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Figure 1. We propose LatentPaint, an information propagation mechanism that can condition any existing diffusion model for inpainting.
Shown here are a few examples of faces and indoor scenes with semantic inputs.

Abstract

Image inpainting using diffusion models is generally
done using either preconditioned models, i.e. image condi-
tioned models fine-tuned for the painting task, or postcon-
ditioned models, i.e. unconditioned models repurposed for
the painting task at inference time. Preconditioned models
are fast at inference time but extremely costly to train. Post-
conditioned models do not require any training but are slow
during inference, requiring multiple forward and backward
passes to converge to a desirable solution. Here, we de-
rive an approach that does not require expensive training,
yet is fast at inference time. To solve the costly inference
computational time, we perform the forward-backward fu-
sion step on a latent space rather than the image space.
This is solved with a newly proposed propagation module
in the diffusion process. Experiments on a number of do-
mains demonstrate our approach attains or improves state-

of-the-art results with the advantages of preconditioned and
postconditioned models and none of their disadvantages.

1. Introduction

Image inpainting infers missing parts in an image based
on available regions specified by a binary mask. To achieve
this goal, inpainting approaches use generative models
modified to condition on the available image regions in or-
der to produce high-quality inferences. In this paper, we
address the problem of image inpainting using Diffusion
Models (DM).

There are two approaches to image inpainting with dif-
fusion models: (a) preconditioned and (b) postconditioned.

Preconditioning is when we build inpainting into the
model during training. That is, rather than training a gener-
ative model to learn the domain’s distribution p(x), a con-
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Figure 2. Illustrating the importance of information propa-
gation for inpainting. RePaint [20] with no resampling (second
column) and with 20 resampling steps (third column). To obtain
harmonized results, resampling increases the runtime by 20x.

ditional model p(x|y) is trained instead. A popular tech-
nique to achieve this, is by concatenating the masked im-
age (the condition) to random noise and training the model
to produce samples similar to those in the training distri-
bution [27]. During inference, when the trained precondi-
tioned model is applied on a masked image, it produces an
output that infers the missing (masked out) parts. This ap-
proach works well but it requires the model to be specifi-
cally trained on every domain we wish it apply to, which is
a very expensive task.

Postconditioning does not require the above specific
training. Instead, the idea is to use a unconditional DM as a
generative prior to harmonize information between masked
and unmasked pixels. This is achieved by performing for-
ward diffusion of unmasked pixels and reverse diffusion
of masked pixels [20]. A fusion image is constructed by
choosing pixel values, based on an input mask, from the
appropriate forward-backward diffusion process. Because
fusing in the pixel space produces semantically inconsistent
results, the diffusion has to be repeated multiple times. The
problem is illustrated in Fig. 2. For RePaint-1 [20] no rep-
etition is done. In RePaint-20, 20 additional passes allow
the reverse diffusion to correct the inconsistencies and con-
verge to a desirable result. Unfortunately, computational
cost depends linearly on the number of passes.

For the image inpainting task, propagating information
from the conditioned (or unmasked) pixels to the inferred
(or masked) pixels is important to produce coherent, har-
monious and semantically consistent images. Both precon-
ditioned and postconditioned models propagate information
implicitly, either through the convolution [11, 16, 39], con-
volution and transformer layers in the diffusion model [27]
or through a complex scheduling of forward/reverse diffu-
sion steps [20]. Particularly of interest are the visual self-

attention mechanisms in the transformer blocks. However,
self-attention propagates information at a coarse level. The
propagation technique presented in this paper, propagates
information at finer, i.e. pixel level. Further, improvements
in the empirical results indicate that latent paint comple-
ments the information propagated through other layers of
the diffusion model. In this work, we propose a new ap-
proach that is as cheap as preconditioned models at infer-
ence and as cheap as postconditioned models in training.
Specifically, we derive LatentPaint, a conditioning mecha-
nism that works in latent spaces rather than image space.
In this way, we are able to condition a pretrained uncondi-
tional DM with minimal training and sample from it with
no extra computational cost during inference.

We demonstrate the accuracy and advantages of the pro-
posed method on three visual domains: faces, bedrooms,
and livingrooms. We also perform several ablative exper-
iments on CelebA-HQ to validate the advantages of indi-
vidual components. Our empirical results validate that the
proposed approach betters several recent state-of-art tech-
niques for inpainting along with a fast runtime.

2. Related Work
Historically, approaches to inpainting use patch similar-

ity to propagate information from the conditioned to the in-
ferred regions of the image [2–4].

Since the introduction of GANs [6], most of the existing
methods follow a standard configuration using an encoder-
decoder architecture as the main inpainting generator, ad-
versarial training, and tailored losses that aim at photo-
realism [24]. Multiple works have produced impressive re-
sults using this approach [10, 17, 22, 26, 40].

In order to generalize to both local and global context
various architectural designs are proposed such as dilated
convolutions to expand the receptive field [11], dedicated
discriminators to encourage global and local consistency
independently, partial convolutions [16] and gated convo-
lutions [39] to guide the convolution kernel according to
irregular masks, contextual attention [38] to leverage on
global information, edges maps [7, 21, 32, 33] or semantic
segmentation maps [9, 23] to further guide the generation
and Fourier convolutions [31] to include both global and
local information efficiently. Among the losses proposed,
pixel-wise and adversarial losses dominate [11, 17, 18, 21,
24, 24, 26, 34–36, 38, 38–40, 42].

Some of the first notable diffusion models were also ap-
plied to image inpainting [29,30]. However, only qualitative
results were shown and no specific inpainting approaches
were provided. More recently, [1, 20] repurposed uncondi-
tional diffusion models for this task.

Inpainting using diffusion models can also be done
in image-to-image translation frameworks by training an
image-conditional diffusion model [27, 28]. Unlike both
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Figure 3. LatentPaint. LatentPaint is an easy add-on to a diffusion model. It consists of two parts: the Latent Space Conditioning (a) and
the Explicit Propagation (b). With this addition, a pretrained unconditional diffusion model gets conditioned for inpainting. LatentPaint
can be plugged into any U-Net like diffusion model. For example in (c) we illustrate how Latent Paint is applied twice between the existing
Input, Middle and Output blocks of a diffusion U-Net. The proposed approach is detailed in Alg. 1.

these concurrent works, we leverage an unconditional diffu-
sion model and only condition through the reverse diffusion
process itself. It allows our approach to generalize to any
mask shape for free-form inpainting.

3. Method
This section is divided into two main parts. We start with

a summary of the diffusion steps needed to derive our ap-
proach, followed by a detailed description of our solution.

3.1. Denoising diffusion models

DM are generative models that given observations from
a distribution x learn its true distribution p(x). They are a
generalization of variational autoencoders with a hierarchi-
cal set of latents that form a chain following the Markov
property. The latents’ dimension equal data’s. The latent
encoder is a predefined linear Gaussian model specially
chosen such that the distribution of the latent at the final
step is a standard Gaussian.

Intuitively, a DM performs a gradual noisification of an
image x0 over a predefined set of steps T . The input image
is progressively corrupted by adding Gaussian noise at each
step until eventually it becomes completely identical to pure
Gaussian noise. This process is also called the forward pro-
cess. The goal is to produce a model capable of learning the
conditionals of the so called reverse process that takes pure
Gaussian noise and produces a valid image over the same
number of steps in the opposite direction.

Following the Markov property the posterior of the gen-
erative process, i.e. the forward process, can be written as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (1)

By definition each latent variable is a standard normal
distribution centered around its previous hierarchical latent

with mean µt(xt) =
√
αtxt−1, and variance Σt(xt) = (1−

αt)I,

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I). (2)

The joint distribution of the generative process, a.k.a. the
reverse process is defined by:

p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

where
p(xT ) = N (xT ; 0, I). (4)

Notice that the forward process q(x1:T |x0) is not pa-
rameterized by θ, as it is completely modeled as Gaus-
sians with defined mean and variance parameters at each
timestep. Therefore, in a DM, we are only interested in
learning conditionals pθ(xt−1|xt), so that we can simulate
new data. After optimizing the DM, the sampling procedure
is as simple as sampling Gaussian noise from p(xT ) and it-
eratively running the denoising transitions pθ(xt−1|xt) for
T steps to generate a novel x0.

Like any variational autoencoder, the DM can be opti-
mized by maximizing the ELBO [14], which can be derived
as:

log p(x) ≥ Eq(x1:T |x0)

[
log

p(x0:T )

q(x1:T |x0)

]
(5)

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
reconstruction term

(6)

−DKL(q(xT |x0)||p(xT ))︸ ︷︷ ︸
prior matching term

(7)

−
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]︸ ︷︷ ︸
denoising matching term

(8)
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Algorithm 1 LatentPaint: Image inpainting with postcon-
ditioning in the latent space.

Input: diffusion model (µθ(.),Σθ(.)), input image x0,
number of diffusion steps T , mask m and set of latents
H.
xT ← sample from N (0, I)
for t from T to 1 do

▷ Step 1. Infer denoised image (p-sample)
µ∗,Σ∗ ← µθ(xt),Σθ(xt)

xinfr
t−1 ← sample from N (µ∗,Σ∗)

▷ Step 2. Compute noisy condition (q-sample)
µ,Σ← µq(x0),Σq(x0)
xcond
t−1 ← sample from N (µ,Σ)

▷ Step 3. Post-conditioning in latent space
for h inH do

▷ Latent-space conditioning
h∗ = hinfr ⊙ (1−D(m)) + hcond ⊙D(m)
▷ Explicit propagation
ĥ = γ−1[ϕ[ω; γ(D(m), hcond)]]

end for
▷ Step 4. Compose condition with inferrence
xt−1 = xinfr

t−1 ⊙ (1−m) + xcond
t−1 ⊙m

end for
return x0

In our case, because we can set the variances of the two
Gaussians to match exactly, optimizing the KL Divergence
of the denoising matching term reduces to minimizing the
difference between the means of the two distributions:

argmin
θ

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

= argmin
θ

1

2σ2
q (t)

[
∥µθ − µq∥22

]
, (9)

where we have written µq as shorthand for µq(xt, x0), and
µθ as shorthand for µθ(xt, t) for brevity.

Therefore, optimizing a DM boils down to learning a
neural network to predict the original ground-truth image
from an arbitrarily noisified version of it. Furthermore, min-
imizing the summation term of the derived ELBO objective
across all noise levels can be approximated by minimizing
the expectation over all timesteps:

argmin
θ

Et∼U{2,T}
[
Eq(xt|x0) [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))]

]
, (10)

which can then be optimized using stochastic samples over
timesteps.

3.2. LatentPaint

Let D = (x,m) be a dataset of observations where
x ∈ RW×H×C are color images with width W , height H
and number of channels C and m ∈ ZW×H×1

2 are binary

matrices. Each sample (x,m) drawn from D represents an
image with two distinct regions, a known region we would
like to condition on, xcond = x ⊙m, and the complemen-
tary region we want to infer, xinfr = x⊙(1−m). The goal
of inpainting is to learn a function p(xinfr|xcond) capable
of producing realistic samples x∗ = xcond + xinfr relative
to the initial distribution p(x).

We propose architectural additions to denoising diffu-
sion models for achieving high-quality inpainting without
preconditioning.

Specifically, we introduce the Explicit Propagation (EP)
module that propagates information from the conditioned
pixels to the inferred pixels in a latent space. This can be di-
rectly plugged into any existing DM and multiple instances
at multiple locations in the DM can be utilized.

Latent Space Conditioning. Motivated by [1], we merge
latent representations of the condition and the inferred sig-
nal at all levels of the DM. The latent representations of
the condition (hcond) are obtained by passing q(xT |xcond

0 )
through the denoising network. The computed conditional
latent representations are combined with the correspond-
ing latent representations of inferred signal using the input
mask:

h∗ = hinfr ⊙ (1−D(m)) + hcond ⊙D(m) (11)

D(m), the mask at various resolutions is obtained by fol-
lowing the usual downsampling operations.1 Note that due
to average pooling, the downsampled mask is not binary
anymore. We repeat the above form of merging representa-
tions at all possible locations.2 See Algo 1 for step-by-step
details.

Explicit propagation. The Explicit Propagation’s (EP)
main function is to properly propagate information between
the condition and the inferred regions of the latent during
inference. It consists of a set of transformations of the
latent representation. More specifically, the latent h∗ ∈
RW̄×H̄×C̄ is transformed in the following way:

ĥ = γ−1[ϕ[ω; γ(D(m), hcond)], (12)

where W̄ and H̄ determine the size of the latent, with W̄ <
W and H̄ < H , and W , H are the width and height of the
input image, and C̄ the number of channels.

This creates a new latent ĥ of the same dimension, ĥ ∈
RW̄×H̄×C̄ which is passed to the downstream computations
in the DM.

1For example average pooling like in guided diffusion [5].
2In the guided diffusion models [5], we do this after every block in

inputblocks, middleblock and outputblocks.
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In (12) the terms have the following meaning: D is
a simple downsampling that brings the input mask m ∈
RW×H×C to the size of the latent such that D(m) ∈
RW̄×H̄×1 3. γ is a mask-wise max-pooling which takes the
downsampled binary mask D(m) and max-pools from the
condition hcond values for the inferred and condition region.
ϕ is a function with parameters ω that learns a proper non-
linear combination between the representations of the two
regions where ϕ −→ RC̄×1×24. Following this, a mask-wise
unpooling γ−1 brings the representation back to its original
size. The total number of trainable parameters introduced
by this module is tiny in comparison to the parameters of
the DM (less than 1%).

For a depiction of LatentPaint refer to Fig. 3. For a step-
by-step implementation to Alg. 1.

4. Experiments
This section provides extensive experimental results and

comparison with state-of-the-art methods.

4.1. Experimental Setup

Datasets. We evaluate our proposal in three visual do-
mains: faces, bedrooms, and living rooms. CelebA-HQ [13]
is a high-quality dataset of human faces. Following prior
works [31, 44], we evaluate our technique on 2000 images
with three types of masks: thin, medium, and thick. This
is in contrast to RePaint [20] which computes scores on a
small set of 100 samples. For bedrooms, we use 500 images
from the LSUN-Bedrooms validation dataset [37]. Both
Faces and Bedrooms contain images at 256x256-pixel res-
olution. To evaluate inpainting at high resolutions, we cu-
rated a dataset of living rooms at 512x512-pixel resolution
and used it to train a Latent Diffusion Model (LDM). The
masks for living rooms and bedrooms are obtained through
semantic segmentation [19] of photos that are not part of the
training set. Importantly, faces are a single object distribu-
tion whereas bedrooms and living rooms are scenes contain-
ing multiple objects. Inpainting requires techniques to fill in
missing parts for faces and add multiple objects in coherent
fashion for scenes. The goal of painting techniques is to
produce coherent and consistent regions of pixels. Other
mask types such as painting every alternate pixel do not
help in evaluating image consistency. As a result, our ex-
periments are mainly focused on previously mentioned thin,
medium and thick masks following [31].

Baseline Methods. We compare the proposed technique
with a variety of DM techniques, including LDM, Stable
Diffusion [27], and RePaint [20]. LDM and Stable Dif-
fusion are preconditioned latent diffusion models. Stable

3Other techniques, i.e. bilinear or bicubic interpolation could be ap-
plied with similar effect.

4Implemented as a multi-layer perceptron

Method LPIPS↓ FID↓ Runtime ↓ Type Steps

LDM 0.081 12.51 9.00 PRE 250
RePaint [20] 0.075 7.74 535.00 POST 4570
Ours 0.068 7.06 55.00 - 250

Table 1. Quality vs. efficiency in diffusion models. Comparison
between the proposed method and existing DM on CelebA-HQ
‘thick’. For each evaluation metric the arrow indicates if less or
more is better. Runtime is measured in seconds for producing one
256x256-pixel image on a single NVIDIA V-100 GPU. Note that
RePaint and ours are DM in pixel space. PRE: preconditioned,
POST: postconditioned.

Diffusion is a large scale variant of LDM trained with more
data and text conditioned. RePaint [20] is a postconditioned
diffusion model in the pixel space. For a fair compari-
son, we incorporate latent space conditioning and the ex-
plicit propagation module to the diffusion model of [20].
Comparing the proposed LatentPaint to RePaint and LDM
demonstrates the positive effect of the proposed propaga-
tion modules (see Table 1). We also compare our ap-
proach against several state-of-the-art inpainting methods:
the autoregressive method DSI [25], and the GAN meth-
ods AOT [41], LaMa [31], MADF [45], and COMODGAN
[44]. Comparison to these techniques will help in under-
standing how DM in general perform for inpainting against
other generative models. Where available, we use publicly
available pretrained models. Where not available, we train
according to published procedures.

Evaluation Metrics. For quantitative comparisons, we
evaluate using LPIPS [43] which is a learned distance met-
ric based on the deep feature space of AlexNet, Fréchet In-
ception Distance (FID) [8] a popular deep metric for per-
ceptual rationality [12] which measures the distance be-
tween the distributions of real and synthetic image features,
Precision which corresponds to the average sample qual-
ity [15], and Recall which measures the coverage of the
sample distribution [15]which is an indicator of diversity.

4.2. Results and Discussion

Quality vs. Efficiency. Table 1 shows a quality vs. effi-
ciency benchmark for DM. Notice how the improvement in
quality that RePaint provides over LDM, as shown by lower
FID, comes at the great expense of efficiency. Postcondi-
tioned models are ten times more costly to sample from and
require almost 20x diffusion steps to harmonize results. Our
proposal on the other hand gets the best of the two worlds
without their disadvantages.

General Quantitative Benchmark. Next we want to
compare performance of the proposed method against the
state of the art for image inpainting by using faces as a
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Input LaMa COMODGAN DSI RePaint-10 Ours

1

Figure 4. Examples of inpainted faces with random condition. Several state-of-the-art methods are shown for easy comparison with the
proposed algorithm. The first column is the condition. Each other column shows samples from a different method as indicated on top.

Thick Medium Thin
Methods LPIPS↓ FID↓ P ↑ R ↑ LPIPS↓ FID↓ P ↑ R ↑ LPIPS↓ FID↓ P ↑ R ↑ Type

MADF [41] 0.102 17.26 0.63 0.70 0.065 10.86 0.71 0.72 0.044 20.29 0.65 0.71 GAN
COMODGAN [41] 0.078 12.14 0.71 0.69 0.057 11.27 0.74 0.70 0.043 11.19 0.75 0.71 GAN
AOT [41] 0.110 16.69 0.64 0.70 0.076 11.28 0.71 0.72 0.049 9.49 0.79 0.69 GAN
LaMa [31] 0.062 8.03 0.82 0.67 0.044 7.91 0.80 0.69 0.035 8.47 0.80 0.69 GAN
DSI [25] 0.084 10.10 0.78 0.66 0.058 8.99 0.80 0.68 0.047 10.14 0.80 0.67 AR
LDM 0.081 12.51 0.72 0.66 0.065 14.57 0.74 0.64 0.072 19.50 0.68 0.70 DM
SD 1.55 0.103 14.65 0.66 0.71 0.081 14.12 0.66 0.71 0.070 13.83 0.70 0.68 DM
RePaint [20] 0.075 7.74 0.82 0.67 0.050 7.51 0.82 0.71 0.032 7.16 0.82 0.71 DM
Ours 0.068 7.06 0.83 0.68 0.048 6.91 0.82 0.72 0.029 6.84 0.82 0.71 DM

Table 2. Results on CelebA. Comparison between the proposed method and the state-of-the-art. Following [31] three versions of masking
are evaluated in ascending order of the percentage of inpainting: thin, medium and thick. For each evaluation metric we indicate with an
arrow if less or more is better. Best result is marked in bold. Runtime comparison between different inpainting methods is measured in
seconds for producing a 256x256-pixel image on a single NVIDIA V-100 GPU. The different types of generative models are GAN, AR,
and DM.

test-bed. Table 2 shows results on the CelebA-HQ dataset.
Among all non-diffusion model techniques for inpainting,
LaMa, a GAN based approach is the fastest requiring only
few milliseconds to produce a result. Additionally it is also
the best performing, as shown by low LPIPS and FID. Re-
Paint beats the state-of-the-art at the cost of an explosion
in computational cost as it takes almost nine minutes to
produce a sample. This is because of the several forward-
backward diffusion steps required to harmonize the inpaint-
ing result. Notice how our method is able to achieve better
performance both in LPIPS and FID and similar Precision
and Recall compared to RePaint in a fraction of time. This

is consistent across all types of masking studied. Stable
diffusion, a foundational text-to-image model, trained on
LAION-5B dataset, has high generalization capability and
is the most diverse as illustrated by the high Recall when
thick masking is applied.

Finally, Table 4 compares FID scores of RePaint and the
proposed method on complex scenes. Overall scenes are
more challenging than faces. Nevertheless, the advantage
shown by our method over RePaint on faces replicates for
bedrooms and livingrooms as well.

4339



In
p
u
t

O
u
rs

1

Figure 5. Examples of inpainted faces conditioned on hair. Top row is the condition and bottom row are samples produced by the
proposed method.

Ablation Study. We investigate the empirical contribu-
tions of individual components of the proposed approach.
We compare against the baseline technique of [20] which
performs conditioning in the pixel space. Our first observa-
tion, similar to [1], is that enabling latent space condition-
ing improves the consistency of inpainting straight away.
Adding explicit propagation further improves inpainting re-
sults; see Table 3. Note that adding these components to
a baseline U-Net for diffusion only increases the runtime
by a few milliseconds. This is negligible when compared
to the total runtime of reverse diffusion. We have observed
empirically that adding more than two explicit propagation
modules does not bring any other significant gains.

Qualitative Results. We complement the qualitative
benchmark with several sets of visual examples. In Fig.
4 we compare against several state-of-the-art methods, in-
cluding the best performing GAN based methods and Re-
Paint. Notice the quality produced by our samples, and the
overall coherence between the condition and the inference.
We show examples of extreme masking, where almost all
the face is to be inferred. In the first examples, methods like
DSI struggle to paint a structurally coherent face. LaMa’s
sample quality is poor, especially in the mouth region and
almost all the competitors seem to struggle in reconstruct-
ing the right hand. For the second example, the faces is
slightly tilted to the left. Notice how both RePaint and es-
pecially COMODGAN have problems respecting the pose
on the right side of the face. In the case of LaMa the in-
ferred half of the face has a shift in illumination. In the
last example both LaMa and COMODGAN have problems
in the mouth region, DSI shows overall low quality while
RePaint and Ours provide appealing, high quality results.

Methods LPIPS↓ FID↓

RePaint w/o resampling [20] 0.479 14.55
Ours w/ latent space conditioning 0.341 13.13
Ours w/ one explicit propagation module 0.127 9.81
Ours w/ two explicit propagation module 0.068 7.06

Table 3. Ablation study on CelebA. Evaluating various settings
of our proposal. All evaluation performed with thick masking.

Methods Livingrooms LSUN-Bedrooms

RePaint-10 [20] 24.16 18.92
Ours 21.87 16.18

Table 4. Results on LSUN-Bedrooms and curated livingrooms
dataset. FID scores of RePaint and LatentPaint around semantic
masks of sofa and bed.

In Fig. 5 we show examples of how our method condi-
tions on hair. Notice the high quality rendered faces. Refer
to the supplementary material for more examples of seman-
tic conditioning with faces.

Finally, in Fig. 6 we show examples of how our pro-
posal inpaints rooms. There are two sets of samples, the
first with conditioning the bedrooms model on beds and
the second with conditioning sofas in livingrooms. Rooms
are way more challenging than faces, coming with diverse
scenes composition and containing large number of objects
to align. Our proposal produces coherent backgrounds,
structurally coherent scenes and at least in the case of bed-
rooms, highly diverse backgrounds. Some general quality
problems persist as shown by the higher FID in Table 4. A
particular interesting phenomenon is further commented in
Sec. 4.3. It is important to mention that quality and diversity
of inpainting samples depends directly on the unconditional
DM training and currently the sampling quality of models
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Figure 6. Examples of inpainted rooms. The first row is the condition. The next two rows show inpainting examples using LatentPaint.
Left most two columns are bedrooms, the rest livingrooms.

on rooms does not match those of faces. More qualitative
results comparing samples from all techniques are provided
in supplementary.

4.3. Limitations

Our technique is not without limitations. Particular to
complex scenes semantically conditioned on particular ob-
jects preserving identity can be challenging. We call this
object expansion. For example, given a sofa (see Fig. 7) in-
painting extends the sofa, adding additional legs or cushions
that change it’s identity. Object expansion is not specific to
the proposed technique and all prior techniques suffer from
this issue. This particular problem is more evident in scenes
than in faces.

5. Conclusions
We have presented LatentPaint, a simple but efficient

method that of conditioning generic diffusion models for
inpainting. We take the best of preconditioned and postcon-
ditioned model to derive an approach with their advantages
but none of the disadvantages. First, due to its strong in-
ductive bias, which optimizes only a small number of pa-
rameters of a carefully designed information propagation
mechanism, our algorithm can be applied to existing foun-
dational models at the cost of only a fraction of the fine-

1

Figure 7. Limitations. Two examples of object expansion. Some-
times this can occur when inpainting scenes conditioned on an ob-
ject. This is not a problem specific to our proposal. All methods
have this problem when inpainting scenes.

tuning steps usually required by existing preconditioned in-
painting. Second, our approach samples in a fraction of
the runtime compared to postcondition methods. Third, our
method produces high-quality images, on-par or better than
previous algorithms. We demonstrated this on faces, an
intensively studied problem, and on bedrooms and living
rooms two very challenging domains. Our proposal does
not come without limitations though. At least in the case
of complex scenes, “object expansion” remains a persistent
problem for all current state-of-the-art methods, which un-
fortunately LatentPaint does not solve.
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