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Abstract

Fairness is crucial when training a deep-learning dis-
criminative model, especially in the facial domain. Models
tend to correlate specific characteristics (such as age and
skin color) with unrelated attributes (downstream tasks),
resulting in biases which do not correspond to reality. It
is common knowledge that these correlations are present
in the data and are then transferred to the models during
training (e.g., [35]). This paper proposes a method to mit-
igate these correlations to improve fairness. To do so, we
learn interpretable and meaningful paths lying in the se-
mantic space of a pre-trained diffusion model (DiffAE) [27]
— such paths being supervised by contrastive text dipoles.
That is, we learn to edit protected characteristics (age and
skin color). These paths are then applied to augment im-
ages to improve the fairness of a given dataset. We test
the proposed method on CelebA-HQ and UTKFace on sev-
eral downstream tasks with age and skin color as protected
characteristics. As a proxy for fairness, we compute the dif-
ference in accuracy with respect to the protected character-
istics. Quantitative results show how the augmented images
help the model improve the overall accuracy, the aforemen-
tioned metric, and the disparity of equal opportunity. Code
is available at: https://github.com/Moreno98/
Vision—-Language—-Bias—-Control.

1. Introduction

Today’s society is careful about ethical topics and with
the raising of publicly available Al tools [16,29, 30] con-
cerns about their fairness are also growing. In a supervised
learning setting, the importance of the training data is well-
known since the behavior of the model at inference time
is highly correlated to the seen data. Modern models can
effectively learn and highly perform multiple downstream
tasks generalizing to unseen data. Besides the effectiveness
of the pipeline, training data also brings unwanted side ef-
fects. It has been proven that vision datasets contain bi-
ases [35], thus the models learn the correlations present
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Figure 1. We make a biased dataset fairer by augmenting it with
images (generated by DiffAE [27]) depicting the desired protected
characteristics (e.g., dark-skinned people) after being manipulated
by our ContraCLIP [36]-based text-driven augmentation module.

in the data which may be malignant [4, 7, 13,43]. These
concerns become a particularly sensitive subject when it
comes to the facial domain. Modern machine learning mod-
els are dominant at a wide range of applications, such as
face/emotion recognition and mask detection [11, 16, 20].
In this context, studying the behavior of deep learning
models is crucial to avoid unwanted situations at inference
time [26]. For example, the model’s performance may drop
when presented with a particular protected characteristic
(e.g., very young/old or dark-skinned faces). The above is-
sues motivate us to study the behavior of a deep learning
model with respect to facial protected characteristics which
are sensitive to society and can raise ethical concerns.

Training fair discriminative models has become of
paramount importance for the research community during
the past years. Recent works have shown that not only do
models learn the underlying bias present in the data [14,34],
but they tend to often amplify it [13,38,43]. Multiple tech-
niques have been proposed for mitigating the bias, from
task-specific training, such as the introduction of regular-
ization terms or architectural approaches [22,32,38] to data
augmentation strategies [2, 1 8].

Recently, generative models, such as Generative Adver-
sarial Networks (GANs) [12], have shown remarkable per-
formance in a multitude of tasks through discovering con-
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trollable generative paths in their latent or feature spaces [5,

,23,24,37]. Thus, GAN-based methods have been em-
ployed as a data augmentation technique to generate fairer
data [8, 39, 40], to generate counterfactuals [, 9] or to gen-
erate counterparts by editing sensitive attributes [41]. The
above works train generative models from scratch which
may be impractical, especially in low data regimes. Ad-
ditionally, the pre-trained generative models are expected
to reflect the bias that is inherent to the datasets where they
have been trained on [25,39,4 1], challenging those methods
that use them for bias mitigation.

In this paper, we address the above limitations by propos-
ing a novel approach that leverages a pre-trained diffu-
sion model [27, 33] to edit sensitive attributes in facial im-
ages, in order to improve the fairness of existing (biased)
datasets and, consequently, the fairness of a discriminative
model trained on such datasets. By contrast to previous
works that train generative models (e.g., GANs [12]) from
scratch [9,39,41], we incorporate the power of a fixed pre-
trained diffusion model to change sensitive facial attributes
from a pool of generated images. The manipulated faces
(with respect to the desired sensitive attributes) are used to
make the original dataset fairer and mitigate the bias present
on a downstream model trained on the original dataset. We
illustrate this in Fig. 1. Our setting consists of a binary
downstream classification attribute and a binary sensitive at-
tribute towards which the model may exhibit bias. Through-
out the paper, we will be referring to the downstream clas-
sification attribute as attribute and to the sensitive attribute
as protected characteristic. The main contributions of this
paper can be summarized as follows:

* To the best of our knowledge, we are the first to lever-
age diffusion models and a vision-language model in
the context of fairness on discriminative models.

* We propose to edit the protected characteristics by
learning interpretable paths in the semantic space of
DiffAE [27] guided by natural language without the
need to fine-tune the pre-trained generative model.

* We test our method on several downstream tasks of
CelebA-HQ [21] and UTKFace [42] with skin color
and age as protected characteristics showing competi-
tive or better performance when mitigating the bias.

* We show that our method is capable of increasing the
bias towards a specific attribute if needed — that is,
in contrast to previous works (e.g., [22, 38, 41]), our
method can control (i.e., decrease or increase) the bias
concerning a specific attribute.

2. Related work

During recent years, the research community has di-
rected its efforts towards mitigating bias and improving
fairness in discriminative models mainly adopting one of

the following approaches: i) proposing training techniques
without changing the training data at hand or ii) applying
some sort of data augmentation for the under-represented
classes. We review each category below.

Training techniques Different strategies have been in-
vestigated when mitigating the bias at training time, from
the employment of regularization terms in the loss [22] to
architectural methods [32, 38]. Wang et al. [38] proposed
a new benchmark for bias mitigation by studying various
techniques, such as oversampling rare examples, adversarial
training and domain discriminative training, and proposing
independent domain training where the downstream task is
independently learnt by leveraging two independent heads,
one for each domain class, leading to a model that is aware
of the sensitive domain. Nam et al. [22] proposed Learning
from Failure (LfF), which simultaneously trains two classi-
fiers, one to be biased and the other to be unbiased, by fo-
cusing on the hard samples for the biased one. This setting
works under the assumption that a malignant bias is learnt
when the sensitive attribute is easier to learn than the down-
stream target attribute; thus, if a biased model is struggling
in learning a set of samples, then those samples will help
in unbiasing a second model. This is achieved via general-
ized cross-entropy for amplifying the bias on the first model
and via a weighted cross-entropy loss with relative diffi-
culty for the target unbiased model. Savani et al. [32] in-
troduce three intra-processing methods for bias mitigation,
namely random perturbation where at each training iteration
the model’s weights are multiplied by Gaussian noise, layer-
wise optimization where each layer of the network is op-
timized separately with a common objective function, and
adversarial training where the model’s bias is predicted via
a trainable critic and used to improve the fairness avoiding
the non-differentiable issue of bias metrics.

Generative data augmentation A certain line of re-
search proposes the generation of “fairer” data using gen-
erative models towards improving fairness. One of the
first works in this direction is [39], where Sattigeri et al.
introduce Fairness GAN, a GAN [12] conditioned on the
protected sensitive attribute. This work generates a fairer
dataset by training the proposed architecture on the original
dataset. Dash et al. [9] introduced a model trained to gen-
erate counterfactual versions of the same image based on
the knowledge from a pre-defined causal graph. The syn-
thesized images are then used to mitigate the bias by adding
a regularization term to the loss, minimizing the MSE be-
tween the logits of the model when presented by the origi-
nal image and the counterfactual. A drawback of this work
is that the prior knowledge that is required from the causal
graph for encoding the attribute and protected characteristic
relations may not be readily available in practice. Zhang et
al. [41] proposed a new setting where sensitive labels and
downstream attributes are partially annotated. This work
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Figure 2. Overview of the proposed Vision-Language Bias Control (VLBC) method for controlling the bias in facial image datasets.
Given a real training set X, and a downstream task, we find the under-represented protected characteristic (e.g., black in skin colour)
by computing the sample statistics. Based on this, we select which images from a synthetic dataset Xs (generated using the DiffAE [27]

generator G and pseudo-labelled by a pre-trained network on 41 attributes f [15,

]) to use for augmentation. Then, the selected images are

manipulated by our augmentation module (ContraCLIP+DiffAE), pre-trained on text prompts defining the desired protected characteristic.
In this example, we manipulate/augment the selected images based on skin colour. Note that the original labels of the augmented images
(i.e., corresponding to the attribute class at hand) do not change. Finally, the augmented dataset X, is used along with the original real

dataset & for training downstream tasks.

first learns a generator and a classifier with the available an-
notations, while subsequently the two models are incremen-
tally trained using the mutual outputs. This semi-supervised
setting of [41] is necessary due to the lack of annotations
needed by the generator during training. The study also
introduces a contrastive learning framework with balanced
augmented data; i.e., for each original image, its counterpart
is generated by changing the sensitive attribute, and then
the downstream model is presented with both versions of
the image pushing together images with different sensitive
attributes and pushing away images with same sensitive at-
tribute. Similarly, Jung et al. [14] proposed the training of
a model to pseudo-label a dataset with a specific sensitive
attribute. Then, the pseudo-labels are filtered and replaced
with random choices if the prediction confidence is lower
than a certain threshold. Finally, the labeled and pseudo-
labeled data are used to train a fairer model employing a
training technique for bias mitigation (e.g., FairHSIC [28]).

The above generative techniques achieve notable bias
mitigation results, but they typically require the training of
domain-related generative models, demanding a significant
amount of domain-specific data that may not be available
for particular sensitive attributes because of their scarcity
during data collection. Other works mitigate this problem
via semi-supervised training [41]. In this work, we argue
that a better solution exists. Since training a generative
model on the available data may lead to a biased genera-
tor which could make the generation of rare examples chal-
lenging [39], we propose to explicitly learn to edit sensi-
tive attributes by exploiting a pre-trained generative model
without the need of training or fine-tuning it.

3. Vision-Language Bias Control (VLBC)

In this section, we present our method for controlling
the bias of a given dataset via augmenting images by edit-
ing specific protected characteristics (e.g., skin colour) us-
ing a diffusion-based generative model (DiffAE [27]) and
an augmentation module that learns to generate images
driven by prompts in natural language (ContraCLIP [36]).
An overview of the proposed framework, which we call
Vision-Language Bias Control (VLBC), is shown in Fig. 2.
Concretely, given a real training dataset X, of facial im-
ages, annotated for several attribute classes (e.g., CelebA-
HQ’s [21] attributes, such as chubby, long hair, etc.), we
first calculate, for each class, the number of positive and
negative samples with respect to a protected characteris-
tic (e.g., skin colour). By doing so, we identify whether
the protected characteristic at hand is under-represented in
the given dataset. Then, after having identified the bias to-
wards a specific protected characteristic, we may control
it (i.e., mitigate or increase it) by i) selecting fake images
from a large datasets of synthetic facial images generated by
DiffAE [27], X5, that have been pseudo-labelled by a pre-
trained network on 41 attributes f [15,21] (Synthetic Image
Selection) and ii) manipulating accordingly using the pro-
posed Augmentation Module. The augmented dataset, X,
is then used along with the original (biased) dataset X). to-
wards training fairer downstream classifiers. We note that
we do not merely sample synthetic images from X since we
do not possess any control over the attributes of the gener-
ated images and there is no guarantee that generated images
will be numerically adequate to compensate for the under-

4697



e | s 3
ag{ ;57 i" :g; :;gr
{ - " —_— \‘

e Tl T T T T

<= White

(915195 (5 (9 (5 (3

Original

ECRCNC N 0

< Young

A AE A m&e AT al) miﬁg

Original

Figure 3. Qualitative manipulation results on skin color and age (protected characteristics) using the proposed ContraCLIP+DiffAE.

represented classes of protected characteristics. This is sim-
ply because synthetic images follow the dataset distribution
where the generative models have been trained, thus, they
still suffer from biases that are present in those datasets. We
prove this intuition by reporting the failing of this method
on skin color (see Baseline-sampling Sect.4.1 and Table 3).

3.1. Synthetic image selection module

In this section we present the Synthetic Image Selection
Module of our framework (see top-left part of Fig. 2). As
discussed above, given a real dataset X, our goal towards
mitigating the bias with respect to a specific protected char-
acteristic is to augment the dataset with images that exem-
plify that protected characteristic (X, ), so as the resulting
dataset (&, + X, ) is fairer in a given downstream task.

The aforementioned images that will be manipulated to
exemplify the desired protected characteristic are selected
from a synthetic dataset X; of images generated by the Dif-
fAE [27]. The images of X are pseudo-labelled by a net-
work f pre-trained on the CelebA’s [21] 40 facial attributes
(40 binary pseudo-labels) and on FairFace’s [ | 5] skin colour
prediction (1 label). We note that while FairFace [15] pro-
vides predictions with respect to skin colour in terms of four
groups (i.e., “white”, “black”, “Asian”, and “Indian”), we
use a binary label corresponding to white/black by remov-
ing data from the “Indian” group. The resulting annotated
synthetic dataset X is given as X, = {(2,s:,0) )0,
where N, denotes the dataset size (in our experiments we
set Ny = 120,000), x; denotes the i-th image and s; its
code in the semantic space of DiffAE [27].

Finally, in order to decide on the sort of images required
for augmentation (image selection), we calculate the statis-
tics over the real (training) set &,. by taking into account
both protected characteristics and classification attributes.
Concretely, we calculate the number of samples that are
annotated for the desired classification attribute and that
appear as positive or negative with respect to the desired
protected characteristic. In the case of bias mitigation (to-

Semantic dipoles text-prompts

Negative direction (—) Positive direction (+)

Young <~ ol

“An ID photo of a young person.” <>”An ID photo of an old person.”

White skin color <~ Black skin color

A pale skin face.” ~ ”A black face.”

Table 1. Text prompts used to learn the described manipulations.

wards reducing the bias), we increase the number of images
of the minority protected characteristic class, keeping unal-
tered the downstream attribute labels, by selecting synthetic
images x; for which the pseudo-label f(z;) is the majority
class (e.g., white people see Fig. 2) — we denote this variant
VLBC-. On the contrary, in the case of bias amplification
(towards increasing the bias), we select to manipulate syn-
thetic images pseudo-labeled with the minority class for the
protected characteristic class at hand — we denote this vari-
ant of our method VLBC+. We note that bias mitigation is
typically the desired behaviour of the resulting augmented
dataset, however our formulation allows for increasing the
bias as well, which is designed for research purposes only,
towards studying bias in real datasets and downstream tasks.
After selecting which images to manipulate towards the de-
sired protected characteristic, we apply the proposed aug-
mentation module, which we describe below.

3.2. Augmentation module (ContraCLIP+DiffAE)

In this section, we present the proposed augmentation
module that is capable of manipulating facial images with
respect to a protected characteristic (e.g., skin color) de-
scribed in natural language. For doing so, we build on the
work of Tzelepis et al. [36] and we modify ContraCLIP so
that it discovers language-driven controllable paths in the
semantic space of DiffAE [27], instead of that of Style-
GAN2 [17]. We briefly discuss both components below.

Diffusion AutoEncoder (DiffAE) [27] has been recently
proposed to endow a Denoising Diffusion Implicit Model
(DDIM) [33] with a meaningful semantic space S and, thus,
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tected characteristic. We train the model with the original train- £ CGLRiHSIC[14] 78594022 7436041 773203  3651£136 37924103

ing data (baseline), with the original data plus synthetic (baseline-
sampling), and with the proposed VLBC-. We compare with
weighting [38], LfF [22], and CGL-FairHSIC [14].

the ability of semantic editing.

ContraCLIP [36] Given a pre-trained GAN, Contra-
CLIP [36] learns non-linear paths in its latent space driven
by contrasting semantic dipoles given in natural language.
To do so, one needs to define pairs of sentences that con-
vey contrasting meanings and express the limits of the in-
terpretation that are required by the optimized latent paths
to encode. Each such pair corresponds to one trainable path
in the GAN latent space. Given K semantic dipoles, Con-
traCLIP first represents them in the CLIP text space and
then use them as the centres of X' RBF-based warping func-
tions [36] {Ck }szl. This gives rise to K vector fields, which
provide paths from the one pole/sentence to the other and
can be used as the supervisory signal that guides the train-
able paths, for any given image and its transformed version
along a certain latent path.

In this work, we introduce our augmentation module (il-
lustrated in the bottom-right part of Fig. 2) by building on
ContraCLIP [36] and extending it towards learning genera-
tive paths in the semantic space S of DiffAE [27]. We re-
mark that, in our pipeline, we do not train the DiffAE’s [27]
generator G (that is pre-trained on FFHQ [16]). Hereafter,
we will be referring to our augmentation module as Contra-
CLIP+DiffAE. We pre-train ContraCLIP+DiffAE to learn
paths that refer to protected characteristics (see Tab. 1).
Then, given the semantic code s; € S of the i-th syn-
thetic image, we can manipulate it by traversing across
the k-th path (that corresponds to the k-th protected char-
acteristic; e.g., skin colour) by performing steps given by
s, = s; +€Ci(s;), where . is the warping function [36] for
the k-th protected characteristic and € is scalar determining

'VLBC- (ours) 78.26+0.06 74.2340.12 2.4040.33 22.01£0.60  25.0440.88
VLBC- \f (ours) 78.37+£0.1 74.324£0.03 248+0.18 23414£049 25784021

Table 3. Results of the classification tasks with skin color as pro-
tected characteristic. We train the model with the original train-
ing data (baseline), with the original data plus synthetic (baseline-
sampling), and the proposed VLBC-. We compare with weight-
ing [38], LfF [22], and CGL-FairHSIC [14].

the length and the direction of the manipulation step.

It is worth noting that the traversal length in the seman-
tic space S affects the degree of manipulation. Concretely,
in order to enforce diversity during the augmentation phase
and guarantee that manipulation is effective (i.e., it changes
the characteristic at hand adequately), we define a minimum
(Emin) and a maximum (&y,,x) number of traversal steps,
and we randomly (uniformly) sample the number of steps
(&) in [Emin, Emax] at each augmentation. That is, given a
synthetic image x; € X, we manipulate its semantic code
by applying £ steps before we arrive at the final augmented
image s{ € S. As a result, after manipulating all selected
synthetic images z;, we obtain an augmented dataset X,
that is used along with the real dataset &. in order to make
it fairer with respect to the downstream task at hand. This
is illustrated in the bottom-right part of Fig. 2.

4. Experiments

In this section, we present the experimental evaluation
of the proposed framework for controlling the bias in fa-
cial datasets with respect to the protected characteristics
skin color and age, towards the downstream task of binary
attribute classification. We note that we train the classifi-
cation models only on the classification attributes, not the
protected characteristic. We provide qualitative and quan-
titative results on both mitigating (VLBC-, Sect. 4.1) and
increasing (VLBC+, Sect. 4.2) the bias, and we compare
with the state-of-the-art (SOTA) works of [14,22,38]. We
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first train a baseline model on the original training set, quan-
tifying its initial bias without applying any fairness-related
technique. Then we investigate how the same model be-
haves when fine-tuned on the augmented dataset created
to mitigate or increase the bias. Moreover, while mitigat-
ing the bias, we introduce a second baseline, referred to
as baseline-sampling, which injects synthetic images of the
desired protected characteristic (e.g., black people) in the
training set without applying the proposed augmentations.
This baseline provides a simple yet effective way of deter-
mining whether and when our augmentation scheme is nec-
essary, providing additional insight into the usefulness of
synthetic images. As discussed in Sect. 3, we draw our in-
tuition from the fact that generative model are inherently
biased as well, since they depend on training on biased
datasets. Finally, in Sect. 4.3, we present our ablation study.

Implementation details We evaluate our method using
MobileNetV2 [3,31] and we train our models on one Nvidia
RTX A6000 with SGD and Focal Loss [19]. Learning
rate is 1073 when training from scratch (starting with Ima-
geNet [10] weights) and 10~ when fine-tuning. The base-
lines are trained for 100 epochs while fine-tuning (VLBC)
is performed for 50 epochs for both age and skin color. We
average the results over three runs and report mean/std.

Datasets We evaluate the proposed framework on (i)
CelebA-HQ [21], a diverse dataset in terms of skin colour,
gender, and age, which contains 30,000 images annotated
with 40 attributes, and (ii)) UTKFace [42], an in-the-wild
dataset consisting of 18, 038 face images annotated with re-
spect to gender, age (spanning 116 years), and skin colour.

Evaluation metrics Under the binary classification set-
ting, a natural way for describing fairness is to have a model
performing equally regardless of the protected characteris-
tic. For instance, predicting big lips should perform inde-
pendently of characteristics such as age or skin color. Fol-
lowing this intuition, we calculate the accuracy of the down-
stream task conditioned on the protected characteristic [39].
E.g., in the case of the protected characteristic of age, we
split the attribute classification accuracy into “young” and
“old”. We then calculate the difference between the two ac-
curacies to capture the model’s fairness. Ideally, a model
will exhibit equal behavior on a zero-valued difference in
accuracy. We also note that the sign of the difference in ac-
curacy is indicative of the “direction” of the bias — i.e., a
negative difference value would indicate a bias towards el-
der people, and vice versa for a positive value. We report the
overall accuracy, the fl-score, and the difference in accu-
racy (Acc Diff). Additionally, we calculate the mean (A 4)
and max (A ) disparity of opportunity similarly to [14].

4.1. Bias mitigation with VLBC-

In this section, we show how the proposed framework
for mitigating the bias (VLBC-) improves the fairness of

Age
Accuracy T f1-score T Acc Diff

Task Method

Baseline 82.871+0.34 82.861+0.34 48+1.72
Baseline-sampling 83.854+0.43 83.8440.43 4.8340.71
5 Weighting [35] 83784012 83.770.13 6.1740.68
g LfF [22] 44.7243.19 43.6143.43 -2.940.93
O CGL-FairHSIC [14] 91.911.0 91.9+1.0 3.131+0.83
'VLBC- (ours) 82.73E0.14 8273 F0.14 4671045
VLBC- \f (ours) 82.740.11 82.6910.11 3.93140.54
Skin Color
Task Method Accuracy T f1-score 1 Acc Diff
Baseline 83.57+0.48 83.561+0.48 26+E1.1
Baseline-sampling 84.534+0.13 84.5310.13 344024
5 Weighting [35] 83.340.28 83.340.28 424075
K] LfF [22] 45474082 4421+1.21 0.0£1.07
o CGL-FairHSIC [14] 91.284+0.26 91.28+0.26 3.174+1.09
'VLBC- (ours) 83.08E£0.18 83.06L0.18 0.03£0.31
VLBC- \f (ours) 83.04-0.25 82.981+0.24 0.4740.56
Baseline 76.25+0.54 76.05+£0.57 -12.14+1.06
Baseline-sampling 76.824+0.51 76.65+0.53 -12.8340.12
o Weighting [38] 76.1740.09 76.03£0.12 -9.931+0.09
2 LfF [22] 32.5240.73 30.81£0.6 10.17£1.76
CGL-FairHSIC [14] 80.55+1.67 80.3241.86 -11.2340.4
'VLBC- (ours) 76.52£0.06 76.31£0.05 -11.7£045
VLBC- \f (ours) 76.3540.43 76.154£0.44 -11.97£0.46

Table 4. Results on the UTKFace dataset (age and skin color).

a given dataset, assesed on a subset of the attribute clas-
sification tasks of CelebA-HQ [21]. We chose this based
on the bias of a baseline model trained on all the CelebA-
HQ attributes. That is, we ranked the tasks based on the
difference in accuracy, and we chose the ones with higher
values. Specifically, we decided to evaluate our method on
the attribute classification tasks of wearing necktie, chubby,
arched eyebrows, and double chin having age as the pro-
tected characteristic, and on straight hair, young, wearing
necktie, big lips, and big nose having skin color as the pro-
tected characteristic. We employed our augmentation mod-
ule (ContraCLIP+DiffAE) to balance the training set statis-
tics with respect to the protected characteristics. For exam-
ple, given big nose and skin color as pair attribute-protected
characteristics, we sample images from X of white people
(majority class) with and without big nose editing them into
black people (minority class) balancing the training set.
We show the results in Tab. 2 and 3, where we com-
pare the baselines with the following SOTA works: Wang
et al. [38] (weighting), Learning from Failure [22] (LfF)
and Fairness with the Partially annotated Group labels [14]
(CGL-FairHSIC). CGL-FairHSIC proposes to improve fair-
ness by incorporating a partially annotated dataset, thus we
apply it to the synthetic dataset. Please note that we denote
with a “-” the (A 4) and (Ajy) metrics when the model col-
lapses (e.g, f1-score of LfF [22] and CGL-FairHSIC [14]
in some cases). The results show how the proposed frame-
work (VLBC-) is always capable of mitigating bias with
respect to the baseline model on all attributes and metrics
exhibiting consistency over multiple settings. The compari-
son with SOTA methods highlights how other works are ro-
bust in some settings but fail in others. Specifically, Wang
et al. [38] (weighting) deteriorates the model’s fairness in
wearing necktie, arched eyebrows, and chubby attributes
when age is the protected characteristic. LfF [22] is per-
forming poorly, achieving similar or worse bias than the
baseline model trained only on the original data and show-
ing a clear drop in accuracy and fl-score with skin color
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as the protected characteristic. CGL-FairHSIC [14] is per-
forming well when skin color is the protected character-
istic, but fails on age. We argue that weighting [38] fails
since it possibly uses for training multiple instances of the
same image from the minority class. LfF [22] learns the
de-biased model by presenting hard samples coming from
a second model specifically trained for increasing the bias
potentially challenging the model leading to worse perfor-
mance (see Table 3). Finally, CGL-FairHSIC [14] fails be-
cause the fairness loss makes the model converge towards
negative predictions degrading in this way the performance.

Moreover, as discussed in Sect. 3, the ‘“baseline-
sampling” approach mitigates the bias only when enough
images are available for balancing the training set — this is
clear in the case of age (see Tab. 2). In this setting, the
diffusion model has a low bias against age, thus it generates
enough images for both young and old people to balance the
original training set. By contrast, the bias mitigation per-
formance worsens when testing the same approach on skin
color (see Tab. 3), since not enough images of black peo-
ple are generated by the generative model. These empirical
results confirm our intuition that augmentation is required
when samples from the minority class are not enough.

In terms of overall performance, our method is able to
mitigate the bias while preserving or improving the accu-
racy and f1-score of the model, demonstrating its effective-
ness. In Tab. 4, we show the results of bias mitigation ap-
plied on the UTKFace [42] dataset with age and skin color
as protected characteristics. We note that our method is
consistent also in this dataset mitigating the bias while pre-
serving the performance. Weighting [38] increases the bias
on two attributes out of three and LfF [22] does not pre-
serve the overall performance. CGL-FairHSIC [14] wors-
ens the bias performance on gender as attribute and skin
color as protected characteristic, while showing satisfac-
tory performance on the other two settings. Finally, the
“baseline-sampling” approach maintains the existing bias
on age, while worsening it on skin color similarly to what
was discussed above. As a final remark, we note that fil-
tering out the images with incorrect protected characteristic
augmentation has a low impact on the results (VLBC- \f).
This is due to a low error rate during the augmentations.

4.2. Increasing the bias with VLBC+

Remark: The experiments done in this section are for
scientific purposes only and we discourage increasing the
bias against specific ethical groups or sensitive attributes.

As discussed in previous sections, the proposed frame-
work is also capable of increasing the bias towards a specific
attribute/protected characteristic, due to its versatile aug-
mentation module (ContraCLIP+DiffAE). We denote this
variant of our method as VLBC+. A useful scenario might
be that of increasing the downstream task accuracy on par-

Age

Task Method Accuracy T Acc Diff

Wearing Baseline 9437E0.11 10.65£0.31
Necktie VLBC+ (ours) 94.3540.06 11.154-0.01
Chubby Baseline 9324£0.04 15.85£0.65
VLBC+ (ours) 93.01+0.05 17.58+0.09

Arched Baseline 80.15£03 9.0£02
Eyebrows VLBC+ (ours) 80.040.11 -8.840.18
Double Baseline 94.17E0.13 1515106
Chin VLBC+ (ours) 94.4440.05 13.7340.13

Skin Color

Task Method Accuracy T Acc Diff
Big Baseline 65.62£0.54 632E1.47
Lips VLBC+ (ours) 65.1340.05 11.6640.52
1g Baseline 78.82£0.07 3534035
Nose VLBC+ (ours) 78.68+0.14 6.57+0.42
Straight Baseline 82.52£0.53 10.17+0.81
Hair VLBC+ (ours) 82.924-0.01 9.6340.01
Young Baseline 85.25£0.09 9.0410.09
VLBC+ (ours) 85.5240.09 -7.5940.38

Wearing Baseline 9435F0.11 8110.63
Necktie VLBC+ (ours) 94.34-0.03 -6.984-0.34

Table 5. Results of VLBC employed to increase bias (VLBC+).

ticular attributes or the augmentation of a given dataset by
generating faces with specific attributes. However, we stress
that increasing bias towards specific attributes must be care-
fully considered and justified to avoid discriminative and
unfair practices. For the sake of coherence, we report here
the results of this setting applied to CelebA-HQ [21] on
the same attributes and protected characteristics discussed
above (Sect. 4.1). In this scenario, we augment the images
to unbalance, even more, the majority class (e.g., white peo-
ple). We aim at doubling the majority class; that is, to give
enough statistical evidence to the model during training. As
we can see in Tab. 5, our method (VLBC+) is able to in-
crease the bias on four attributes out of nine. We argue
that, similarly to the sampling-baseline approach, VLBC+
fails when not enough images are augmented, thus not dou-
bling the majority class. To further investigate this issue, we
report, in Fig. 4, the number of augmented samples com-
pared to the original training set on the attributes where this
method is struggling. Since we are augmenting the major-
ity class (e.g., “white” skin colour), we report the number of
samples conditioned on the majority protected characteris-
tic class showing the positive or negative number of samples
for the downstream classification attribute. For example, the
leftmost chart shows the number of samples having (posi-
tive) or not having (negative) “straight hair” appearing as
“white people” (majority class). As we can see, we cannot
generate enough images to actually double the class, since
the synthetic dataset X is itself biased and does not cap-
ture rare combinations (attribute-protected characteristics)
to augment. This is due to the inherent bias of the genera-
tive model — that is, we may not be able to generate enough
black people to augment towards white in order to influence
the bias. When this does not happen, our method does in-
crease the bias, as expected in this setting.

4.3. Ablation study

We present our ablation on the number of samples of the
minority-protected characteristic to show how the bias can
be further controlled. We sample 20%, 40%, 60%, 80%,
100% (whole training set) of the minority class and, finally,
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Figure 4. Distribution of the number of samples for the failure cases of Tab. 5.

Skin Color

Age

Figure 5. Accuracy difference for three downstream attributes with
skin color and age as protected characteristics. B and Not B denote
balanced or not balanced data, respectively. Clearly, sampling fails
when not enough images are available for sampling.

we plug our augmented data to go beyond the 100% balanc-
ing the dataset (as in Sect. 4.1). Fig. 5 shows this ablation
on Baseline, Baseline-sampling, and VLBC- with and with-
out filtering, considering three downstream tasks with skin
color and age as the protected characteristics. Fig. 5 shows
a trend of the difference in accuracy proving that adding
data to the training set controls the behavior of the model
with respect to the protected characteristic. Moreover, this
experiment allows us to study whether our method is able
to invert the original trend (increasing bias). The graphs
report how our method is consistent in mitigating the bias
while the sampling method fails on skin color due to the bal-
ancing issue discussed earlier (please note that on “Young”
the difference in accuracy is negative, thus we want it to
increase towards 0). We note that, occasionally, training
in low data regime (e.g., 20%) leads to better fairness (e.g.,
straight hair, big nose), but only by sacrificing the accuracy.

4.4. Qualitative results

Given a pre-trained generative path, our augmentation
module can control the manipulation strength by means of
traversal length. In Fig. 3, we show the traversals for the
two studied protected characteristics (skin color and age).
Clearly, the longer the traversal length, the stronger the ma-
nipulation. This demonstrates the effectiveness of the pro-
posed augmentation module (ContraCLIP+DiffAE) in ma-
nipulating facial images toward the desired protected char-
acteristics, while at the same time the overall image quality

and other facial attributes are preserved.

5. Limitations

Our work exhibits potential limitations due to the as-
sumptions that: (i) the learnt latent paths convey the de-
sired manipulation while preserving the downstream at-
tribute (disentanglement), and (ii) a good pseudo-labelling
module is employed. For (i), we attempt to impose the or-
thogonality of the paths by employing a contrastive loss
which improves their disentanglement, while for (ii) we
experimentally show (Sect. 4) that accuracy remains sta-
ble across different settings, suggesting that the proposed
framework exhibits robustness even with a simple pseudo-
labelling module (Sect. 3). Finally, our method requires a
generator with an editable space, pre-trained on data where
the attributes to be manipulated are well-represented.

6. Conclusion

In this paper, we presented a novel framework for con-
trolling the bias in facial datasets leveraging a pre-trained
and fixed diffusion model. We built on ContraCLIP [36]
in order to find meaningful natural language driven gen-
erative paths in the semantic space of DiffAE [27], which
we then applied to augment a given dataset with respect
to under-represented protected characteristics (e.g., black
people), making it fairer for downstream tasks. The pro-
posed bias mitigation method (VLBC-) is able to counter-
act the bias learnt from a downstream model, while pre-
serving accuracy and showing competitive results against
existing SOTA works [14,22,38]. Additionally, VLBC- ex-
hibits consistency across multiple settings, a trait missing
in concurrent works [14,22]. Finally, we showed that the
proposed framework, besides mitigating bias, is also capa-
ble of increasing it (VLBC+), providing full control over
bias towards specific attributes. As an interesting future di-
rection, we consider the extension of our method beyond
binary classification downstream tasks.
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