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Abstract

Multimodal deep sensor fusion has the potential to en-
able autonomous vehicles to visually understand their sur-
rounding environments in all weather conditions. How-
ever, existing deep sensor fusion methods usually employ
convoluted architectures with intermingled multimodal fea-
tures, requiring large coregistered multimodal datasets for
training. In this work, we present an efficient and modu-
lar RGB-X fusion network that can leverage and fuse pre-
trained single-modal models via scene-specific fusion mod-
ules, thereby enabling joint input-adaptive network archi-
tectures to be created using small, coregistered multimodal
datasets. Our experiments demonstrate the superiority of
our method compared to existing works on RGB-thermal
and RGB-gated datasets, performing fusion using only a
small amount of additional parameters. Our code is avail-
able at https://github.com/dsriaditya999/RGBXFusion.

1. Introduction
Autonomous vehicles rely on object detection algorithms

to understand and interact with their surrounding environ-
ments. In order to be robust against different driving condi-
tions, these algorithms operate on data from various sensor
modalities ranging from optical cameras to LiDAR, each
with their own advantages and disadvantages. Because no
single sensor modality is robust to all possible conditions
that may be encountered during driving, multiple sensor
modalities are often used in conjunction via deep sensor
fusion (DSF) to boost performance during normal driving
operations, as well as to ensure segmentation and object de-
tection reliability in adverse weather conditions [9].

Unlike traditional sensor fusion which merges processed
sensor data outputs coming from independent pipelines,
current works in DSF generally require joint end-to-end
training of multi-branch sensor networks on large multi-
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Figure 1. Our multimodal object detection approach combines
RGB and thermal pretrained networks using lightweight, scene-
specific fusion modules. Fusion modules are trained using catego-
rized scene images and are used adaptively during inference with
an auxiliary scene classifier.

modal datasets [1, 3, 16, 25, 39, 40] such as NuScenes [2],
Berkeley Deep Drive [38], and Waymo [28] prior to deploy-
ment in the wild [9]. This means that fusion architectures
must undergo time-consuming and potentially expensive re-
training (in cost and carbon emissions) anytime a sensor
modality is removed or added [24], and that they fail to take
full advantage of state-of-the-art RGB pretrained networks.

In this paper, we propose the use of existing, well-
known attention blocks as lightweight, scene-specific at-
tention modules in order to easily fuse pretrained networks
and to better adapt to common weather disturbances. We
demonstrate our approach (Fig. 1) for object detection ap-
plications, training RGB-thermal and RGB-gated fusion
models on RGB, thermal, and gated imagery collected in
adverse driving conditions such as night, fog, snow, and
rain [1, 7, 19]. We also leverage the attention modules as
a method to visually interpret the contributions of each sen-
sor modality. Compared to prior works, our approach takes
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us another step closer to enabling a modular, drag-and-drop
design for deep sensor fusion that absolves the need for
extensive and expensive retraining while delivering on-par
or better performance. Our contributions are as follows:
1. A lightweight, modular RGB-X fusion network for ob-
ject detection that leverages pretrained single-modality net-
works. 2. A scene-adaptive fusion approach that selectively
uses different fusion modules for different scene/weather
conditions. 3. Extensive experiments on publicly avail-
able RGB-X datasets that demonstrate the superiority of our
approach in terms of detection performance and computa-
tional efficiency.

2. Related Work
Object Detection: Most modern methods for detect-

ing objects utilize convolutional neural networks (CNN) or
transformers. CNN object detectors include two-stage and
single-shot detectors [21, 26, 27, 31]. A two-stage detector
has an additional region proposal step while a single-shot
detector relies only on a feature extractor and a detection
head that directly predicts bounding boxes and classes, re-
sulting in faster inference [43]. To deploy on mobile de-
vices, neural architecture search (NAS) has been used to
develop faster and lighter networks and detection architec-
tures [14, 31]. In this work, we adopt the EfficientDet [31]
detection architecture to target self-driving car applications
that operate on mobile computing devices. Recent large vi-
sion transformer models have achieved state-of-the-art ob-
ject detection results, but are not suitable for real-time use
on robotic platforms [4, 22].

Deep Sensor Fusion: Robotic perception applications,
notably for self-driving cars, rely on DSF to add sensor re-
dundancy and to increase perception robustness and perfor-
mance in both common and adverse operating scenarios.
Current DSF algorithms consume multimodal data using
deep networks and are trained end-to-end, combining dif-
ferent features at various points throughout a network de-
pending on their particular fusion policy [8,9]. Early fusion
policies aggregate raw inputs or features extracted early on
in the network [20,32] while mid-fusion approaches [17,35]
operate on deeper, intermediate representations. Late fusion
methods operate directly on bounding box outputs and can
be used directly with pretrained detectors, but are subject to
the performance of pretrained models [5]. In our work, we
opt for a mid-fusion approach in order to take full advantage
of the different feature modalities at various stages.

Regardless of fusion policies, current DSF algorithms
and datasets for self-driving cars mainly focus on incor-
porating sensors like LiDAR and radar with RGB cam-
eras [2, 12, 28, 35, 38]. In our work, we are interested in
supplementing RGB with 2D image data from thermal and
gated cameras due to the rich semantic information they
provide and their robustness to fog and lighting in driving

scenarios [9].
RGB-Thermal Object Detection: Current RGB-

thermal (RGB-T) object detection methods typically oper-
ate on aligned RGB-thermal image pairs and utilize some
form of attention-based modules to perform mid-fusion
on RGB and thermal image features. [40] utilizes intra-
modality and inter-modality spatial attention modules to
enhance and adaptively fuse intermediate features, respec-
tively, prior to passing downstream to a detection head. Re-
cently, [3] proposed mid-fusion modules that utilize chan-
nel attention to dynamically swap RGB and thermal feature
channels. This helps to maximize feature usefulness before
enhancing local features via parameter-free spatial atten-
tion. Other works including [10, 25, 42] fuse multi-modal
data in a similar fashion but instead leverage transformer-
based attention modules that increase model size and com-
putational cost. [1] does not use thermal images, but sim-
ilarly fuses RGB, gated, and projected LiDAR and radar
data using local entropy masks in lieu of attention. In our
work, we demonstrate that pretrained, single-modality de-
tectors can be fused using simple, scene-specific channel
and spatial attention modules to achieve strong RGB-T ob-
ject detection performance.

3. Approach

We propose a modular RGB-X fusion network for ob-
ject detection that is built upon pretrained single-modal de-
tection architecture and multi-stage convolutional block at-
tention modules (CBAM) [34] for cross-modal feature fu-
sion. This modularity separates the training of single-modal
backbones that contain the majority of network parameters
and the training of a small fusion module, mitigating the
requirement of large-scale multi-modal training data. The
overall architecture for RGB-X fusion is shown in Fig. 2 us-
ing RGB-T as an example. We have an individual Efficient-
Det [31] for each image modality consisting of an Efficient-
Net [30] backbone network, a bidirectional feature pyramid
network (BiFPN) and a detector head. While we choose to
use EfficientDet to demonstrate our approach, we note that
this architecture can be built using any single-modal detec-
tion network.

We employ CBAM to fuse the RGB and thermal fea-
tures output from the respective BiFPN at various stages.
Each CBAM fuses features at the same scale, resulting in
5 CBAM fusion modules. During training, only CBAM
parameters are updated while pretrained object detector
weights are frozen. CBAM modules are trained per scene
category and are selected for use during inference time us-
ing an auxiliary scene classifier. In the rest of this section,
we go over the details of our fusion mechanism and the aux-
iliary scene classifier, before describing the overall scene-
adaptive fusion algorithm for RGB-X object detection.
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Figure 2. Overall framework of our scene-adaptive CBAM model for RGB-X fusion illustrated by RGB-T fusion. RGB and thermal images
are processed by separate EfficientNet backbones, followed by BiFPNs. The features from BiFPNs are used for cross-modal feature fusion
using modules selected by the scene classifier. The detector head utilizes these fused features to obtain the final detection results. The right
side of the figure illustrates the CBAM fusion module, consisting of channel and spatial attention blocks, for feature fusion.

3.1. Convolutional Block Attention Fusion

We use CBAM to fuse RGB and thermal (or gated) CNN
feature maps Frgb and Fx, respectively. We concatenate
features from both modalities across the channel dimension
to create an input feature map F for CBAM:

F = [Frgb;Fx] ∈ RB×C×H×W , (1)

where B denotes the batch size, and C,H,W denote the
channel and spatial dimensions of the feature, respectively.
Following the notation in [34], a CBAM module takes the
feature map F and masks it using channel and spatial atten-
tion operators Mc, Ms such that

F′ = Mc(F)⊗ F, (2)
F′′ = Ms(F

′)⊗ F′, (3)

where ⊗ denotes element-wise multiplication. We further
convolve F′′ with C/2 kernels resulting in C/2 channels
which is the original feature dimension.

Channel attention operator Mc is computed via

Mc(F) = σ(W1W0F
c
avg +W1W0F

c
max), (4)

where σ, W, Fc
avg, Fc

max denotes the sigmoid function,
linear layer weights, the global average and max pooled fea-
tures, respectively. Spatial attention is computed via

Ms(F) = σ(f7×7([Fc
avg;F

c
max])), (5)

where Fc
avg,F

c
max are computed via channel-wise mean

and max operations and f7×7 denotes convolution with a
kernel size of 7.

3.2. Auxiliary Scene Classification

We utilize a simple scene classifier during inference time
to adaptively select the most suitable set of fusion modules
for the current setting, based on the intuition that the fusion
module should attend different modalities under different
scene/weather conditions. The scene classifier consists of
a 2D adaptive average pooling operator followed by a fully
connected layer, taking in the features from the RGB object
detector encoder and outputs probabilities of possible scene
categories. We choose RGB features as the input for scene
classification due to their high variance in different scenes.

3.3. Scene-Specific Fusion

We train different CBAM fusion modules for various
scenes by considering scene-specific dataset splits (Tab. 2).
The number of parameters in different parts of the pro-
posed fusion model is shown in Tab. 1. The total number
of trainable parameters per scene is significantly less than
the total number of parameters, making our approach expe-
ditious. During inference of scene-adaptive fusion, we use
the CBAM fusion modules trained on the scene with the
highest probability, as indicated by the scene classifier.
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Table 1. Parameter statistics of the proposed RGB-X fusion model.

Network Part # Parameters
Backbones (RGB + X) 24.8 M
BiFPNs (RGB + X) 0.12 M
Detection Head 1.60 M
Fusion Modules (one per fusion level) 0.21 M
Total 26.7 M
Total Trainable (per scene) 0.21 M

Table 2. Dataset scene and train/val/test splits in our experiments.

Split
Scene Condition

Clear Fog Snow
Day Night Day Night Day Night

Train 2147 1572 712 438 1365 1455
Val 537 393 438 110 342 364
Test 895 655 297 183 570 607

(a) Seeing Through Fog

Split Scene Condition
Day Night

Train 3476 653
Val — —
Test 702 311

(b) FLIR Aligned [39]

Split Scene Condition
Day Night Overcast Challenge

Train 992 488 746 484
Val 216 108 190 122
Test 323 140 205 156

(c) M3FD [19]

4. Results

4.1. Implementation and Training Details

Our code is written in PyTorch and based on the Effi-
cientDet1 repository. Pretrained RGB detectors on COCO
dataset [18] were taken from the same repository. All other
networks were trained using the Adam optimizer, a batch
size of 8, an initial learning rate of 1e−3 with an expo-
nential learning rate schedule, and a L2 weight decay of
1e−3. The maximum number of epochs is set to 300 and
50 for pretraining single modality networks and fine-tuning
RGB-X fusion networks, respectively. The scene classifier
is trained for 50 epochs while the RGB backbone remains
frozen. Networks were trained using an Nvidia P100 GPU.

4.2. Datasets

We use the following RGB-X datasets to validate our
method and compare against state-of-the-art baselines. The
train/val/test split statistics we use for various datasets and
scene conditions are shown in Tab. 2.

FLIR Aligned: The FLIR Aligned dataset [39] consists
of 5,142 aligned RGB-thermal image pairs from the origi-
nal FLIR ADAS object detection dataset [7]. This derived
dataset consists of bounding box annotations for person, bi-
cycle and car classes. The provided train and test splits con-
tain 4,129 and 1,013 image pairs, respectively. We manu-
ally divided them into day and night scene categories based
on the appearance.

1https://github.com/rwightman/efficientdet-pytorch

(a) Scene-Agnostic CBAM (b) Scene-Adaptive CBAM

Figure 3. Qualitative detection results on M3FD dataset. Zoomed-
in images (yellow rectangle) are shown on the right of the original
images for better visualization.

M3FD: The M3FD object detection dataset consists of
4,200 coregistered, time-synchronized RGB-thermal image
pairs [19]. Bounding box annotations for people, car, bus,
motorcycle, truck and lamp classes are provided. The data
is also split into four scene categories (day, night, overcast,
challenge) in [19] according to environment characteristics.
We use the train/val/test splits provided by [16] due to the
unavailability in the original dataset.

Seeing Through Fog: The Seeing Through Fog (STF)
multispectral object detection dataset [1] consists of syn-
chronized RGB/gated/LiDAR/radar/unaligned thermal data
for a variety of weather conditions. The dataset also
provides bounding box annotations for pedestrian, truck,
car, cyclist, and dontcare classes. For training our scene-
adaptive model, we considered the scene splits in Tab. 2a
due to overlaps in original splits. For evaluation, we follow
the original scene splits including clear, light fog, dense fog,
and snow/rain. We use pairs of aligned 12-bit RGB and 10-
bit gated images throughout this work.

4.3. Performance Evaluation

In this section, we validate the proposed method on the
three datasets for RGB-X object detection. Auxiliary scene
classification is employed to adaptively select suitable fu-
sion modules per input image.

Auxiliary Scene Classification: We train our scene clas-
sifiers using ground truth scene labels provided in Tab. 2 by
minimizing the standard cross-entropy loss for image clas-
sification. Top-1 accuracy of the scene classification is re-
ported in Tab. 3, where the classifier attains high accuracy
for categorizing various scenes in M3FD, FLIR and STF-
Clear (the subset of STF dataset consists of clear-day and
clear-night) datasets. The classifier does not perform as
high for STF-Full, possibly because a large portion of snow
images are also foggy and confused the classifier.

Scene-Adaptive Object Detection: This subsection re-
ports quantitative and qualitative object detection results
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(a) RGB with GT (b) Thermal with GT (c) Agnostic CBAM (d) CAM Visual. (e) Adaptive CBAM (f) CAM Visual.

Figure 4. Qualitative detection results on FLIR Aligned dataset with day examples in the upper rows and night examples in the lower rows.
The input RGB and thermal images are overlaid with ground truth (GT) bounding boxes. For each fusion model, we plot the detected
bounding boxes and Eigen-CAM [23] visualizations of the CBAM fusion module. (d) and (f) are visualizations of (c) and (e), respectively.

Table 3. Top-1 Accuracy (%) of our scene classifier on the test set
of three datasets.

Dataset M3FD FLIR Seeing Through Fog
Clear Full

Accuracy 91.42 96.35 96.01 77.02

of our proposed methods, compared with existing works.
From Tab. 4, our scene-adaptive CBAM model outperforms
existing methods on the M3FD dataset using the mean Av-
erage Precision IoU = 0.5 (mAP@0.5) metric used in [16,
19]. On the full test set, it outperforms EAEFNet [16] by
1.4% and the scene-agnostic CBAM model (in which only
one set of CBAM fusion modules are trained using all train-
ing images) by 1%. A comparison of qualitative detec-
tion results on M3FD dataset between the scene-agnostic
and scene-adaptive models is shown in Fig. 3. From the
zoomed-in area of the figures, we can see that the scene-

Table 4. Object detection results (mAP@0.5) and speed (s) on
M3FD dataset. Due to the difference in scene splits between base-
lines and our models, only results on the full test set are compara-
ble across all methods.

Method Test Scene Inference
Speed (s)Day Night Overcast Challenge Full

RGB only 71.59 91.06 81.55 80.03 77.79 0.016
Thermal only 65.68 89.17 79.66 76.39 74.64 0.016
U2F [36] 73.80 86.8 73.10 97.6 77.5 0.129†

TarDAL [19] 74.50 89.30 74.10 98.30 77.80 0.047†

EAEFNet [16] 78.30 89.50 78.60 97.90 80.10 —
Scene-Agnostic CBAM (ours) 74.53 93.09 84.11 81.06 80.46 0.028
Scene-Adaptive CBAM (ours) 75.92 92.55 85.14 82.72 81.46 0.032

† Includes image fusion and object detection inference time.

adaptive model detects some occluded, blurred objects that
the scene-agnostic model fails to detect. Note that, the
single-modality models used in this experiment are pre-
trained on COCO and further fine-tuned on the M3FD train-
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(a) Clear-Day (b) Clear-Night (c) Fog-Day (d) Fog-Night (e) Snow-Day (f) Snow-Night

Figure 5. Object detection results on STF dataset in various scene conditions. From top to bottom: RGB images, gated images, scene-
agnostic CBAM detections, and scene-adaptive CBAM detections. RGB and gated images are overlaid with ground truth bounding boxes.

Table 5. Object detection results and speed (s) on FLIR Aligned
dataset. AP@0.5 for each object category is reported.

Method Person Bicycle Car mAP@0.5 mAP@0.75 mAP† Inference
Speed (s)

RGB only 60.79 37.25 73.94 57.32 17.6 24.7 0.016
Thermal only 82.86 50.80 82.83 72.16 33.4 37.0 0.016
GAFF [40] 76.60 59.40 85.50 72.9 32.9 37.5 0.061
CFR 3 [39] 74.49 57.77 84.91 72.93 — — 0.050
RetinaNet + MFPT [42] 78.1 65.0 87.3 76.80 — — 0.050
UA-CMDet [29] 83.20 64.30 88.40 78.60 — — —
CFT [25] — — — 78.7 35.5 40.2 0.026
CSAA [3] — — — 79.20 37.4 41.3 0.031
FasterRCNN + MFPT [42] 83.2 67.7 89.0 80.00 — — 0.080
LRAF-Net [10] — — — 80.50 — 42.8 —
Scene-agnostic CBAM (ours) 88.26 77.43 90.68 85.45 43.3 46.8 0.028
Scene-adaptive CBAM (ours) 88.92 78.61 90.94 86.16 43.0 47.1 0.032

† mAP refers to mAP@0.5:0.95

ing set for better performance. We also show some failure
cases on M3FD in Fig. 6 where both fusion models strug-
gled with distant small objects in overcast and night scenes,
and cluttered objects under daylight.

For the FLIR Aligned dataset, we evaluate fusion net-
works built from an RGB network pretrained on COCO
and a thermal network trained on the unaligned FLIR ther-
mal training set. In general, both our scene-agnostic and
scene-adaptive fusion models outperform the baselines by a
large margin (Tab. 5), due to the increase in data the ther-
mal and RGB networks had access to. Some qualitative
detection results on FLIR test images along with attention
visualizations are given in Fig. 4. We observe that scene-
adaptive model tends to detect bicycles more successfully
than scene-agnostic model, especially when the bicycle is
rode by a person (see row 2 and 6 in Fig. 4). The higher
margin of AP@0.5 for bicycle in Tab. 5 also aligns with this
observation. In order to exam the effects of scene-adaptive
CBAM, we visualize the CBAM using class activation map
(CAM) [23] where the spatial attention is shown by a heat

(a) RGB-GT (b) Thermal-GT (c) Agnostic CBAM(d) Adaptive CBAM

Figure 6. Example of failure cases on M3FD dataset. Both models
struggled with distant small objects in night and overcast images
and cluttered objects in day images.

map. From the visualization, we can see there is generally
no difference between scene-agnostic CBAM and scene-
adaptive CBAM for day images. However, the spatial atten-
tion in scene-adaptive CBAM attend more on small areas.

We visualize the channel attention of the scene-specific
fusion module by plotting the normalized attention weights
of thermal (black) and RGB (crimson) features for various
scenes in Fig. 7. Higher value implies CBAM attends more
on that feature channel. We find that scene-agnostic CBAM
exhibits similar channel attention patterns across all scenes,
while scene-adaptive CBAM shows tailored attention pat-
terns per scene. Moreover, we observe attention weight in-
creases on thermal features compared with RGB features
from day to overcast to night images, likely as RGB images
contain less information under lower illumination.

For the STF dataset, we first follow [1] and train our fu-
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Table 6. Quantitative detection AP on the clear scene and unseen scenes for car following the KITTI evaluation [13] used in [1]. Models
are all trained on the training set of the clear scene. Our scene-adaptive CBAM model is trained on clear-day and clear-night splits.

Method
Test Scene

Clear Light Fog Dense Fog Snow/Rain
easy mod. hard easy mod. hard easy mod. hard easy mod. hard

RGB only 90.14 87.56 80.87 91.19 88.47 82.02 90.43 85.59 80.79 89.44 82.87 77.81
Gated only 88.51 80.09 74.65 87.98 78.92 73.59 80.52 75.86 70.42 80.58 75.59 69.52
Fusion SSD [1] 87.73 78.02 69.49 88.33 78.65 76.54 74.07 68.46 63.23 85.49 75.28 67.48
Deep Fusion [1] 90.07 80.31 77.82 90.60 81.08 79.63 86.77 77.28 73.93 89.25 79.09 70.51
Deep Entropy Fusion [1] 89.84 85.57 79.46 90.54 87.99 84.90 87.68 81.49 76.69 88.99 83.71 77.85
Scene-agnostic CBAM (ours) 90.33 88.53 81.16 91.43 89.05 84.94 90.75 88.66 82.07 89.99 86.57 79.79
Scene-adaptive CBAM (ours) 90.29 88.53 81.07 91.13 89.13 84.20 90.77 88.37 81.68 89.96 86.30 79.74

Table 7. Quantitative detection AP on all scenes for pedestrian, truck, car, and cyclist following the KITTI evaluation [13] used in [1].
Models are trained on the training set of all scenes. The last column shows mAP@0.5 for all objects on all test images.

Method
Test Scene

Clear Light Fog Dense Fog Snow/Rain Full
easy mod. hard easy mod. hard easy mod. hard easy mod. hard easy mod. hard all

RGB only 87.05 83.88 82.93 89.68 88.88 87.99 88.61 88.28 87.90 88.92 86.01 83.73 84.22 79.94 76.30 80.85
Gated only 81.69 76.19 74.57 85.63 84.01 80.19 83.40 82.00 79.88 84.03 79.54 77.38 80.70 73.58 70.13 75.15
Scene-agnostic CBAM (ours) 88.65 85.12 84.25 90.30 89.68 88.95 89.78 89.18 88.82 89.25 87.01 85.77 86.11 81.84 78.52 83.01
Scene-adaptive CBAM (ours) 88.60 85.24 84.22 90.53 89.39 88.89 89.79 89.33 89.03 89.37 87.46 85.69 86.13 81.85 78.48 83.11

(a) M3FD-Day (b) M3FD-Overc. (c) M3FD-Night (d) M3FD-Chall.

(e) FLIR-Day (f) FLIR-Night (g) FLIR-Full (h) M3FD-Full

Figure 7. Normalized attention weights for 256 feature channels
in CBAM fusion module trained on different scenes. Thermal
channels are in black, and RGB channels in crimson. The fusion
module trained on the entire dataset (g-h) exhibits similar attention
patterns across all scene/weather conditions, whereas from day to
overcast to night, the scene-specific fusion module (a-f) attends
increasingly on thermal features.

sion modules only on clear-day and clear-night RGB-gated
image pairs for fair comparison. As shown in Tab. 6, the
scene-agnostic and scene-adaptive CBAM models achieve
similar performance on different scenes and outperform the
baseline models using even more modalities than RGB-
gated images [1]. When training on all scenes in Tab. 7,
we can see that our scene-adaptive model outperforms the
scene-agnostic model by 0.1% on mAP@0.5. Single-
modality models used for this experiment are also further
trained on STF training data, due to their use of 10 and 12
bit gated and RGB imagery. Fig. 5 presents a few examples
of the qualitative detection results in various scenes.

Computational Benchmarks: We compiled our CBAM

Table 8. Ablation study on different fusion modules. Object de-
tection results (mAP@0.5) on M3FD dataset are reported.

Fusion Module Train/Search
Scene

Test Scene
Day Night Overcast Challenge Full

RGB only

Full

71.59 91.06 81.55 80.03 77.79
Thermal only 65.68 89.17 79.66 76.39 74.63
ECAAttn (Tr) 73.38 93.39 83.55 82.28 80.17
ECAAttn (RH) 72.25 92.83 81.98 80.53 78.81
ECAAttn (TH) 74.02 93.38 84.25 81.48 80.32
ShuffleAttn (Tr) 73.47 94.56 84.61 80.91 80.17
ShuffleAttn (RH) 72.78 92.63 83.61 80.37 79.28
ShuffleAttn (TH) 74.07 93.21 84.19 81.43 80.34
CBAM (Tr) 73.11 93.01 83.11 80.17 79.33
CBAM (RH) 72.85 92.46 83.54 80.73 79.21
CBAM (TH) 74.53 93.09 84.11 81.06 80.46

ECAAttn
(TH)

Day 74.75 94.51 84.16 81.09 80.65
Night 72.00 91.84 83.56 79.74 78.74

Overcast 71.96 92.67 84.44 80.09 79.18
Challenge 73.25 93.11 83.78 81.88 80.14

ShuffleAttn
(TH)

Day 75.28 94.64 84.72 81.85 81.04
Night 71.79 92.21 83.30 78.95 78.21

Overcast 73.57 92.42 84.32 80.95 80.00
Challenge 72.42 92.90 84.21 81.27 79.62

CBAM
(TH)

Day 76.04 94.07 84.89 80.78 81.07
Night 72.68 92.55 83.20 78.77 78.62

Overcast 73.30 92.53 85.15 80.67 79.94
Challenge 74.10 94.28 82.70 82.61 80.93

DSF-NAS

Day 75.68 94.25 84.35 81.85 81.03
Night 72.32 91.94 83.85 80.51 79.12

Overcast 73.15 93.46 83.79 80.60 79.52
Challenge 72.90 93.44 83.29 81.59 79.81

Full 74.68 92.65 83.90 81.67 80.56

Tr – Trained head TH – Thermal head RH – RGB head

fusion models using TorchInductor and conducted bench-
marks on a Titan RTX. The inference time for the scene-
adaptive fusion model is 0.032 seconds per individual im-
age pair, while the scene-agnostic variant clocks in at 0.028
seconds. These times are comparable with other recent mul-
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Table 9. Object detection results (mAP@0.5) of our scene-
adaptive CBAM model trained using decreasing amounts of data.

Dataset % of Original Training Set
100% 50% 25% 1%

FLIR 86.16 85.70 84.60 75.72
M3FD 81.46 78.34 77.65 41.94

STF-Clear 80.65 80.73 80.10 73.76
STF-Full 83.11 83.06 82.99 75.64

timodal object detection approaches (Tab. 4, 5) and meet the
speed requirements for real-time autonomous driving appli-
cations.

4.4. Ablation Studies

Fusion Module Design: We conduct an ablation study
using the M3FD dataset to explore the effects of different
fusion modules and architectures (Tab. 8). We compare our
CBAM-based RGB-X fusion approach against two other
attention modules: ECAAttn [6, 33] and ShuffleAttn [41].
Furthermore, we also compare against custom fusion mod-
ules (DSF-NAS) designed purposely for this fusion task via
neural architecture search. In particular, we use Bilevel
Multimodal Neural Architecture Search [37] (BM-NAS) to
automate this design as its gradient-based optimization ap-
proach makes it faster compared to other NAS methods
based on reinforcement learning and genetic algorithms.
Specifically, we allow BM-NAS to optimize over sequential
applications of two operations chosen from sum, spatial at-
tention, channel attentions from CBAM and ECAAttn, and
2D convolution of concatenated features.

We first train for fusion using scene-agnostic CBAM,
ECAAttn, and ShuffleAttn modules along with either a
trainable, frozen thermal, or frozen RGB detector head. We
find that training with a frozen detector head initialized with
thermal weights performs the best in Tab. 8, possibly due to
the lower variance of thermal data across different scenes.
We repeat the study under the scene-adaptive regime, with
the previous three attention modules and frozen thermal de-
tection heads, along with DSF-NAS fusion modules. Over-
all, we find similar performance between DSF-NAS and
CBAM-based fusion networks. However, CBAM fusion
models exhibit better performance on scene-specific data
verifying its use in our proposed modular framework.

Effect of Training Dataset Size on Fusion: As our pro-
posed fusion method looks to fuse pretrained networks with
lightweight fusion modules, the fusion process should still
be effective and be able to generalize even when done with
limited amounts of training data. To determine the extent of
this, we perform fusion using 100%, 50%, 25%, and 1% of
the original datasets in Tab. 9. Overall, we find that com-
petitive results can still be achieved using only 25% of the

Table 10. Object detection results (mAP@0.5) of our scene-
adaptive CBAM model on unknown scenes in M3FD dataset.

Test Excluded Training Scene
Day Night Overcast Challenge

Excluded Scene 73.17 93.50 84.18 80.74
All Scenes 80.48 81.30 81.27 80.98

original training data results, with the exception of M3FD
which decays quicker than the rest.

Performance on Unknown Scenes: As our proposed
method requires scenes to be known during training, we
further investigate the performance of our method on un-
known/unexpected scenes. In this experiment, our scene-
specific CBAM fusion modules and scene classifiers are
trained with one scene data excluded, and tested on that
excluded scene and all test images. We observed minor
regression in overall performance (row 2 in Tab. 10) com-
pared with our scene-adaptive model trained on all scenes
(81.46 in Tab. 4), which is expected as there is no fusion
module trained specifically for that unknown scene. How-
ever, the overall mAP@0.5 in all cases is still higher than
scene-agnostic model trained on all scenes (80.46 in Tab. 4).
Specifically, in the case of night or overcast scene excluded,
the object detection performance on the unknown scene
(row 1 in Tab. 10) is higher than the scene-agnostic model.
This is possibly because our scene classifier tends to select a
fusion module trained on a similar scene, for instance, clas-
sifying night image as overcast and vice versa.

5. Limitations and Future Work
Our method requires aligned RGB-X data, which is

not always available. The scene-specific modules require
scenes to be known during training, and the approach is not
expected to work as well in unexpected weather conditions.
Future work looks to incorporate unsupervised [11] and on-
line learning [15] to adapt to unexpected conditions.

6. Conclusion
We presented a novel RGB-X object detection model

that improves autonomous vehicle perception in different
weather and lighting conditions. We showed that our
method is superior compared to existing works on two
RGB-T and one RGB-gated object detection benchmarks,
demonstrating the robustness of our scene-adaptive models
and generalizability to different modalities. Furthermore,
our use of lightweight fusion modules brings us closer to
achieving a more modular design for deep sensor fusion.
For future work, we look to train and leverage larger pre-
trained models for both RGB and thermal modalities via
multitask learning and to incorporate into an online learn-
ing framework to adapt to unexpected weather patterns.
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