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Abstract

Accelerated magnetic resonance imaging (MRI) aims
to reconstruct high-quality MR images from a set of
under-sampled measurements. State-of-the-art methods
for this task use deep learning, which offers high recon-
struction accuracy and fast runtimes. In this work, we
propose a new state-of-the-art reconstruction model for
accelerated MRI reconstruction. Our model is the first
to combine the power of deep neural networks with iter-
ative refinement for this task. For the neural network
component of our method, we utilize a transformer-based
architecture as transformers are state-of-the-art in vari-
ous image reconstruction tasks. However, a major draw-
back of transformers which has limited their emergence
among the state-of-the-art MRI models is that they are
often memory inefficient for high-resolution inputs. To
address this limitation, we propose a transformer-based
model which uses parameter-free Fourier-based attention
modules, achieving 2× more memory efficiency. We
evaluate our model on the largest publicly available MRI
dataset, the fastMRI dataset [46], and achieve on-par
performance with other state-of-the-art1 methods on the
dataset’s leaderboard2.

⋆The work was mainly done during an internship at Nvidia
Research.

1At the time of writing this manuscript, the best-performing
model on the leaderboard is AIRS-Net whose implementation is
not published. Our implementation, based on the limited material
available for AIRS-Net, does not reproduce the results of the
leaderboard.

2https://fastmri.org/leaderboards/

1. Introduction

Magnetic resonance imaging (MRI) is a crucial med-
ical imaging modality that offers non-invasive, ionizing
radiation-free visualization of soft tissues. However,
acquiring a fully-sampled MRI scan requires a long
acquisition time, making it infeasible in most clinical
practice. To address this challenge, accelerated MRI
is widely used to accelerate the acquisition process via
recording less measurements in the Fourier space (also
called k-space) than a fully-sampled scan. The process
of reconstructing the MR image from the under-sampled
k-space data is called Accelerated MRI reconstruction.

Accelerated MRI reconstruction has a rich history in
the compressed sensing field, and traditional compressed
sensing methods such as sparsity-based methods have
been successfully applied to this task [5, 26]. However,
these methods have major drawbacks, including (1)
being extremely slow at inference, (2) not being able
to achieve a high and clinically-accepted reconstruction
quality, and (3) being difficult to tune for achieving
high reconstruction accuracy on multiple samples given
a fixed set of hyper-parameters.

The limitations of traditional methods have moti-
vated the development of new techniques, particularly
deep learning-based approaches. With the emergence
of deep learning, convolutional neural networks (CNNs)
have demonstrated superior performance over classical
methods both in terms of accuracy and runtime [39, 10].

More recently, the fastMRI dataset [46] was released
as the largest publicly available dataset for deep learn-
ing based accelerated MRI reconstruction. The fastMRI

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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dataset enabled deep learning models to compete for ad-
vancing state-of-the-art [19, 27]. The fastMRI dataset
also has withheld a test set for evaluation purposes,
the results of which are reported to a public leader-
board, to keep track of the state-of-the-art models in
the field. The leaderboard is divided into two general
tracks according to the anatomy of scans (brain or knee).
Furthermore, each track is divided into two tracks for
4×- or 8×-accelerated MRI reconstruction.

In this work, we propose a novel model for the brain
8× track of the fastMRI leaderboard. We target this
track as the most challenging one since it has been
advanced only once over the past two years, and it also
deals with the reconstruction from 8×-accelerated mea-
surements, which is more difficult than 4× acceleration.
Our model, which is based on iterative refinement via
an efficient transformer-based network, achieves com-
petitive results with much fewer number of parameters.
To summarize, our key contributions are as follows:

• We propose a novel MR image reconstruction al-
gorithm based on iterative refinement with neural
networks. Our work is the first to employ iterative
refinement for MRI reconstruction.

• We propose a new transformer network called
FRestormer, which is specifically designed to ad-
dress the memory issue of transformers for high-
resolution medical imaging. This modification also
enables embedding the network inside our iterative
refinement paradigm.

• We demonstrate that our model achieves on-par
performance with state-of-the-art models on the
fastMRI [46] leaderboard. We provide quantitative
as well as qualitative comparisons between our
method and other state-of-the-art models.

• We are the first transformer-based method to
achieve competitive performance on the fastMRI
leaderboard for the brain track, in line with top-
performing methods.

• Contrary to state-of-the-art unrolled networks, our
method does not rely on unrolling an optimization
algorithm. Rather, the network is used in a closed
loop where its output is refined and fed to the net-
work multiple times to generate the result. Thus,
a competitive advantage of our framework is that
one may use a model of higher capacity contrary to
unrolled networks where multiple small networks
are attached sequentially to generate the output.

1.1. Problem setup

Accelerated MRI reconstruction is the problem of
reconstructing an image x∗ ∈ CN from under-sampled
measurements (also called under-sampled k-space)

yi = MFSix
∗ + noise ∈ CMc , i = 1, . . . , nc. (1)

Here, nc denotes the number of radiofrequency coils, Si

is a complex-valued position-dependent coil sensitivity
map, that is applied through element-wise multiplica-
tion to the image x∗, F is the 2D discrete Fourier trans-
form, and M is a mask (a diagonal matrix with ones and
zeros on its diagonal) that implements under-sampling
of k-space data. The forward operator A = MFS is
known a priori. The problem setup above is for the
accelerated multi-coil MRI reconstruction which is more
common in practice than single-coil where nc = 1. Note
that should a reconstruction algorithm use A for multi-
coil MRI reconstruction (e.g., [34]), it needs to have
access to an estimate of coil sensitivities, otherwise no
information of coil sensitivity maps is needed.

1.2. Accelerated MRI reconstruction with neural
networks

For accelerated MRI reconstruction, neural networks
can be used via (1) supervised learning [1, 34], (2) unsu-
pervised learning [37, 15, 7, 2], and (3) self-supervised
learning [42]. The network typically works by mapping
either the under-sampled k-space to the high-quality
artifact-free image, or by mapping the coarse image re-
constructed from the under-sampled measurement (e.g.,
the zero-filled image) to the high-quality image.

As the focus of this work, supervised methods train a
network on a dataset of pairs of under-sampled measure-
ment and ground-truth image {(x∗

1,y1), . . . , (x
∗
n,yn)}.

The training loss (e.g., the ℓ1 loss) is then computed
between network output and the ground-truth image.
Supervised models are lightning-fast at inference as one
needs to only make a forward pass through the network
to obtain the reconstructed image. State-of-the-art
MRI reconstruction methods, including ours, are all
supervised according to the fastMRI leaderboard [46].

1.3. Related work

Over the past few years, several families of neural net-
work architectures have been applied to accelerated MRI
reconstruction. In the following, we iterate through sev-
eral of such architectural categories:

CNNs: One of the first deep learning based model
that was applied to accelerated MRI reconstruction was
a simple CNN with several convolutional layers [39].
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Figure 1: Left: Our neural-network-based iterative refinement framework. Our network repeatedly refines its
output n times. One step i of our method contains two parts: (1) reconstruction xi = f(xi) which is performed by
the fourier neural network f , and (2) refinement xi+1 = Prox(xi) = xi − (A+ 1

η I)
−1(Axi − y) which is done via

the proximal operator of proximal gradient descent (A is the forward operator, I is the identity matrix, and y is
the under-sampled k-space). Right: Conventional algorithmic unrolling where several optimization iterates are
modeled via neural networks and trained end to end (this approach is the current state of the art).

Later on, other CNN architectures like the U-Net [32]
and the KIKI-Net [9] were adopted for reconstruction
and achieved higher reconstruction performance than a
vanilla CNN [17]. The main characteristic of CNNs for
image reconstruction is their ability to model and ex-
tract local features in an image via convolutional filters.
Thus, unawareness of global structures in the image is
the main limitation of CNN-based architectures.

Generative models: Generative models are suc-
cessful tools for various image synthesis applications.
They have also been applied to MRI reconstruc-
tion [18, 16, 33, 44]. However, they fall behind state-of-
the-art MRI reconstruction models in terms of recon-
struction accuracy and runtime. For instance, there is
no generative model among the top-performing models
on the fastMRI leaderboard. Their long inference time
also makes them impractical for clinical deployment.

Transformers: Transformers, originally proposed for
natural language processing (NLP) [38], have entered
the computer vision field through the Vision Trans-
former (ViT) [8] model. ViT has been tailored to ac-
celerated MRI reconstruction as well [12, 13, 21, 20],
and has been shown to be computationally faster than
U-Net [23], but its reconstruction accuracy is only
marginally better than the U-Net. The main bene-
fit attributed to transformers is their ability to model
long-range dependencies across the image. This is use-
ful when redundant information is distributed all over
the image and one does not observe dependencies only
locally (for example, the white matter appears in many
places of a brain MRI image with a similar texture).
However, transformers have had limited success on the
fastMRI leaderboard, with only one out of nine top-
performing models based on a transformer architecture.

This is most likely due to their memory inefficiency in
handling high-resolution images of the fastMRI dataset.
The reason why the only top-performing transformer-
based method has not been used on the brain track
might include that brain images have a larger size and
require more GPU memory than knee images. To over-
come this, we propose an architecture modification to
make transformers more memory efficient and leverage
their superior performance for our method.

Unrolled networks: These models are rooted in op-
timization methods. Since this family of methods are
closely related to our approach, let us introduce this
class with an elaborate example. In order to recon-
struct the ground-truth image, suppose we run gradient
descent on the following optimization problem:

argmin
x

∥Ax− y∥22 +Ψ(x). (2)

Here, Ψ(x) represents an explicit regularization function
imposing a prior on x (e.g., it could be ∥x∥TV like
classical sparsity-based methods). Thus, the gradient
descent update rule at iteration i is:

xi+1 = xi − η
(
AT (Axi − y) +∇Ψ(xi)

)
. (3)

The idea of unrolled networks is to approximate ∇Ψ(xi)
with a neural network. For example, the end-to-end
variational network (E2E-VarNet) [34] uses a U-Net to
approximate the gradient of the regularizer. In principle,
this approximator can be any neural network f . With
this approximation, the update rule changes to:

xi+1 = xi − η
(
AT (Axi − y) + f(xi)

)
. (4)

As a final step, this process is unrolled. Specifically,
each step of gradient descent shown in equation (4) is
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modeled with a block in the network. Then, a few of
these blocks in tandem are trained end-to-end, typically
with respect to a supervised loss function.

Among the reconstruction model categories discussed
above, unrolled networks are currently state-of-the-art
for accelerated MRI reconstruction. Aside from the
example above, there are numerous variants of unrolled
networks in terms of what type of optimization problem
is unrolled [35, 47, 1, 6].

In this work, we propose a new model that is not
obtained by unrolling one of the standard optimiza-
tion algorithms such as gradient descent, but it is very
similar to unrolled methods in that it also consists of re-
finement blocks and data-consistency-enforcing blocks.
Our model is based on iterative refinement, a concept
rooted in numerical methods for solving a linear sys-
tem of equations [4]. Our iterative refinement method
(illustrated in Fig. 1) may be connected to unrolled
networks via unrolling a proximal optimization problem
as elaborated in Section 2. Our work is the first to
use iterative refinement for accelerated MRI reconstruc-
tion, although variants of it have been proposed for
other applications, e.g., computed tomography (CT)
reconstruction [14].

2. Method

In this section, we propose our approach for com-
bining iterative refinement with neural networks. We
start with an introduction to iterative refinement and
then state our approach to bundle it with a neural
network. Afterwards, we elaborate on our choice of neu-
ral network architecture (which is a transformer-based
network) and our proposed modification.

2.1. Iterative refinement with neural networks

From an optimization perspective, iterative refine-
ment can be viewed as a special case of proximal min-
imization [29]. Proximal minimization typically deals
with solving the following optimization problem:

argmin
x

g(x) + h(x), (5)

where g and h are two convex functions with different
gradient behaviors (for example, g may be differentiable
and h may be non-differentiable). Proximal methods
make a quadratic approximation to the well-behaved
function, say g:

x̂ = argmin
x

g(x) + h(x)

≈ argmin
x

g(z) +∇g(z)T (x− z) +
1

2η
∥x− z∥22 + h(x)

= argmin
x

1

2η
∥x− (z− η∇g(z))∥22 + h(x). (6)

To solve this optimization problem via proximal gradient
descent, one can define a two-step update rule as follows:

Step 1 of iterate i : z = xi − η∇g(xi),

Step 2 of iterate i : xi+1 = argmin
x

1

2η
∥x− z∥22 + h(x).

(7)

The second step in the update rule above is also known
as the proximal step based on which the proximal oper-
ator is defined as:

Proxh,η(z) = argmin
x

1

2η
∥x− z∥22 + h(x). (8)

Iterative refinement is a special case of proximal mini-
mization with g = 0 and h being the quadratic function:

h(x) =
1

2
xTAx− yTx. (9)

In this case, the update rule in (7) may be written as:

xi+1 = argmin
x

1

2η
∥x− xi∥22 + h(x)

= (A+
1

η
I)−1(y +

1

η
xi)

= xi − (A+
1

η
I)−1(Axi − y) = Proxh,η(x

i)

(10)

The update rule (10) of iterative refinement is also
called the refinement step which is done according to
the residual Axi − y.

In our approach, we do not unroll (10) to learn
the regularization term (as there is no explicit regu-
larization term) via a neural network (contrary to the
common practice in unrolled neural networks). Instead,
we wrap a neural network around the proximal opera-
tor Proxh,η(x

i) and then in an end-to-end manner, we
train several iterations of f

(
Proxh,η(x

i)
)

where f is
the neural network (please see Fig. 1 for an illustra-
tion of our framework). Intuitively, our method utilizes
the refinement step of iterative refinement to refine the
reconstruction estimate given by the neural network.

There is no constraint on the choice of neural network
in our framework. However, as we discuss in the follow-
ing section, a neural network that performs better than
another network, also performs better in combination
with iterative refinement.

Finally, in order to perform the refinement step,
one requires knowledge of the forward operator A =
MFS. The under-sampling mask M and the Fourier
operator F are known but the coil sensitivity maps S
are not known. However, S can be computed from
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the under-sampled measurements via traditional coil
sensitivity estimation methods such as ESPIRiT [36]
or SENSE [30]. Alternatively, one can learn them as
part of the end-to-end training paradigm which works
better than traditional methods [34]. In our work, we
follow the modern practice and learn them implicitly
using U-Net as part of our framework.

2.2. Choice of neural network architecture

Any neural network can be embedded into our itera-
tive refinement paradigm. We hypothesize that a better
performing reconstruction network also performs better
when combined with iterative refinement. To confirm
this, we compare the baseline U-Net [32] (which is often
used as the CNN backbone of modern MRI reconstruc-
tion networks [34]) with the state-of-the-art transformer-
based image restoration model Restormer [45].

Both networks follow an encoder-decoder like ar-
chitecture with downsampling and upsampling blocks.
Contrary to U-Net which is composed of convolutional
blocks in each resolution level of the network, Restormer
contains transformer blocks, each containing an atten-
tion module and a feed-forward network.

Like many transformer-based models, Restormer is
very memory hungry, especially in our work where we
deal with extremely high-resolution k-space samples.
This becomes practically prohibitive when plugging
Restormer to iterative refinement. For example, train-
ing iterative refinement with Restormer (5M parameters
in total) on the whole multi-coil brain training set of
the fastMRI dataset [46] is not feasible on a GPU with
48 GB of memory with more than one refinement step.

To address this issue, we made the following modifi-
cations. First, we propose a new transformer network
called FRestormer. We achieve this by replacing every
attention module of Restormer with a simple Fourier
transform, as shown in Fig. 2. Previous research has
demonstrated that replacing attention modules with
non-parametric operators such as Fourier transform
or pooling leads to minimal accuracy degradation in
NLP tasks [22] and no accuracy drop in image classifi-
cation [43]. Our ablations (in Section 3.3) demonstrate
that Restormer and FRestormer achieve comparable
reconstruction accuracy, with statistically insignificant
(p>0.5) difference.

Secondly, we cropped samples to a lower size (because
fastMRI samples are by default zero-padded in the im-
age domain) for the neural network part of our iterative
refinement paradigm (i.e., we worked with the full size
in the refinement step). With these modifications, we
were able to successfully train iterative refinement with
FRestormer, with 3 number of refinement iterates on
the whole training set, on 48 GB of GPU memory.

Model SSIM p-value
U-Net 0.9282 -
FRestormer 0.9322 <0.01
IR-U-Net 0.9487 -
IR-FRestormer 0.9503 <0.01

Table 1: Our FRestormer outperforms U-Net
with and without iterative refinement. There are
3 iterative steps used in IR-U-Net and IR-FRestormer.
Each p-value is the result of paired Wilcoxon signed-
rank test between the setup of the row that contains
the p-value and its previous row.

Finally, we now compare U-Net with FRestormer in
2 scenarios: (1) when they are trained on their own,
and (2) when they are part of our iterative refinement
paradigm. For this experiment, we selected a subset
of the multi-coil AXT2 brain dataset of fastMRI [46]
with the split size of 500/170/140 2D volumes for
train/validation/test. For iterative refinement, we used
3 refinement steps. Furthermore, both U-Net and
Restormer have 4 encoder and 4 decoder layers with
∼7M and ∼2M parameters, respectively. When itera-
tive refinement is used, 2M additional parameters are
used for the coil sensitivity estimation which is done
via a U-Net with a width factor of 16.

Table 1 shows the results. We draw two conclusions
from this table: (1) FRestormer outperforms U-Net,
and (2) IR-FRestormer outperforms IR-U-Net. The
second remark confirms our hypothesis that when a
network outperforms another one, its combination with
iterative refinement also outperforms the combination
of the other network with iterative refinement.

3. Experiments

In this section, we start off with our experimental
setup, then state our main results, and finally present
our ablation studies.

3.1. Experiment setup

Dataset: We worked with the fastMRI dataset con-
taining images that are acquired in axial plane with four
contrasts: T2-weighted (AXT2), T1-weighted (AXT1),
T1-weighted post-contrast (AXT1POST), and
FLAIR (AXFLAIR). The data contain 4469/1378/558
2D volumes for the train/validation/test portions. Un-
like the train/validation sets, the test set contains only
the under-sampled k-spaces (and not fully sampled).
As a common practice in the leaderboard [34, 11],
we combined the train/validation sets to create a
larger training set. Specifically, we created our split of
5647/200 volumes for train/validation portions.
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Figure 2: Fourier Restormer is the backbone neural network of our approach. Our variant of the
Restormer [45] architecture, which is a U-Net style transformer. Our network, dubbed FRestormer, is based on
parameter-free Fourier blocks instead of learnable attention modules which makes it amenable to high-resolution
medical imaging. The input and output have 2 channels representing the real and imaginary parts of the image.

Comparison Methods: We compare our model to
the top-5 publicly available models on the leaderboard,
namely DIRCN [28], E2E-VarNet [34], XPDNet [31],
HQS-Net [41], and U-Net [17, 46]. All of these models
are unrolled networks except U-Net which is a CNN
without any form of data consistency. For our model
submission, we also used a self-ensemble technique based
on horizontal flipping. Specifically, the forward pass
of our model (at training and inference) is modified
such that it computes the average of two output images;
one for the input image, and one for the flipped input
image (please see Sec. 3.3 for more details). We refer to
this variant of our model as IR-FRestormerF which is
a combination of IR-FRestormer and “Flip ensemble.”

Metric: We evaluate reconstruction accuracy via the
structural similarity index measure (SSIM) [40]. SSIM is
widely used in the literature to evaluate the performance
of image reconstruction algorithms and is the primary
metric in the fastMRI challenge [19, 27]. However, as
our model appears on the fastMRI leaderboard, PSNR
and NRMSE are shown there as well.

3.2. Results

In the development stage of our model, we conducted
numerous comparisons between our model and other
state-of-the-art models and found that our model per-
forms best on the validation set of the fastMRI dataset
(which is publicly available). In this section, we present
leaderboard results. These results are obtained for the
test set of the fastMRI dataset whose ground-truth im-
ages are not publicly available3. The dataset organizers
conduct this evaluation for every new model that is
submitted to the leaderboard.

Leaderboard track: We target the 8×-accelerated
multi-coil brain track of the fastMRI leaderboard. This
track is more challenging than 4×-accelerated multi-coil
brain since it deals with a higher acceleration factor.
It is also more challenging than the 8×-accelerated
multi-coil knee track since it has 4 imaging modalities
(the knee dataset has 2), it has 5 times more volumes
than the knee dataset, and also from the computational
perspective, brain samples are larger in size.

3At the time of submission, the test set was released to the
public, but our model was evaluated apriori on the leaderboard.
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Model SSIM #params
DIRCN [28] 0.9455 45M
IR-FRestormerF (ours) 0.9427 2.5M
E2E-VarNet [34] 0.9426 30M
XPDNet [31] 0.9408 -4
HQS-Net [41] 0.9400 33M
U-Net [46] 0.9282 214M

Table 2: Our IR-FRestormerF is among state-of-
the-arts for 8x accelerated multi-coil brain MRI
reconstruction. Test SSIM and number of parameters
of several of the best-performing models on the leader-
board. Our IR-FRestormer achieves state-of-the-art
performance with significantly less number of parame-
ters compared to its competitors on the leaderboard.

Leaderboard results: The leaderboard results
shown in Table 2 demonstrate that our method achieves
on-par performance with state-of-the-art models for 8×-
accelerated multi-coil brain MRI reconstruction. This
performance is achieved with fewer number of parame-
ters compared to the other leaderboard models.

Aside from the quantitative analysis above, we also
conducted a qualitative comparison by visualizing the
reconstructions. Note that this qualitative comparison
is naturally challenging in our work since the difference
between top-performing methods is extremely small
as also reflected in the quantitative metrics. Thus,
it is difficult to highlight a major difference in the
reconstructed images. Figure 3 shows reconstruction
examples. Among the best-performing methods, we
selected E2E-VarNet and our method, and as a baseline,
we selected U-Net for visualization. As shown, E2E-
VarNet and our method achieve on-par visual quality
and both outperform the baseline U-Net. Furthermore,
our model performs best in recovering fine details.

3.3. Ablation studies

For our model development, we conducted numer-
ous ablations. The major elements of our method
are FRestormer and iterative refinement (and a self-
ensemble technique we used for our final submission
which is described in the following).

Data split: For the purpose of these ablation stud-
ies, we created a sufficiently large subset of the
train/validation portions of the multi-coil brain dataset
since train and validation sets contain fully-sampled
images. The subset we created is the same used in
Section 2.2 which contains 500/170/140 volumes for
train/validation/test portions.

4The number of model parameters for this method is not
published by the authors.

0 2 4
0.93

0.94

0.95

number of refinement steps

SSIM

Figure 4: The effect of number of refinement steps on
the performance of IR-FRestormer.

FRestormer architecture: As discussed in Sec-
tion 2.2, we initially selected the Restormer architecture
as for the choice of neural network in our framework.
We proposed our variant FRestormer for the sake of
memory efficiency. Table 3 shows that Restormer and
FRestormer achieve similar accuracy on our test subset,
but FRestormer consumes 2× less GPU memory for
training. This is critical as the neural network in our
iterative refinement framework should be highly mem-
ory efficient and its inefficiency results in having less
number of refinement steps. FRestormer is also more
efficient for storage purposes because of its small size.

Iterative Refinement with FRestormer: Another
ablation, also shown in Table 3, compares IR-Restormer
with IR-FRestormer. Not that in this experiment,
IR-FRestormer has 3 refinement steps whereas IR-
Restormer has 1 and both occupy the same 40 GB of
GPU memory during training. Further, IR-FRestormer
significantly outperforms IR-Restormer with p < 0.01
after performaing a paired Wilcoxon signed-rank test.

IR-FRestormer with flip ensemble: For our final
submission, we also added flip ensemble to our model.
For flip ensemble, during training, for each sample, we
pass the input x and its horizontally-flipped version
flip(x) and then take the average of the resulting out-
puts as the final output (f(x) + flip(f(flip(x))))/2. We
then use the same forward pass during inference as
well. Our flip ensemble is a variant of self-ensemble
techniques [24, 25] which is very common in super-
resolution challenges [3]. The last row in Table 3 shows
the result of adding flip ensemble to IR-FRestormer.
This self-ensemble technique adds improvement to the
reconstruction accuracy and we used that in our final
leaderboard submission as well.

For the ablations explained above, Fig. 3 shows re-
construction examples. An important remark is that
IR-FRestormerF outperforms the rest of the models in
terms of recovering fine details in the image.
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Ground truth Zero-filled U-Net

SSIM: 0.8592

E2E-VarNet

SSIM: 0.8868

IR-Restormer

SSIM: 0.8863

IR-FRestormer

SSIM: 0.8873

IR-FRestormerF

SSIM: 0.8905

Figure 3: Reconstruction examples along with the zero-filled and ground-truth images for an AXT2 validation
sample of multi-coil brain set (8×-acceleration). The first row contains U-Net and E2E-VarNet to which we compare
our method and the second row contains our final model IR-FRestormerF along with our ablations IR-Restormer
and IR-FRestormer. For this example, IR-FRestormerF performs best in recovering fine details in the image.

Model SSIM p-value GPU Mem (GB)
Restormer 0.9319 - 12
FRestormer 0.9322 0.8 6
IR-Restormer 0.9491 <0.01 40
IR-FRestormer 0.9503 <0.01 40
IR-FRestormerF 0.9532 <0.01 40

Table 3: IR-FRestormerF (IR-FRestormer +
Flip-ensemble) performs best w.r.t the SSIM
score. Our ablations show that iterative refinement,
Fourier-based attention, and flip-ensemble all result in
performance improvement. Each p-value is the result
of paired Wilcoxon signed-rank test between the setup
of the row that contains the p-value and its previous
row. Note that with our FRestormer, IR-FRestormer
can have 3 refinement steps compared to IR-Restormer
which has only one refinement step with the same train-
ing GPU memory cost on an A40 GPU.

Number of refinement steps: Our final ablation
investigates the role of number of refinement steps in the
performance. For this purpose, we varied the number of
refinement steps from 0 to 5 and as shown in Fig. 4, the
performance monotonically increases and saturates after

3 refinement steps. Thus, there is a trade-off between
performance and memory efficiency as more number of
refinement steps means more memory consumption.

4. Conclusion

Accelerated MRI reconstruction is an important topic
in medical imaging. For this task, the most challeng-
ing track of the popular fastMRI leaderboard, 8×-
accelerated multi-coil brain MRI reconstruction, has
been advanced only once over the past two years.

In this work, we proposed a new state-of-the-art
model based on combining a new efficient transformer-
based architecture with iterative refinement. Our model
achieved on-par performance with other state-of-the-art
methods and recovered fine details with better quality.

Our work shows that iterative refinement can be a
promising framework for accelerated MRI reconstruc-
tion, and transformer-based networks can be used for
this task after addressing their memory consumption
issues with Fourier components. This opens up new pos-
sibilities for more future direction on these two methods
in accelerated MRI reconstruction.
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