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Abstract

The adaptation capability to a wide range of domains
is crucial for scene text spotting models when deployed to
real-world conditions. However, existing SOTA approaches
usually incorporate scene text detection and recognition
simply by pretraining on natural scene text datasets, which
do not directly exploit the intermediate feature representa-
tions between multiple domains. Here, we investigate the
problem of domain-adaptive scene text spotting, i.e., train-
ing a model on multi-domain source data such that it can
directly adapt to target domains rather than being special-
ized for a specific domain or scenario. Further, we investi-
gate a transformer baseline called Swin-TESTR to focus on
solving scene-text spotting for both regular and arbitrary-
shaped text along with an exhaustive evaluation. The results
demonstrate the potential of intermediate representations to
gain significant performance on text spotting benchmarks
across multiple domains (e.g. language, synth-to-real, and
documents). both in terms of accuracy and efficiency.

1. Introduction

End-to-end scene text spotting has been an active re-
search problem in the computer vision community ow-
ing to its immense utility in real-world application sce-
narios like autonomous driving [14, 52], intelligent navi-
gation systems [44], image retrieval [21] and so on. It
can be defined as the joint optimization of scene-text de-
tection and recognition tasks in a unified model pipeline.
Research efforts in recent years on text spotting [13, 19, 28,
35,46,54] have demonstrated the superiority of deep CNNs
and transformer-based approaches on natural scene image
benchmarks containing regular text [22], and arbitrarily-
shaped text [8, 27]. However, it is essential for a reading
system (OCR) to learn and adapt to new complexities in
unseen tasks (domains) without forgetting to read previous
tasks (domains) [48], hence overcoming the phenomenon of
catastrophic forgetting for neural networks [15].

In recent years, multimodal foundation models pre-
trained on multiple source data, have demonstrated impres-
sive performance on several tasks, including text recog-
nition [1, 6, 49], entity extraction [20, 43], and document
layout analysis [5, 20, 23, 32]. Given the growing practi-

(a) TotalText (b) CTW1500 (c) MLT2017 (d) ReCTS (e) VinText

(f) TotalText (g) CTW1500 (h) MLT2017 (i) ReCTS (j) VinText

Figure 1. Text Spotting Benchmark Diversity. We employ a t-SNE (top row) and UMAP (bottom row) to visualize the different clusters
of similar images corresponding to text orientation characteristics where Vertical, Circular, Wavy, and Horizontal Curve.
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cal significance of pre-training on diverse domains contain-
ing both real [30] and synthetic data [26], there is a surg-
ing interest in analyzing its empirical performance. Re-
cent explorations undertaken in [3] and [4] have delved
into different aspects of model design choices and the im-
pact of training and evaluation settings for benchmarking
Scene Text Recognition (STR). However, there are open
research questions that need to be addressed for a deeper
understanding of the performance gain in the SOTA text
spotting models. Firstly: Given the exuberant amount
of data available for pre-training having different sets of
text instance properties: which of them are most em-
pirically useful? This is really difficult to assess given
the current training and evaluation scheme followed by ev-
ery recent SOTA approach. Secondly: Why is the mul-
tilingual MLT17 [33] most extensively used dataset for
pretraining? As MLT contains samples in multiple lan-
guages (6 in total) and scripts (8 in total) in a wide variety of
real-world challenging conditions with diverse text instance
properties (see Fig. 1), there are hopes that the intermediate
pre-trained representation learned for this task will gener-
alize well to other downstream tasks such as text detection
and end-to-end spotting for both arbitrary-shaped text and
regular text benchmarks. However, the existing SOTA has
not made sufficient attempts towards empirically analyzing
this hypothesis. Thirdly: Why do we need the domain
adaptation settings for scene text spotting? Since the
SOTA text spotting models mostly focus on domain-specific
fine-tuning for getting the best results for the target evalua-
tion benchmarks, domain adaptation settings from synthetic
(source) to real (target) datasets [11,47] have yet to be inves-
tigated more in-depth. The existing domain adaptation ap-
proaches utilize adversarial training and discriminative fea-
ture alignment to learn some domain-invariant feature rep-
resentations for text. But these methods are more complex
as they are generative and our key objective is to pay atten-
tion to the model capacity and computation cost. Fourthly:
Are the model representations robust enough to be used
as an OCR for document layout Analysis (DLA)? When
it comes to measuring model robustness and generalizabil-
ity, the effectiveness of the text spotting model to detect and
read from text regions could be indeed beneficial for DLA
tasks without the need for a commercial OCR engine.

Given the bottleneck that annotated real data is expensive
and fewer in proportion to the available synthetic data [16],
it further motivates us to study the domain adaptation set-
tings for text spotting task. Although purely relying on
synthetic data doesn’t help to get the best model perfor-
mance, they provide a better initialization point with learnt
structural and contextual cues to improve the overall per-
formance with further addition of real data training with far
lesser number of iterations. Additionally, as shown in [41]
a model should inherently learn different degraded scene

complexities (like blurs, distortions, occluded objects, ...)
to obtain some robustness in it’s pre-trained feature repre-
sentations. In this work, we introduce a simple text spotting
baseline called Swin-TESTR which performs visual feature
extraction using a Swin-Transformer [29] backbone, cou-
pled with a Transformer-based unified single encoder-dual
decoder framework as proposed in TESTR [54]. On ac-
count of it’s higher tranferability [55] compared to simple
ViTs and CNNs and more interpretable hierarchical feature
maps obtained during the feature extraction phase, Swin-
TESTR helps to better analyse and establish strong bench-
mark performances for both domain adaptation and SOTA
end-to-end spotting settings.

The overall contributions of this work can be summa-
rized in four folds:1) To boost the text spotting performance
by simply utilizing intermediate representations learned
from more diverse and complex datasets (like the multilin-
gual MLT17 [33], Chinese ReCTS [53] or English Total-
Text [8]), we analyze the trade-offs for different combina-
tions of tasks (domains) in a domain adaptation setting.
2) With extensive experimentation, we analyze the signif-
icance of multilingual MLT17 as a strong intermediate rep-
resentation after pre-training on synthetic data helps to ob-
tain a fully competitive model for tackling the data distribu-
tion shift [42]. 3) A flexible Swin-TESTR baseline has been
proposed to show an exhaustive experimental study to ad-
dress the large domain gap between synthetic and real scene
datasets and explain how diverse intermediate representa-
tions could play a role to minimize this gap. 4) Moreover,
we make a first attempt towards investigating the general-
ization capability of the Swin-TESTR baseline by evaluat-
ing its OCR performance on the DLA task. Our baseline
shows promising results as it outperforms the commercial
Microsoft-OCR engine for ”text” and ”math” regions.

2. Challenges and Limitations in SOTA
In this section, we examine the different benchmarks

that have been adapted for training and evaluation by prior
works and address their pitfalls. Through this investigation,
we explore the performance inconsistencies across differ-
ent benchmarks and find shreds of evidence through exper-
imentation and intuitive discussions.

2.1. Pitfalls in Pretraining Strategies

When pre-training text spotting models, the most com-
mon practice is to pre-train with the Curved SynthText data
containing 150K samples first introduced in [26]for detect-
ing arbitrary-shaped scene text. The dataset was curated
from the 800K SynText dataset [16] containing quadri-
lateral bounding boxes. Such synthetic dataset curations
have been also used in scene text editing task [10, 39].
Since then, the most influential SOTA text spotting liter-
ature [13, 19, 26, 28, 35, 54] has persisted with large-scale
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pretraining with the Curved SynthText. MLT2017 [33]
and TotalText [8] are the most used real-world datasets
that have been used in pre-training the SOTA models. Al-
though the richness and sample diversity of these datasets
has been considered to be the key reasons, there have not
been enough justifications to prove why they have been
chosen. In this work, we try to explore and understand
why and how they prove to be beneficial during the model
pre-training. Note that the essential pre-training proto-
cols used by the recent methods are mainly of two dif-
ferent kinds. While methods like ABINet++ [13], ABC-
Netv2 [28] and TESTR [54] mix both synthetic and real
data together for pre-training, others like SwinTextSpot-
ter [19] and MANGO [35] prefer to generate a synthetic
data initialized model checkpoint and then pre-train all the
real-world data together on top of it for the rest of the it-
erations. The problem of how to use real datasets for STR
tasks has been previously addressed in [3]. Also, the same
authors addressed the pitfalls of STR datasets and model
evaluation in [2]. Contrary to the aforementioned works,
we delve deep into understanding (see sec. 4.2 ) the current
text spotting practices and finding the balance between the
number of datasets used and the model complexities for the
overall performance gain. In this regard, a domain adapta-
tion setting for evaluation has been introduced to actually
validate the aforementioned open questions.

2.2. Fairness in Evaluating Real-world datasets

Text spotting has been commonly fragmented into two
different sub-tasks in the literature: text detection and
recognition. Past approaches [18, 24, 25, 45] were mainly
evaluated on regular-shaped text spotting benchmarks like
ICDAR15 [22]. Later, arbitrary-shaped text benchmarks
like Total-Text [8] and CTW1500 [27] became the standard
benchmarks for evaluation protocols. Recent SOTA text
spotting methods ranging from CNN-based [26, 28, 35–37,
46] to recent transformer-based [13, 19, 50, 54] techniques
have mainly done their evaluations with the aforementioned
arbitrary-shaped English text benchmarks. Recently, Vin-
text [34] and ReCTS [53] have emerged as more challeng-
ing non-English arbitrary-shaped benchmarks for further
tough evaluation. One major issue plaguing all the SOTA
methods is they rely heavily upon fine-tuning their models
on the corresponding evaluation benchmark to achieve su-
perior performance gain. In this work, we investigate a do-
main adaptation setting to evaluate the proposed baseline on
several combinations of intermediate pretraining and evalu-
ation steps to gain some fairness in the model selection. A
few prior works [9, 47] have studied such domain distribu-
tion mismatches for scene text recognition. Also, we have
added model generalization capability when transferred to
another task from a different domain as a further evaluation
criterion. The closest work related to this task is [51] and

[1] which harnesses the power of CLIP [38] model for scene
text detection and recognition task respectively.

3. Preliminaries
The primary goal of our proposed baseline is to learn

some domain-agnostic feature representation through an
improved intermediate representation of combining real
data with synthetic data in an effective way and address the
domain shift problem. Additionally, we also introduce the
technical details of our proposed text-spotting architecture
with an efficient self-attention unit.

3.1. Problem Formulation

In order to formulate the problem statement, let us as-
sume, we have an input space χ and output space ξ. We
formulate domain adaptation as a learning problem that is
specified by two parameters: a distribution D over χ (i.e.
the domain) and a relation function R : χ → ξ which maps
instances to features. Basically, it is a representation that in-
duces the distribution D over ξ to perform the same task in
multiple domains. Now what are our source (input space χ)
and target domains (output space ξ)? We define three pairs
of source-target domains towards text spotting.

1. Language to Language: We take the source domain
as the English language and perform training over it and
adapt it to the Vietnamese and Chinese text domains.

2. Synth to Real: We initialize training on a synthetic
dataset and adapt it to the real text domain. Here we ob-
served that, a potential complex intermediate real dataset
(e.g. MLT 2017) boosts up the domain adaptation process.

3. Scene Text to Document: Several previous works
[20,40] used OCR tokens in order to boost the performance
of Document Layout Analysis. We replace those OCR to-
kens with the extracted information by the text spotting
framework and evaluate it using the same baseline.

In order to formulate the problem of domain adaptation,
Let Ds denote the feature distribution of the source domain,
Ys denote the labels of the source domain distribution over
the input space χ and Dt denote the feature distribution of
the target domain, Yt denote the labels of the target domain
distribution over ξ. The goal of domain adaptation is to
learn a labeling rule f : (Ds, Ys) → (Dt, Yt) that can gen-
eralize well on the target domain using labeled data from
the source domain and potentially some labeled data from
the target domain. We can formulate it as finding a map-
ping function f that minimizes the distribution mismatch
between the source and target domains while ensuring good
generalization on the target domain as defined in eq. 1.

min
f

[Ls(f) + λ · Lt(f)] (1)

where, Ls(f) is the loss on the source domain data, en-
couraging the model to fit the source domain, Lt(f) is a dis-
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Figure 2. Schematic overview of the model Swin-TESTR.

tribution discrepancy or adaptation loss between the source
and target domains, capturing the differences between the
two domains, and λ is a balancing parameter that controls
the trade-off between fitting the source domain and adapt-
ing to the target domain. The goal of solving this eq. 1 is to
learn a model f that can generalize effectively on the target
domain even when the distribution of the source and target
domains is different. The focus is on mitigating the negative
effects of domain shift and improving the transferability of
the learned knowledge from the source to the target domain.

3.2. Model Architecture

The overall architectural pipeline as illustrated in Fig.2
consists of three major components: (1) a visual feature ex-
traction unit based on a Swin-Transformer [29] backbone to
extract multi-scale features; (2) a text spotting unit consist-
ing of a Transformer encoder to encode the image features
into positional object queries and then two Transformer de-
coder units to predict the location of text instances and rec-
ognize the corresponding characters respectively.
Visual Feature Extraction Unit. It is hard to connect re-
mote features with vanilla convolutions since they operate
locally at fixed sizes (e.g., 3×3). Text spotting requires cap-
turing the relationships between different texts since scene
text from the same image has a similar representation with
respect to the text background, style and texture. For our
backbone, we chose to use a small and efficient Swin-
Transformer [29] unit denoted as Swin-tiny for extraction
of more fine-grained image features.
Text Spotting Unit. The text-spotting unit is mainly com-
posed of a transformer encoder and two transformer de-
coders for text detection and recognition following a sim-
ilar schema as proposed in the TESTR framework [54].
Accordingly, we formulate our problem as a set prediction
problem as in DETR [7], to predict a set consisting of point-
character tuples, for a particular image. We formulate it as
X = {(S(i), R(i))}Ki=1. Where i is the index of each in-
stances, S(i) = (s

(i)
1 , ...., s

(i)
M ) is the coordinates of M con-

trol points, and R(i) = (r
(i)
1 , ...., r

(i)
M ) is the M characters

of the text. The text location decoder (TLD) will detect
(predict S(i)) while the text recognition decoder (TRD) will
recognize (predict R(i)) the text in a unified manner.

4. Experiments and Analysis

For the purpose of validation, we have considered some
important benchmark dataset e.g. the ICDAR 2015 [22],
Total-Text [8], CTW1500 [27], VinText [34], Curved Syn-
thText 150K [26], ICDAR 2017 MLT [33], and ReCTS [53]
with different text orientation categorizations. Our ex-
perimental evaluation suggests that the domain adaptation
through intermediate representation advances the state-of-
the-art. Moreover, extensive ablation studies have been per-
formed on Total-Text [8] to show the contribution of some
important elements of Swin-TESTR. For more dataset de-
tails please refer to the supplementary materials. The code
is be publicly available on github.

4.1. Implementation Details

The hyper-parameters for the deformable trans-
former [56] have been kept similar to the original work,
with the number of heads = 8 and using 4 sampling points
for deformable attention. The number of encoder and
decoder layers is initialized to 6.
Data Augmentation. During pre-training, we augment the
data with a random resize with the shorter edge (the length
of the shorter edge is from 480 to 896, and the longest edge
is kept within 1600 (i.e. the length of the shorter edge (ei-
ther width or height) of the input images is randomly resized
to a value between 480 pixels and 896 pixels, and while re-
sizing the shorter edge, it’s ensured that the length of the
longest edge (either width or height) does not exceed 1600
pixels.). This constraint is applied to prevent excessively
large images, which can be computationally expensive to
process. An instance-aware random crop (cropping opera-
tion takes into consideration the objects or instances within
the image) has also been used to make the model more ro-
bust to text variations (e.g. curved, wavy, and so on) and
positions within the images.
Training Details. To compare with the state-of-the-art
methods, shown in Table 3 we pre-trained Swin-TESTR
with synthtext150k [26], MLT 2017 [33] for 4000K iter-
ation with a learning rate of 2 × 10−5 and is decayed at
3000-Kth iteration by a factor of 0.1. We use AdamW [31]
optimizer, with β1 = 0.9, β2 = 0.999 and a weight decay
of 10−5. We use Q = 100 composite queries. The number
of control points is 20 and the maximum text length is set
to 25.

4.2. Domain Adaptation Experiments

Through our Domain Adaptation experiments, we have
demonstrated the Swin-TESTR framework’s ability to
seamlessly transition between synthetic and real domains,
as well as adapt within real domains, all without the need
for re-training or fine-tuning on specific datasets. While
it’s well-known that fine-tuning typically results in supe-
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Table 1. Domain Adaptation on Total-Text and CTW-1500. Method implies pre-trained on the first dataset and then trained on the next
dataset, Mix pre-train means pre-trained on SynthText, ICDAR MLT17, ICDAR15, and Total-Text. Results style: best, second best.

Total-Text CTW-1500

Method Detection End-to-End Detection End-to-End

P R F None Full P R F None Full
Synth-Text 76.79 28.09 41.13 27.54 38.54 50.37 15.25 23.42 12.45 19.25
Synth-Text → ICDAR MLT17 90.02 59.17 82.74 62.97 77.98 38.48 49.00 43.10 28.24 33.84
Synth-Text → ICDAR15 90.24 60.16 72.20 55.76 69.74 36.20 28.53 31.91 19.64 24.3
Synth-Text → ICDAR MLT17 → ICDAR15 90.52 67.71 77.47 58.14 74.48 39.94 31.10 34.97 23.47 27.23
Synth-Text → ICDAR MLT17 → Total-Text 92.01 85.82 88.81 71.33 83.17 39.76 56.85 46.7 28.23 35.46
Synth-Text → ICDAR MLT17 → CTW1500 66.23 36.77 47.28 24.11 41.54 92.61 82.55 87.29 54.88 81.94
Synth-Text → Total-Text 92.19 78.95 85.06 70.51 81.06 43.86 51.04 47.18 29.33 35.63
Synth-Text → CTW1500 62.14 33.29 43.35 21.03 37.3 94.11 77.27 84.86 47.56 80.2
Mix pre-train 93.59 75.2 83.4 67.06 80.51 39.19 36.35 37.71 25.83 29.57
ICDAR MLT17 79.35 55.37 65.23 15.44 36.02 33.46 32.28 32.81 0.077 20.03
ICDAR MLT17 → Synth-Text 77.98 26.56 39.62 21.09 34.45 59.27 26.41 36.54 17.81 30.37
Synth-Text → ReCTS 87.08 36.22 51.16 33.17 0.02 41.89 23.36 30.00 19.11 0.04
Mix pre-train → Fine-tune 90.58 85.46 87.95 75.14 86.0 91.45 85.16 88.19 56.02 82.91

Table 2. Domain Adaptation Experiments on Total-Text and CTW-1500. Method implies pre-trained on the first dataset and then
trained on the next dataset, Mix pre-train means pre-trained on SynthText, ICDAR MLT17, ICDAR15, and Total-Text.

ICDAR 2015 ReCTS

Method Detection End-to-End Detection End-to-End

P R F S W G None P R F 1-NED
Synth-Text 76.81 26.62 39.54 37.19 32.78 26.6 20.02 61.43 12.85 21.25 05.98
Synth-Text → ICDAR MLT17 89.49 84.02 86.67 82.95 75.15 67.69 57.36 78.62 73.78 76.12 14.77
Synth-Text → ICDAR15 89.83 74.82 81.64 77.07 70.91 62.51 52.82 47.35 21.51 29.58 10.24
Synth-Text → ICDAR MLT17 → ICDAR15 93.42 79.25 85.75 81.48 75.88 68.14 57.17 45.34 32.59 37.64 11.01
Synth-Text → ICDAR MLT17 → Total-Text 84.27 77.61 80.8 54.99 72.01 64.81 54.09 60.96 29.17 39.46 14.56
Synth-Text → ICDAR MLT17 → CTW1500 69.84 41.69 52.22 24.78 42.95 35.69 24.78 52.16 30.91 38.81 12.94
Synth-Text → Total-Text 77.27 77.56 77.41 46.9 66.59 58.41 46.95 45.38 32.65 37.98 11.43
Synth-Text → CTW1500 57.93 39.58 47.03 19.22 37.09 30.61 19.22 41.87 23.34 29.98 09.13
Mix pre-train 95.25 76.26 84.71 81.39 75.36 68.04 57.29 73.32 64.46 68.61 13.30
ICDAR MLT17 75.27 70.49 72.8 46.16 33.93 21.68 10.94 65.85 59.49 62.51 06.62
ICDAR MLT17 → Synth-Text 79.68 33.41 47.08 43.42 37.23 30.55 21.76 60.92 19.65 29.72 07.22
Synth-Text → ReCTS 84.48 44.29 58.12 1.54 0.05 0.05 18.19 82.95 72.67 77.47 48.75
Mix pre-train → Fine-tune 95.03 85.70 90.13 86.63 81.67 75.44 66.46 79.24 56.39 66.19 38.12

rior performance compared to generalization, our findings
indicate that the performance gap is remarkably narrow.

In Table 1 and Table 2, we present our results using Syn-
thText as the base, with re-training involving ICDAR 2017
MLT on the top of SynthText pre-trained weights. Tradi-
tionally, it has been common practice to pre-train models
using a combination of synthetic and real data. However, in
Table 1, we delve into the impact of pre-training with indi-
vidual datasets, shedding light on how this approach affects
our model’s performance.

Some valuable insights gleaned from our experimental
analysis include:

MLT dataset gives the maximum performance boost
during pretraining. The existing SOTA approaches do

not highlight the impact of individual datasets during pre-
training. MLT dataset has quite a lot of variability among
the real scene-text benchmarks as demonstrated in Fig. 1
and could be highly beneficial when it comes to domain
adaptation performance as exhibited in both Table 1 and
Table 2. This approach also helps us to outperform Swin-
TextSpotter [19] on TotalText (with fine-tuning) with 88.8%
detection performance as reported. Not only that, the same
pre-training strategy with MLT helps us to get state-of-the-
art results on the ICDAR15 benchmark with a detection per-
formance of 90.13% as shown in Table 3.
Domain Adaptation could be a great alternative to fine-
tuning. Without fine-tuning we achieve really competi-
tive results on both the word-level benchmarks, arbitrary-
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(a) Synth to Real (b) Real-to-Real

Figure 3. Different Adaptation Settings: Illustration of our baseline when combined with intermediate representations. Zoom in for
better visualization.

Table 3. Scene text spotting results on Total-Text and CTW1500 and ICDAR 2015. “None” refers to recognition without any lexicon. The
“Full” lexicon contains all the words in the test set. “S”, “W”, and “G” represents recognition with “Strong”, “Weak”, “Generic”, lexica,
respectively. For the models, which do not perform detection we denote it by N/A.

Total-Text CTW1500 ICDAR 15

Methods Detection End-to-end Detection End-to-end Detection End-to-end

H-mean None Full H-mean None Full H-mean S W G
Text Perceptron [36] 85.2 69.7 78.3 84.6 57.0 N/A 87.5 83.4 79.9 68.0

ABCNet v2 [28] 87.0 70.4 78.1 84.7 57.5 77.2 88.1 82.7 78.5 73.0
MANGO [35] N/A 72.9 83.6 N/A 58.9 78.7 N/A 81.8 78.9 67.3
TESTR [54] 86.90 73.25 83.9 86.3 53.3 79.9 90.0 85.2 79.4 73.6

Swintextspotter [19] 88.0 74.3 84.1 88.0 51.8 77.0 N/A 83.9 77.3 70.5
Abinet++ [13] N/A 79.4 85.4 N/A 61.5 81.2 N/A 86.1 81.9 77.8
Swin-TESTR 87.95 75.14 86.0 88.19 56.02 82.91 90.13 86.63 81.67 75.44

Table 4. Performance evaluation Vintext datasets.

Methods H-mean
ABCNet [26] 54.2

ABCNet + D [34] 57.4
Mask Textspotter v3 [34] 53.4

Mask Textspotter v3 + D [34] 68.5
Swintextspotter [19] 71.1

Swin-TESTR(w/o fine-tune) 21.54
Swin-TESTR 73.20

shaped TotalText, and regular-shaped ICDAR 15. The dif-
ference between the performances for detection and end-to-
end recognition (with and without fine-tuning) in the above
benchmarks is quite marginal. This shows we could indeed
have an efficient and robust model which do not require any
fine-tuning on the corresponding evaluation dataset. Also,
Fig. 3 demonstrates how domain adaptation settings gain a
performance boost under synthetic-to-real when compared
to real-to-real scenario.
More variable text orientations make the dataset a bet-
ter pre-training candidate. As inferred from Fig. 1, the

more the separability in terms of text orientations, corre-
sponds to learning better representations during pretrain-
ing like as in Total-Text. However, even more dense and
complex candidates like MLT or ReCTS as shown can help
the model to learn more richer representations in terms of
text orientation. As the representations of the MLT17 and
ReCTS both are quite dense and diverse in Fig. 1, we need
to analyze further to understand which one provides better
intermediate representations. In order to do that, we observe
the perceptual and structural similarity scores with the FID,
FSIM, and SSIM metrics(See Table 6). Results demonstrate
that MLT17 has the closest perceptual similarity with Total-
Text, which is why they are the most preferred choices for
SOTA pretraining. Structurally with SSIM, Total-Text is
mostly similar to CTW1500, which helps immensely to im-
prove the performance for CTW1500 evaluation.

Can Swin-TESTR representations help to read and ben-
efit in document layout analysis task? As shown in Ta-
ble 5, we compare the reading ability of our Swin-TESTR
model for document layout analysis as we evaluate the per-
formance of detecting several layout regions in documents
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Table 5. Domain Adaptation performance from scene text to document

Text Image Table Math Separator other AP AP@0.5 AP@0.75

Layout Parser [40] 83.1 73.6 95.4 75.6 20.6 39.7 64.7 77.6 71.6
Layout Parser (our OCR) 85.2 64.7 90.2 77.1 11.2 28.1 59.8 68.1 61.7

LayoutLMv3 [20] 70.8 50.1 42.5 46.5 9.6 17.4 40.3 49.4 42.7
LayoutLMv3 (our OCR) 72.1 47.8 43.5 47.2 1.8 20.2 38.7 45.2 40.8

Table 6. The dataset diversion. Results style: best, second best

Source Dataset Target Dataset FID ↓ FSIM ↑ SSIM ↑

MLT2017

Total-Text 0.82 25.23 21.22
CTW1500 6.97 18.12 16.98
ICDAR15 14.78 14.20 13.25
ReCTS 11.23 6.24 5.17
VinText 2.22 21.48 19.07

Total-Text

CTW1500 1.29 24.27 23.32
ICDAR15 9.74 16.67 15.12
ReCTS 12.14 4.37 3.54
VinText 2.43 19.32 19.14

CTW1500
ICDAR15 0.97 23.12 22.87
ReCTS 16.32 2.22 1.46
VinText 0.92 20.27 20.12

ReCTS ICDAR15 20.20 1.05 1.03
VinText 12.32 6.98 4.42

by utilizing the OCR from our model. The performance
demonstrates that it is quite comparable to the original doc-
ument layout analysis [20, 40] OCR and it outperforms the
original model for text, math and table regions. This fur-
ther justifies the information extraction capability of Swin-
TESTR, although it gives a considerably poor performance
on the separator, other and image regions due to its initial-
ization with the text spotting weights which has never seen
those kinds of instances.

4.3. Comparison with State-of-the-art
Table 3 shows the results summary of Swin-TESTR when
compared to other related text spotting approaches. We
outperform the existing state-of-the-art Abinet++ [13]
on both word-level Total-Text [8] and sentence-level
CTW1500 [27] benchmarks in end-to-end recognition task.
On the other hand for scene text detection, we outperform
SwinTextSpotter [19] on CTW1500 while having the
second-best results for Total-Text in terms of F-score. It is
worth mentioning that our model performs the best in the
recall metrics for both benchmarks. Qualitative example
studies have been further shown in Fig. 4.
Regular-shaped Scene Text Spotting. We evaluate our
method on ICDAR15 benchmark [22] and display our
results compared with the state-of-the-art in Table 3. For
Text detection, we achieve a 5% gain in precision over
TESTR [54] while beating the state-of-the-art F-measure
marginally. For the text spotting task, our approach gives

the best result in the most challenging “Strong” type as
in this setting every image contains a lexicon of only
100 words. We outperformed TESTR, Swintspotter, and
Abinet++ by almost 1.5%, 2.5%, and 0.5% respectively. In
Fig 4 we show how our method performs on this dataset in
the third column.
Low-Resource Text Spotting. We have also evaluated
Vintext [34], and ReCTS [53] a low-resource scene text
detection benchmark for Vietnamese and Chinese text to
show the high generalizability of our model. We can see
the results in Table 4 showing that our methods outperform
the state-of-the-art by almost 2%. In Fig 4 we show the
performance of our model in Vintext and ReCTS in the last
column (NOTE: due to the space limitations we shift the
Table of the ReCTS in the supplementary materials (Table
3). It has been observed that Swin-TESTR outperforms the
SOTA approaches with ChineseSynthTexT pre-training).
We further throw light on the following insights after some
intuitive analysis:
Why ABINet++ has better performance in End-to-End
None performance? Since ABINet++ [13] uses linguistic
information for the text spotting framework, they highly
improve in this metric. A similar method MANGO [35]
also follows this trend. Our approach outperforms both
these approaches with a purely visual approach.

4.4. Ablation Studies

To understand the significance of the different components
of the Swin-TESTR framework, we conduct ablation stud-
ies and deduce the following insights.

Table 7. Ablation for different feature extraction backbones.

Methods Detection End-to-end

P R F None
Resnet-50 [17] 88.87 76.47 82.20 60.06

ViT-T [12] 90.17 72.90 80.62 59.40
Swin-T [29] 93.59 75.20 83.40 67.06

Swin Transformer is a strong visual backbone for text
spotting. The Swin-Tiny [29] feature extraction backbone
in the Swin-TESTR framework gives a significant perfor-
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(a) Total-Text [8] (b) CTW 1500 [27]

(c) ICDAR 2015 [22] (d) Vintext [34]

(e) MLT 2017 [33] (f) ReCTS [53]

Figure 4. Some illustration of our method on different datasets and their feature maps from the last three layers of backbone respectively.
Zoom in for better visualization.

mance gain over ViT-Tiny [12] and Resnet-50 [17] back-
bones in both detection and recognition metrics. Almost a
4% change in detection precision and a 1% change in the
detection F-measure over Resnet-50 is observed. We get al-
most a massive 7% improvement in the End-to-End recog-
nition results when it is run on the Total-Text [8] dataset as
shown in Table 7. This justifies that the window-based local
attention computed with Swin-T can be really effective for
special text regions with smaller local boundaries.

Figure 5. Some failure cases of our method on Swin-TESTR.
Zoom in for better visualization.

Semi-Supervised Training Strategy. To assess the data
dependency of Swin-TESTR, we conducted a series of ex-
periments involving different subsets of the dataset. These
subsets consisted of 25%, 50%, 75%, and the entire dataset,
respectively. The objective was to investigate how Swin-
TESTR’s performance varied with the amount of training
data available. Our findings provided compelling evidence
of a strong data dependency exhibited by Swin-TESTR. No-
tably, as we increased the proportion of data used for train-
ing, the model’s performance consistently improved. Train-
ing with 25% and 50% of the dataset resulted in noticeable
enhancements, indicating the reliance on available data.

Table 8. Performance Evaluation with different % of labeled data

% Labels Detection End-to-end

P R F None
25% 89.88 81.8 85.65 65.71
50% 90.56 82.75 86.48 70.38
75% 89.61 85.73 87.63 71.17
All 90.58 85.46 87.95 74.13

5. Conclusion and Future Work

In this work, we have explored a new direction towards
benchmarking of text-spotting models in domain adaptation
settings. Comprehensive experiments on different bench-
marks exhibit how the proposed baseline achieves competi-
tive performance against the SOTA approaches under differ-
ent settings. Moreover, diverse multilingual datasets could
help the model in getting better intermediate representations
during pre-training. This opens further scope for more di-
verse linguistic and visually-rich datasets to be introduced
for aggravating further research.
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