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Abstract

Tracking and classifying fish in optical underwater im-
agery presents several challenges which are encountered
less frequently in terrestrial domains. Video may contain
large schools comprised of many individuals, dynamic natu-
ral backgrounds, highly variable target scales, volatile col-
lection conditions, and non-fish moving confusers including
debris, marine snow, and other organisms. Additionally,
there is a lack of large public datasets for algorithm evalu-
ation available in this domain. The contributions of this pa-
per is three fold. First, we present the FishTrack23 dataset
which provides a large quantity of expert-annotated fish
groundtruth tracks, in imagery and video collected across
a range of different backgrounds, locations, collection con-
ditions, and organizations. Approximately 850k bounding
boxes across 26k tracks are included in the release of the
ensemble, with potential for future growth in later releases.
Second, we evaluate improvements upon baseline object de-
tectors, trackers and classifiers on the dataset. Lastly, we
integrate these methods into web and desktop interfaces to
expedite annotation generation on new datasets.

1. Introduction

An increasing number of optical sensors are being de-
ployed underwater for applications such as robotics, explo-
ration, sustainable fisheries management [1], wind farm in-
spection, and other applications. In most of these domains,
the amount of imagery collected by autonomous underwa-
ter vehicles (AUVs), towed camera rigs, and drop cameras
can be prohibitively expensive to analyze manually, neces-
sitating automated methods to derive insights from data. Si-
multaneously, machine learning techniques are highly de-
pendent on having curated, accurate, and representative
datasets to create operationally-ready solutions. With the
advancement of deep learning for detection [30], instance

segmentation [18] [4], and tracking [12], a high quantity of
annotations is required to train neural networks containing
millions of weights.

While not required for every application, object track-
ing can be used to identify the same individual across a
sequence and, if accurate enough, further improve popu-
lation census counts. Alternatives to tracking for popula-
tion estimation include metrics, such as MaxN [8,9], which
utilize individual frames with a maximum number of tar-
get species within a chosen time window, then further ex-
trapolated over multiple collects. To date, while there have
been a few fish datasets posted online [17,20,33], there has
not been a large release of annotations at the track level.
In this work, we introduce FishTrack, an ensemble dataset
approaching 1 million boxes and frames, with ∼25k indi-
vidual tracks divided into a test and train split. It is our
hope that this dataset can be used to benchmark competing
tracking algorithms, as applied to the underwater domain.
It currently contains data collected by the National Oceanic
and Atmospheric Administration (NOAA), Institut Français
de Recherche pour l’Exploitation de la Mer (Ifremer) and
California Department of Fish and Wildlife (CDFW), but
can also be expanded to include new datasets in future re-
leases. The data is publicly available for download1, along-
side availability via academic torrent2.

1.1. Prior Work

There are a number of existing fish detection datasets
including DeepFish [33], Fish4Knowledge [17], and Fish-
Clef [20]; however, these datasets contain only single frame
labels not linked into tracks, and in the case of [20], low
resolution cameras. This ensemble contains both species
labels, box labels, and object tracks on a variety of higher
definition cameras. It is also a magnitude larger than other
datasets currently available. One exception is the work
of [5], also containing tracks, of which an updated ver-

1https://viame.kitware.com/#/collections
2https://academictorrents.com

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. A high number of overlapping targets

sion is included as part of this ensemble. DeepFish [33]
contains polygonal annotations which the initial release of
this dataset lacks, though adding segmentation masks is a
goal for later releases, for the purpose of both improving
performance and allowing the comparison of instance seg-
mentation techniques. The work of [6] contains single ob-
ject tracking annotations from a moving underwater plat-
form, while the annotations in this archive are all multi-
object. Lastly, WATB benchmark [36] focuses on single-
target tracking as well, across a wider range of animal.

2. Dataset Overview

2.1. Challenges

There are several challenges associated with accurately
tracking fish across a video, some of which are shared by
tracking problems in other domains, while others unique to
underwater processing. The most difficult sequences con-
tain many individuals with varying scales swimming near
each other, leading to a very high level of short- and long-
term occlusions (see Figure 1). Target confusors with sim-
ilar motion signatures include debris (Figure 2), marine
snow, moving sediment when platforms hit the benthic sub-
strate, heterogeneous backgrounds when the cameras move,
as well as other organisms (invertebrates, jellyfish, etc.).

Variable natural backgrounds, bottom substrates, and
water turbidity can lead to certain individuals having very
low contrast or being camouflaged (Figure 3). Due to tur-
bidity, fish may come in and out of visibility, even with-
out any other objects obstructing them (Figure 4). In some
cases, there are virtually no single frame appearance fea-
tures visible for an individual, just a subtle motion signature
(Figure 5). Lastly, there is a wide range of optical sensors
deployed in different cases, of varying resolutions and color
properties (e.g. color vs greyscale, baited vs unbaited, dif-
ferent white balancing capabilities). Many of the sensors
in this release rely on ambient lighting, though others also
utilize artificial lighting attached to the collection platform.

Figure 2. Moving debris and sediment in the water

Figure 3. Low-contrast movers, with and without track display,
across the background substrate which camouflages the targets.

2.2. Statistics and Properties

For consistent evaluation of methods, we divide our re-
lease into a recommended train and test set, containing 23k
and 3.5k tracks respectively. Videos were manually selected
to generate this split, ensuring that both a range of difficul-
ties and multiple locations were included in the test set. Ap-
proximately two hundred species labels are included, pri-
marily from ocean-dwelling fish, along with a smaller quan-
tity of freshwater fish from lakes and rivers. In most cases
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Figure 4. Low contrast detections disappearing into the back-
ground due to lighting and water conditions. The same image is
shown with and without fish and bait tracks drawn on the video.

Figure 5. Very small, low-SNR targets which are usually only
observable from a slight motion signature, identified via moving
the video slider back and forth in the annotation software.

the species of the fish is provided, though in cases where
the contrast is too low to determine the species, alongside a
portion of videos (∼10% of the archive), an ‘unknown fish’
label is used. Data was annotated at either 5hz or 10hz, even
when the native video frame rate was higher. This served as
a balance between annotator time and full video coverage.
Resolution of the video frames span from 1280x720 (720p)
to 1920x1080 (1080p) from an assortment of sensors. Col-
lected data is all of the optical spectrum, though a portion is
black and white instead of full color imagery.

The dataset is available for standard download1, in addi-
tion to an academic torrent2. Tracks are provided both in a
CSV format and a variant of the COCO JSON schema [26].
For those interested in adding data to future releases, an
open-source web-based annotator, alongside an additional
desktop application, is provided. Within these interfaces,
new data can either be annotated from scratch, or alterna-
tively, baseline trackers can be run on new datasets then
corrected for rapid annotation. New annotations can also
be added from external tools in one of the above formats
and submitted for review through the interface for inclusion
in future releases of the ensemble. The full dataset is com-
prised of subsets of data further described in the following
sections.

2.3. Dataset Subcomponents

2.3.1 Ifremer DropCam

The Ifremer DropCam dataset, collected in the Bay of Bis-
cay for the BAITFISH project, is a collaboration amongst
scientists, fishermen, and stakeholders to develop baited
traps for commercially targeted species, particularly gilt-
head seabream (Spondyliosoma catharus). It focuses on
recording and analyzing the feeding behaviors of fish
around different types of traps and tested baits (i.e., cock-
les, mussels, or other baits mixed with biodegradable/water-
soluble plastic materials to lengthen the diffusion). Several
hundreds of 9-hour videos were recorded in the summers
of 2019, 2020, and 2021 using a drop cam system, offering
an extended dataset for this temperate species. GoPro Hero
4, 5 and 7 Black, recording at 24 fps and 1080p resolu-
tion, were used to collect the 9-hour videos, during daytime
hours only (see Figure 6). Three species of fish are anno-
tated in the dataset, with gilthead seabream largely domi-
nating in abundance (see Acknowledgement).

2.3.2 Game of Trawls

The Game of Trawls dataset was also collected in the Bay
of Biscay, but inside a pelagic trawl prototype. Recording
was performed with either a GoPro 4 Black and a Zed Mini
camera using artificial lighting (4 x 2000 lumens), the data
from which can be observed in Figure 7. Five genus/species
of fish are annotated in the dataset. The project strives to
develop intelligent fishing gears using underwater imaging,
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Figure 6. Ifremer DropCam Example Imagery

Figure 7. Example of the Game of Trawls Dataset

acoustic communication, artificial intelligence, and com-
puter vision techniques. It integrates these technologies to
remotely control and automate a selective device in fishing
gears, such as beam or pelagic trawls, to actively detect and
guide the escapement and selection of target species. The
ecological impact of the fishing gears is therefore drastically
reduced as the species are sorted mid-water, maximizing
their probability of survival. While this is the one dataset
which includes a non-natural background, it is mostly solid
or consists of netting. With the one exception of slightly
less range in terms of lateral movement towards and away
from the camera, most movement properties of the fish are
shared with those in natural conditions and the other sets,
with frequent fish occlusions.

2.3.3 SEAMAP Reef Fish Video Survey

The SEAMAP video survey has been conducted annually
since 1992. Traditional fisheries gears (e.g., trawls) often
damaged the habitat and were less effective for reef species
that the U.S. National Marine Fisheries Service is required
to manage. In the late 80’s underwater video became more
accessible and researchers began investigating how to use
the technology to evaluate abundance of marine resources.
The survey is primarily conducted on the high-relief shelf
edge break habitat of the northern Gulf of Mexico from the
U.S.-Mexico international border to the Dry Tortugas, FL.
Data is typically collected at depths ranging from 15-200 m.
The primary deployment gear in the survey has been a sta-
tionary, ground-tended array utilizing various camera tech-
nologies and providing a 360 field-of-view by stitching im-
agery from five cameras and stereo-vision in a single orien-
tation via an attached satellite camera (see Figure 8). In this
dataset, only the view from a single camera was annotated
(not the stitched composite array). All imagery in the sub-
set is black and white, without color information, as shown
in Figures 1 and 9. While species classification is not the
primary goal of the FishTrack compilation, one of the cen-
tral difficulties of this particular subset is the long-tail dis-
tribution of species labels. For example, it contains tens of
thousands of red snapper images (Lutjanus Campechanus)
vs. just a couple of instances of other species of fish, with a
large variance across all 150 species.

Figure 8. SEAMAP Collection Platform

Figure 9. SEAMAP Example Imagery
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2.3.4 CDFW Habitat Monitoring Project

In freshwater environments, highly mobile species are dif-
ficult to sample. Boat electroshocking, gill netting and an-
gling are common methods of surveying lakes and reser-
voirs. These methods allow for detection of abundance, di-
versity, size distribution, and condition factors. However,
they do not provide site nor species specific habitat occu-
pation over time. To address these issues, underwater cam-
era traps were deployed to capture various habitat types in
a southern California reservoir (Lake Jennings). Camera
mounts were constructed from ¼ inch PVC pipe to create
a 1x1 foot square base with a 1x1 foot square vertical top.
GoPro Hero 7 Black action cameras were used to collect
1080p, 30hz video as shown in Figure 10, below.

Figure 10. CDFW Habitat Monitoring Project Example Imagery

Structure is an important component of fish habitat [2].
Juvenile fish often avoid predation by occupying struc-
turally complex areas where predators cannot forage effec-
tively [34] and in doing so increases advantageous forag-
ing areas for juveniles [39]. To promote a balanced fishery
and the longevity of juvenile fish, supplemental fish habi-
tats were installed within selected reservoirs. From 2017 to
2019 670 units were placed of habitat structure at 35 loca-
tions. Two types of supplemental habitat were placed into
the lake; tree limbs and spider blocks (constructed from ir-
rigation tubing anchored via concrete block). Most habitat
was placed between 4-9 m deep to benefit warm water fish
species [27]. Habitat units were placed to create “commu-
nities” that increase localized productivity that contribute to
maintaining the warmwater fisheries while the lake is in its
reduced capacity. Although habitat improvements are com-
mon in fisheries management, little has been documented
outside of electroshocking to determine species habitat
preference. The fish assemblage within the lake consists
of Florida-strain largemouth bass (Micropterus salmoides
floridanus), bluegill (Lepomis machrochirus), redear sun-
fish (Lepomis microlophus), green sunfish (Lepomis cyanel-
lus), black crappie (Pomoxis nigromaculatus), channel cat-
fish (Ictalurus punctatus), blue catfish (Ictalurus furca-
tus), brown bullhead (Ameiurus nebulosus), common carp
(Cyprinus carpio), golden shiner (Notemigonus crysoleu-

cas), inland silverside (Menidia beryllina) threadfin shad
(Dorosoma petenense), and seasonally planted rainbow
trout (Oncorhynchus mykiss).

Monitoring was conducted utilizing four cameras simul-
taneously. One camera was placed at each location for an
average of 70 minutes of filming per location. This was
done once per month for a total of 4 months (February,
March, April and June). At each location, two staff mem-
bers would enter the water and swim down to the speci-
fied depth and location to place the camera mount with a
clear view of the habitat. Once filming was completed, staff
would retrieve the camera and mounts.

2.3.5 Modular Optical Underwater Survey System

The NOAA MOUSS dataset contains videos collected
around the main Hawaiian islands for stock assessment of
the Deep 7 Bottomfish species, the most culturally impor-
tant and highly valued of the deep-water bottomfish species
in Hawaii. The Deep 7 species include Ehu (squirrelfish
snapper, Etelis carbunculus), Gindai (Brigham’s snapper,
Pristipomoides zonatus), Hapu’upu’u (Seale’s grouper, Hy-
porthodus quernus), Kalekale (Von Siebold’s snapper, Pris-
tipomoides sieboldii), Lehi (silverjaw snapper, Aphareus
rutilans), Onaga (longtail snapper, Etelis coruscans), and
’Ōpakapaka (pink snapper, Pristipomoides filamentosus).

The system (Figure 12) is rated to 500 m and can ef-
fectively identify fish at depths of up to 250 m in Hawai-
ian waters using only ambient light. Baited drop cameras
were typically deployed for 15-minute periods. Collected
imagery is mostly static, though a small amount of camera
motion can be observed, due to the elevated camera’s posi-
tion combined with currents. Data has been collected across
multiple years, though only a small subset from 2017 was
annotated and used as a part of this release (Figure 13).

Figure 11. MOUSS Collection Platform
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Figure 12. MOUSS Example Imagery

3. Baseline Algorithms

In training baseline models, we used a combination
of open-source off-the-shelf deep networks available on
GitHub [41], custom implementations of certain algo-
rithms [32], and modified versions of publicly available
methods with several additions [7, 10, 35, 38, 40]. These
methods were then integrated into a single chained process-
ing pipeline for end users [14], where individual compo-
nents could be swapped out for evaluation while keeping
other components the same, e.g. switching a detector or
classifier but maintaining the same tracking algorithm.

For object detection, thus far we have trained only one
detection architecture on the aggregate set, Cascade RCNN
[7]. This model was trained in three separate variations,
however, with each adaption present at both train and infer-
ence. The first (CRCNN), using the network architecture
as defined in [7, 10], only with a custom train harness con-
taining automatic learning rate adjustment and early stop-
ping for when validation loss was not improving. This
model was trained via resizing larger imagery to be at most
800x800 pixels when input to the first layer of network.
A standard RGB input is used to train the detector, where
greyscale imagery is simply duplicated to have the same
values for each color channel in the case of black and white
imagery. Secondly, we consider an adaptation (CRCNN-
MS) that runs the network on multiple scales of the input,
particularly the original image resized to a 800x800 max-
imum resolution, alongside the base image enlarged by a
small margin (1.25x, via linear interpolation). The larger
image is tiled into smaller chips (again 800x800 maximum,
to conserve GPU memory), only without any downsam-
pling, with the goal of improving small object detection. At
inference time, detections near tile boundaries are assigned
lower probabilities than mid-tile entries (reduced probabil-
ity by a factor of 10), a tile step length less than the max-
imum chip size is applied (600), and non-maximum sup-

pression applied to reduce cross-scale and cross-tile du-
plicates. Lastly, we consider an initial (basic) method to
integrate motion features into the network (CRCNN-MT)
wherein two independent motion detectors are combined
with a greyscale version of the input frame, and fed into
the detector (visualized in Figure 13). In this case, the base-
line motion image is derived from the intensity difference
from a 2- and 4-second windowed average of frames. No
hue shifting data augmentations are performed in this vari-
ant, as they would distort the disparate information avail-
able in each channel. Simultaneously, no tiling or window-
ing of the image was performed, though a larger input per-
spective field size was used in the base layer of the network
(1200x800 max size). All object detectors were trained via
merging all fish categories into a single category, and treat-
ing all non-fish categories as background.

Figure 13. Composite image comprised of greyscale version of
the input (green channel) alongside two different types of motion
(red/blue) fed into training.

For tracking methods, we integrated three competing
approaches into the system. The first, a variant of the
method described in [32] (TUT or “Tracking the Untrack-
able”). The second, a multi-target tracking version of
the SiamMask approach [25] (SM-MOT). Lastly, the more
modern ByteTrack tracker [41] (BYTE). The TUT method
combines three different sub-classifiers into a single score
of whether or not a new detection belongs to an existing
track. One for kinematic (motion) prediction, one for ap-
pearance, and one for local interactions. Each classifier and
the resultant fusion model utilize structured recurrent neu-
ral networks on top of base features in order to incorporate
temporal information into the model. In the case of appear-
ance, features from a siamese network are used. For motion,
raw image-plane positions. For interaction, a bin for the
number of detections in an expanded 4x4 grid surrounding
each detection. Our implementation adds a fourth feature
type (bounding box consistency) and can also be run in ei-
ther an offline or online fashion. A Hungarian matrix [24]
combined with thresholding is used to make final linking
decisions. Detections are utilized from one of the aforemen-
tioned integrated detectors. The MOT version of SiamMask
similarly uses the same detections, but only for track initial-
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ization on new targets and the detectors are run at a lower
frame rate than target output frame rate. New boxes which
don’t overlap significantly with existing tracks (IOU=0.5)
and which exceed a fixed detection score (default=0.5) are
used to initialize new instances of the single-object trackers
for a particular object. A secondary pruning step compares
overlaps on top of entire tracks to reduce duplicates. Byte-
Track aims to associate all detections of tracks into tracks,
regardless of threshold, and either builds on top of other
tracking techniques or run as an independent tracker itself.

Final track-level re-classifiers offer the opportunity to
filter either at the fish or species-level, allowing for noise
suppression of entire tracks in order to boost system per-
formance. For this purpose we utilized ResNext101 [40]
(RESNEXT), EfficientNetV2 [35] (ENET2), track av-
eraging of classification values along tracks for each
class (RESNEXT-TA), and averaging plus the addition
of separate high and low resolution classifier networks
(RESNEXT-TA-LS). In the latter, if the extracted image
chip around a fish (with a 1.2x scaling factor) was less
than 7000 square pixels in the native image, it was con-
sidered low resolution. In all models performing species
classification, inputs were converted from RGB to greyscale
to reduce biases across sequences containing color and
those without. Additionally hard negative mining of back-
ground samples were performed via running detectors on
the datasets and utilizing high scoring detections which
didn’t overlap with annotations as a ’background’ class.
Other more simple methods of filtering include excluding
tracks under a fixed length (default=3 states), or those with
minimal image plane movement, i.e. objects that are more
likely stationary background distractors.

4. Evaluation
No single metric is perfect for direct comparison be-

tween methods, though we initially focused on utilizing
MCC (Matthew’s Correleation Coefficient [11]) for clas-
sifiers, mAP (mean average precision) for detectors, and
IDF1 [31] for trackers. MCC has been favored against al-
ternative metrics such as F1 in cases where there are larger
class imbalances, as it provides a more class-conscious
comparison. With respect to IDF1, other metrics such as
multi-object tracking accuracy (MOTA) skew slightly to-
wards measuring detection performance instead of track
continuity [3], the latter of which is often helpful to min-
imize to reduce annotator time correcting tracks. For track-
ers, the same detection approach was used in each method
(CRCNN-MS) and evaluated on the test set. For classifiers,
MCC represents performance of classifying detection states
resulting from the default tracker model (CRCNN-MS +
TUT), in the sense that temporal aspects of each classifier
were used when available (e.g. averaging along the tracks)
but classifiers were still evaluated at the per-frame level. A

background category is introduced for detections which do
not significantly overlap with any truth. This would imply
a slight skew towards longer tracks having a greater affect
on final values. In the case of classifiers, species-level met-
rics were computed, instead of just 1 general ’fish’ category
as in the case of measuring detection and tracking perfor-
mance. Preliminary results are shown in Table 1, though
additional metrics will be posted on our project page1.

Detection Method mAP
CRCNN 0.775
CRCNN-MS 0.812
CRCNN-MT 0.781

Tracking Method IDF1
CRCNN-MS+TUT 56.9
CRCNN-MS+SM-MOT 49.1
CRCNN-MS+BYTE 66.3

Classification Method MCC
RESNEXT 0.86
RESNEXT-TA 0.90
RESNEXT-TA-LS 0.91
ENET2 0.87

Table 1. Preliminary Algorithm Comparisons

5. System and Annotation Tools
The FishTrack compilation is designed to be indepen-

dent of the annotation tooling used to generate annotations.
However, the baseline algorithms have been integrated into
three interfaces within the open-source VIAME toolkit [14],
including its latest user interface DIVE3, shown in Fig-
ure 14. Within VIAME, new annotations can either be
generated from scratch (with standard optimizations such
as track interpolation, annotating at different frame rates,
etc...), or the outputs of baseline models corrected. A
majority of the annotations in this release were generated
using this toolkit (∼90%), most manually, though a por-
tion via correcting and refining baseline algorithm outputs
for expediency (∼25%, but still with final manual verifi-
cation/correction). Additional features of the desktop and
web user interface include: the ability to train novel detec-
tion or classifier models, user-initialized object tracking us-
ing single target trackers [25] to speed up annotation (only
retrained on fish data), automatic box to polygon convert-
ers trained for different problems [22, 23], stereo camera
support, adaptive filtering based on species types, custom
attribute assignment for secondary annotations such as oc-
clusions, alongside other specializations. In addition to the
data itself, an optional baseline scoring package is provided
alongside FishTrack to encourage consistent comparisons
across the test set, supporting generic metrics such as mAP,
MOTA, IDF, and other track continuity scores.

3https://kitware.github.io/dive/
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Figure 14. DIVE Annotation Interface. The interface can be run
either in a web server or from desktop installers. Outside of the
core annotator, file managers and model training utilities allow for
the training of new models by end-users.

6. Discussion and Conclusions

A few trends can be identified in the results presented in
Section 4. For object detectors, our current motion model
offered limited improvement in contrast to the multi-scale
approach, indicating that either handling smaller objects
was more important to improving performance than mo-
tion, or that we need to further improve how motion is in-
tegrated into the approach. There are a number of potential
reasons for this, for instance the networks may be predis-
positioned to use standard image intensity the most, as they
were seeded with models trained on the COCO [26] chal-
lenge. Additionally the loss of color information may have
adversely affected the network. From the CNN architecture
point of view, there are a number of alternative ways mo-
tion could be integrated, including a separate motion fork
that’s fused in later network layers instead of directly at
the input [13], unsupervised pre-training over motion chan-
nels, 3D convolution in base layers of temporally stacked
images, recurrent neural networks, or vision transformer-
based methods [29].

Upon manual observation, many tracking errors are in
the form of track switches in clusters of fish, and breaks
across partial occlusions indicating that initial work needs
to performed for appearance tracking in the domain, and
occlusion aware re-identification descriptors. While the
BYTE method outperformed TUT, it still had a number
of disparate track breaks, indicating that the kalman-based
filter used within the approach might not always be ideal
for sporadic low speed fish maneuvers. Compared to
more widespread tracking challenges, such as MOT17 and
MOT20 [15], our tracking scores were lower, as the diffi-
culty of the problem might suggest. There are a number of
additional avenues for algorithmic improvements now that
the dataset and baseline models have been generated. Some

Figure 15. A near-term goal of future releases of FishTrack is
to populate all tracks with polygons and head and tail positions,
through a combination of automatic processes and manual correc-
tion.

examples include enlarging the number of tracking algo-
rithms we are comparing [16,19,21,28,37], improved tem-
poral handling in classifiers besides naive averaging along
a track, and refining the kinematic components of the track-
ing algorithms. Lastly, there are a couple of paths forward
for improving the utility of the existing datasets. Adding
pixel-level masks alongside head/tail markers will increase
the number of algorithms that can be evaluated and trained
against the dataset, and support related applications such as
automated measurement across tracks (Figure 15). Due to
the size of the dataset, this process would likely occur via
automatic conversion [22] followed by manual review and
correction, in order to minimize annotator effort.

It is our hope that this compilation can spur the develop-
ment and evaluation of detection, classification, and track-
ing algorithms. Additionally, we hope it encourages and
bootstraps the annotation of related data in novel locations.
With the incorporation of additional data, new releases can
be made annually or bi-annually, and used to support both
future coding challenges and model improvements.
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