of residential buildings
and then converted to 3D meshes using synthetic
height information.

4637



Figure 5. Roof Outline Extraction samples and predictions from the ZRG-Test subset using the DeepLabV3-ResNet50 model trained on
the ZRG-10k subset. From top to bottom: orthomosaic, ground truth, predictions. (red=roof, blue=background).

4. The ZRG Dataset

In this paper, we present the Zeitview Rooftop Geome-
try (ZRG) dataset: a large-scale high resolution multimodal
dataset with a focus on residential building rooftops for
damage assessment, planar roof structure extraction, and
3D reconstruction.

4.1. Comparison to Related Datasets

Datasets containing residential rooftop buildings either
only contain imagery but not realistic height information in
the form of DSM or point clouds, or contain point clouds
only but no imagery or geometric roof information. Related
datasets are also generally too low resolution to support
high quality and accurate understanding of roof structures.
Table 1 presents comparisons between the ZRG dataset and
closely related roof structure datasets detailed in Section 3.

4.2. Data Acquisition

The data collection process utilized several commer-
cially available DJI drones outfitted with high-resolution
cameras to acquire imagery for performing residential roof
inspections and analysis. The drones were programmed to
navigate in a systematic lawn mower pattern, maintaining
an altitude of 10-15 feet above the highest point of the roof.
Additionally, oblique images were acquired for performing
multi-view 3D reconstruction to infer the geometric struc-
ture of the rooftops. As illustrated in Figure 3, data for
residential properties were collected from various regions
across the U.S. and include single-family homes (SFH) and
multi-family homes (MFH) or apartment complexes. There
is a natural concentration in clients seeking roof inspections
in the central and eastern regions of the U.S. This is due
to a higher concentration of hail storms occurring in these
states [43].

4.3. Post-Processing

Upon completion of the data acquisition phase, the cap-
tured images are stitched together and georeferenced to
generate an orthomosaic. Further, Digital Surface Model
(DSM) and colored point clouds were generated using 3D
multi-view reconstruction techniques. Note that the tech-
niques utilized to generate DSMs with lesser GSDs with a
factor of 3 − 3.5, in this case the DSM height and widths
are also less than their corresponding orthomosaic. Distri-
bution plot of the GSD and height and widths of the or-
thomosaics and DSMs are illustrated in Figure 4. The end
result is a large-scale dataset of sub-centimeter resolution
RGB orthomosaics, DSMs, and colored point clouds of a
total of 22,334 properties.

Figure 6. Examples of sample images and DSM pairs contain-
ing noise as a result of invalid pixels, overhanging vegetation, and
shadows.

4.4. Wireframe Annotation

Our labeling team consists of residential properties in-
spection domain experts. We utilize a custom annotation
tool for generating 3D wireframe annotations into geojson
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Figure 7. Monocular Height Estimation samples and predictions from the ZRG-Test subset using the DeepLabV3-ResNet50 model
trained on the ZRG-10k subset. From top to bottom: orthomosaic, ground truth DSM, height predictions. The DSM and predictions are
color mapped such that brighter indicates greater height.

format. Each roof face, or distinct plane on a roof, is an-
notated with a 3D polygon and separate line geometries for
each individual edge. Additional labels such as surface area
of the polygon as well as 18 distinct edge type labels are
recorded in the file metadata. The 18 edge classes include
common roof edge categories such as flashing, ridge, drip
edge, hip, and valley. Examples of these categories are pro-
vided in Figure 2. A total of 425,660 total faces were anno-
tated with a median of 16 faces per property. Distribution
plots of the roof faces per property and surface area for each
roof face are provided in Figure 4.

4.5. Limitations and Challenges

Due to the focus on the rooftop during data acquisition,
there are some edge cases that arise where image acquisi-
tion stage fails to capture the entire scene surrounding the
residential building. This can result in invalid pixels be-
ing present in the final stitched orthomosaic. We elect to
not clean these properties from the dataset as performing
inspection and analysis with models robust enough to learn
even with the presence of this noise is an important and nec-
essary task. Additionally, natural challenges such as over-
hanging vegetation and shadows add additional complexity
for learning rooftop structure as can be seen in Figure 6.

4.6. Dataset Subsets

Due to the large scale of the ZRG dataset, we split the
data into several subsets to make machine learning experi-
mentation simpler and reproducible. First, 1k properties are
sampled from the total dataset which we use as a holdout
test set called ZRG-Test. Then, from the remaining 21k
we sample 10k, 1k, and 100 properties which we coin the
ZRG-10k, ZRG-1k, and ZRG-100 subsets, respectively.
Since certain major cities and regions contain more sam-

ples, we perform weighted sampling by number of proper-
ties per state such that each subset will be more geospatially
diverse.

5. Experiments
We conduct several experiments to provide simple base-

lines using canonical architectures for the tasks of roof out-
line extraction, monocular height estimation, and planar
roof structure extraction.

5.1. Common Training Details

We perform all experiments on a NVIDIA DGX server
with 1x NVIDIA A100 with 40GB memory. During train-
ing we use the following augmentations: horizontal and
vertical flip, random rotation, random perspective, gaussian
blur, color jitter, and scale jitter [14] primarily to train mod-
els to generalize across variations in data acquisition alti-
tude, seasonal changes, and daily changes resulting in shad-
ows. We use the AdamW [29] optimizer with a learning rate
of α = 3e−4 throughout. We train each model using auto-
mated mixed precision (fp16) for 150 epochs with a batch
size of 8 and mixed precision. Additionally, we normalize
each orthomosaic using ImageNet statistics.

5.2. Roof Outline Extraction

We pose the task of roof outline extraction as a binary
segmentation problem where we seek to segment rooftop
pixels from the background. These predictions are impor-
tant for providing additional information to downstream
tasks to assist in the focus on the rooftop. For this ex-
periment we train several canonical segmentation models
including U-Net [40], U-Net++ [53], PSPNet [51], and
DeepLabV3+ [9], with ResNet [18] encoder backbones.
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Figure 8. Planar Roof Structure Extraction instance segmentation samples and predictions from the ZRG-Test subset using the best
performing MaskRCNN model trained on the ZRG-10k subset. From top to bottom: orthomosaic, ground truth, predictions.

We utilize the model implementations from the Segmenta-
tion Models PyTorch library [21] with ImageNet pretrained
weight initialization [11] in the encoders. We train each
model using a joint loss function consisting of the sum of
the cross entropy loss and the Intersection-over-Union (IoU)
loss. Evaluation is performed on the ZRG-Test holdout sub-
set of the ZRG dataset. Random samples from the ZRG-
Test set are displayed in Figure 5 and semantic segmenta-
tion metrics for each model are provided in Table 4.

5.3. Monocular Height Estimation

Estimating a surface model represented by the height of
each pixel in a monocular (single) overhead view of a build-
ing is a difficult yet important problem for automated map-
ping purposes as explored in [13, 23, 26, 28, 34, 36, 48]. We
pose this task as a dense regression problem similar to depth
estimation. We utilize the same experimental setup as de-
tailed in Section 5.2. We min-max normalize each DSM
to their relative heights using the sample statistics after fil-
tering invalid pixels values. We train each model using
a masked L1 loss function to not penalize predictions on
invalid pixels. We use and modify the the segmentation
model architectures described in Section 5.2 by fixing the
output layer to contain a single channel with a ReLU acti-
vation [12] for continuous outputs, similarly to the architec-
tures used in [38]. Random samples and predictions from
the ZRG-Test set are displayed in Figure 7 and regression
metrics for each model are provided in Table 3.

5.4. Planar Roof Structure Extraction

For the task of planar roof structure extraction, we ex-
periment with instance segmentation architectures for seg-
menting each individual face of the roof from a single
overhead view. We experiment by fine-tuning the torchvi-
sion [31] implementation of the MaskRCNN architec-

ture [17] which is pretrained on the MS-COCO dataset [27].
Random samples from the ZRG-Test set are displayed in
Figure 8. In Table 2 We report mean Average Precision
(mAP) at different IoU thresholds and at different scales,
(medium and large roof faces based on area). For simplic-
ity, we pose the single-view planar roof structure extraction
task as an instance segmentation problem. However, we
note that it is also common to utilize corner and junction
detection methods [52] in combination with graph neural
network (GNN) based architectures [5] as an alternative to
solve this problem.

Subset mAP mAP50 mAP75 mAPM mAPL

ZRG-100 40.4 45.3 35.5 37.1 66.3
ZRG-1k 67.9 91.4 44.5 66.4 92.4
ZRG-10k 72.1 97.0 47.1 90.0 96.1

Table 2. Planar Roof Structure Extraction instance segmenta-
tion mean Average Precision (mAP) results of a MaskRCNN with
a ResNet50-FPN backbone pretrained on COCO and trained on
each ZRG subset and evaluated on the ZRG-Test subset. Best re-
sults marked in bold.

6. Discussion

6.1. Effects of Dataset Size

To explore the necessity of creating a large scale dataset,
we repeat the experiments in Section 5.4 for planar roof
structure extraction on the ZRG-100, ZRG-1k, and ZRG-
10k subsets to evaluate how dataset size affects perfor-
mance. We train each method for 1k iterations and record
the mean Average Precision (mAP) at different thresholds
and for different size roof faces (medium (M) and large (L)).
As seen in Table 2, the increasing size of the dataset re-
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Model Backbone MAE MSE RMSE
PSPNet ResNet18 0.0815 0.0167 0.1292
U-Net ResNet18 0.0738 0.0144 0.1198

U-Net++ ResNet18 0.0727 0.0138 0.1174
DeepLabV3+ ResNet18 0.0696 0.0131 0.1143

PSPNet ResNet50 0.0793 0.0162 0.1274
U-Net ResNet50 0.0723 0.0133 0.1155

U-Net++ ResNet50 0.0699 0.0127 0.1129
DeepLabV3+ ResNet50 0.0679 0.0123 0.1107

Table 3. Monocular Height Estimation results of various mod-
els trained on the ZRG-10k subset and evaluated on the ZRG-Test
subset. We report mean absolute error (MAE), mean squared er-
ror (MSE), and root mean squared error (RMSE) dense regression
metrics. Metrics are computed on the relative height values after
min-max normalization. Best results are marked in bold.

sults in a significant increase in performance across all met-
rics with a particularly large increase in APM performance
in for medium sized roof faces. This illustrates the need
for large-scale and high quality labeled datasets to provide
greater performance gains rather than iterating with various
model architectures.

6.2. Results

With regards to the roof outline extraction and monoc-
ular view height estimation tasks, it is clear that the
DeepLabV3+ model with a ResNet50 backbone outper-
forms other models in all cases. Predictions in Figures 5
and 7 visually show that the model is able to properly seg-
ment the roof from the background and accurately estimate
pixelwise height of the buildings.

For planar roof structure extraction, we can see that there
is an increasing relationship between the performance and
the size of the training set, particularly with a large increase
of 23.6 in mAP for medium sized roof faces when increas-
ing the dataset size from 1k to 10k samples. Additionally,
Figure 8 shows that the model is able to extrapolate the seg-
mentation of roof face structures even in the presence of
occlusion of areas of the face due to overhanging vegeta-
tion.

6.3. Future Work

While each task may not appear to be as useful inde-
pendently, the bigger picture of combining predicted roof
outlines, height estimations, and segmented roof faces to
generated 3D reconstructions and wireframes of rooftops al-
lows for deeper analysis and insights into the condition and
surface area breakdown of each roof. However, we leave
this combination of model outputs or joint learning for fu-
ture work.

We plan to perform further annotation of the dataset to

Model Backbone OA F1 mIoU
PSPNet ResNet18 92.37 90.37 76.99
U-Net ResNet18 96.89 96.28 92.93

U-Net++ ResNet18 97.59 97.15 95.91
DeepLabV3+ ResNet18 97.73 97.32 96.65

PSPNet ResNet50 96.48 95.80 92.52
U-Net ResNet50 97.52 97.06 95.78

U-Net++ ResNet50 97.31 96.82 95.12
DeepLabV3+ ResNet50 97.81 97.42 96.83

Table 4. Roof Outline Extraction results of models trained on the
ZRG-10k subset and evaluated on the ZRG-Test subset. We report
overall accuracy (OA), average F1 score, and mean Intersection-
over-Union (mIoU) semantic segmentation metrics. Best results
are marked in bold.

include labels for classification of roof types [1, 6, 33], e.g.
gable, complex, pyramidal, as well as labels for classifica-
tion of building type, particularly single vs. multi-family
homes, similar to the work described in [3]. Both label cat-
egories can be used to further benefit fine-grained analysis
of rooftops.

While we do not explicitly utilize the multi-view im-
agery used to generate the DSM and point cloud, we ac-
knowledge that there are numerous recent reconstruction
methods related to Neural Radiance Fields (NeRF) [32, 49,
50] which can more accurately generate 3D models and
novel views of each property.

Due to the regional diversity of the properties, our
dataset can result in subpopulation distribution shifts de-
scribed in [24, 42]. Further analysis of the generalization
and geographic bias across regions of the U.S. and distance
from urban metropolitan areas is outside the scope of this
paper and we leave for future work.

7. Conclusion

In this paper, we presented ZRG, a 3D residential rooftop
understanding dataset, which we have shown through thor-
ough analysis and several baseline experiments what is pos-
sible with a large-scale dataset with multiple modalities. We
hope that our work advances and generates novel ideas for
additional applications of residential rooftop structure ex-
traction and understanding and inspires the research com-
munity to develop additional residential rooftop datasets.

References
[1] Fatemeh Alidoost and Hossein Arefi. A cnn-based ap-

proach for automatic building detection and recognition of
roof types using a single aerial image. PFG–Journal of Pho-
togrammetry, Remote Sensing and Geoinformation Science,
86:235–248, 2018. 7

4641



[2] Dan Assouline, Nahid Mohajeri, and Jean-Louis Scartezzini.
Quantifying rooftop photovoltaic solar energy potential: A
machine learning approach. Solar Energy, 141:278–296,
2017. 2

[3] Abhilash Bandam, Eedris Busari, Chloi Syranidou, Jochen
Linssen, and Detlef Stolten. Classification of building types
in germany: A data-driven modeling approach. Data,
7(4):45, 2022. 7

[4] Katalin Bódis, Ioannis Kougias, Arnulf Jäger-Waldau, Nigel
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