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Abstract

Video Object Segmentation (VOS) is crucial for several
applications, from video editing to video data generation.
Training a VOS model requires an abundance of manu-
ally labeled training videos. The de-facto traditional way
of annotating objects requires humans to draw detailed
segmentation masks on the target objects at each video
frame. This annotation process, however, is tedious and
time-consuming. To reduce this annotation cost, in this pa-
per, we propose EVA-VOS, a human-in-the-loop annotation
framework for video object segmentation. Unlike the tradi-
tional approach, we introduce an agent that predicts iter-
atively both which frame (“What”) to annotate and which
annotation type (“How”) to use. Then, the annotator anno-
tates only the selected frame that is used to update a VOS
module, leading to significant gains in annotation time. We
conduct experiments on the MOSE and the DAVIS datasets
and we show that: (a) EVA-VOS leads to masks with ac-
curacy close to the human agreement 3.5× faster than the
standard way of annotating videos; (b) our frame selection
achieves state-of-the-art performance; (c) EVA-VOS yields
significant performance gains in terms of annotation time
compared to all other methods and baselines.

1. Introduction
Video object segmentation (VOS) is the task of segment-

ing and tracking objects of interest in videos [5,7,14–16,29,
30, 43, 49, 69, 70, 82–84]. VOS is a central task for video
understanding and enables various applications including
video editing [3,32], video synthesis [75,76], and video de-
composition [85]. Training a VOS model requires videos in
which the target objects have been manually annotated with
object segmentation masks [5,7,14–16,43,49,83,84]. This
process is expensive and labor-intensive as it requires hu-
mans to manually draw a mask at each video frame, which
requires 80 seconds per object per frame [42]. For instance,
annotating only one object in a short 10-second video would

Figure 1. EVA-VOS. In contrast to the traditional way of anno-
tating objects in videos, we propose to use a human-in-the-loop
approach. We introduce an agent that selects the frame that should
be annotated (“What to annotate?”) and the annotation type (e.g.
clicks, object-mask) (“How to annotate?”). Then, we use the weak
annotation to predict a mask for the frame and we propagate it to
predict masks for the whole video.

require more than 5 hours. The resource-intensive manual
annotation bottlenecks the feasibility of building large-scale
VOS datasets, indispensable for training effective models.
In turn, this restricts the democratization of annotated video
data, thus limiting advances in video understanding.

To address these limitations, the research community has
turned to two solutions. First, sparsely annotating large
VOS datasets [20,22,59,77,80], and secondly, accelerating
the annotation process. Regarding the former, the standard
way of annotating a VOS dataset [20, 22, 57–59, 66, 77, 80]
starts by selecting a subset of frames via a uniform sampling
(usually 1-5 fps). Then, these frames are manually anno-
tated by humans who draw a mask at each selected frame.
In some datasets, such as VISOR and UVO [20, 77], the
sparsely annotated masks are interpolated to predict dense
annotation for all frames. However, relying solely on such
sparsely annotated large-scale datasets may introduce limi-
tations, especially for applications that demand fine-grained
and accurate segmentations throughout the entire video.

For the latter, i.e., to minimize the annotation cost, the
common strategy is interactive segmentation using faster
annotation types, such as clicks, scribbles, or bounding
boxes. Even though many approaches were proposed for
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still images [1,6,10,40,44,53,55] that led to the creation of a
larger image segmentation dataset [6], there is limited work
in the video domain [8, 11, 13, 19]. The most relevant to
our work is Caelles et al. [8] who propose a human-in-the-
loop interactive VOS. The annotator provides a scribble at
a frame and a VOS method predicts a mask for each frame.
Then, the annotator iteratively selects the frame with the
worst segmentation quality and provides scribbles. How-
ever, despite its innovation, this approach has two main lim-
itations. First, it is unrealistic as the annotator can not iden-
tify the worst frame, and even if they could, it would require
significant time [28], which defeats the purpose of mini-
mizing the cost. Second, in challenging frames, low-cost
annotation types (e.g. scribbles or clicks) are insufficient to
create a good mask, and drawing the full mask is required.

To overcome these limitations, we propose EVA-VOS,
a human-in-the-loop pipeline (Fig. 1). Our contribution is
the introduction of an agent that predicts iteratively which
frame should be annotated (frame selection:“What to anno-
tate?”) and which annotation type should be used (annota-
tion selection:“How to annotate?”). Our agent is trained to
maximize the annotation impact on the segmentation qual-
ity while minimizing the annotation cost.

For the frame selection, we train a model to regress
the quality of a segmentation mask. Then, we select the
frame that has the maximum distance from its closest pre-
annotated frame. For the annotation selection, we train a
deep RL policy that selects an annotation type (action) by
maximizing the fraction of the segmentation quality im-
provement over the annotation time of the annotation type
(reward). Our pipeline iterates between (a) selecting the
next frame for annotation and the optimal annotation type,
(b) asking annotators to improve a segmentation mask, and
(c) predicting new object masks for all frames (Fig. 2).

To evaluate our method, we conduct experiments on the
MOSE [22] and DAVIS [58] datasets. We first evaluate each
stage of the agent (frame and annotation selection) indepen-
dently and then we show the final results of our full pipeline.
Our results show that (a) EVA-VOS leads to masks with ac-
curacy close to the human agreement 3.5× faster than the
standard way of annotating a VOS dataset; (b) Our frame
selection method achieves state-of-the-art performance; (c)
EVA-VOS yields significant performance gains in terms of
annotation time compared to other strong baselines.

2. Related Work
Semi-Supervised Video Object Segmentation (VOS).
VOS methods aim to segment a specific object throughout a
video given the object mask in the first frame. Existing VOS
methods can be divided into three categories: online fine-
tuning [7, 46, 47, 71, 78, 82], propagation-based [2, 12, 17,
30,31,56,69,83,84] and matching based [14,16,29,43,49,
65, 70, 79] methods. Online fine-tuning methods overfit on

the object mask of the first video frame. Propagation-based
methods use the mask of the previous frame to generate the
mask of the current frame. This involves progressively pass-
ing on features of the target object from one frame to the
next. Matching-based algorithms store features of the tar-
get object and classify each pixel of the current frame us-
ing similarities in the feature space. Current state-of-the art
methods: STCN [16], XMem [14], AOT [83], DeAOT [84]
achieve remarkable results in the traditional VOS bench-
marks (e.g. DAVIS [57,58] and YouTube-VOS [80]). How-
ever, their performance drops notably on new challenging
benchmarks: VISOR [20], MOSE [22] and VOST [66].
This is because these datasets contain severe occlusions,
disappearance/reappearance of objects, and object transfor-
mations. Instead, our method identifies where these meth-
ods fail and provides extra annotations to refine the results.
Interactive VOS (iVOS) tackles the human-in-the-loop
setting, where the annotator provides quick input (e.g.
scribbles [8, 11], points [13, 72], text [25, 34, 64]) to a
VOS method instead of detailed object masks as in semi-
supervised VOS. At each annotation round, the annotator
selects the frame with the worst segmentation quality and
provides a scribble to refine the output mask. The scrib-
ble serves as the input to the VOS method, and the pro-
cess continues iteratively. ScribbleBox [11] builds on top
of iVOS by including a prior step where a tracker [73] pre-
dicts a bounding box for each frame and then the annotator
inspects and refines them. We argue that iVOS is unrealistic
as the annotator is unable to find the worst frame and even
if they did, they would need a significant amount of time,
which defeats the purpose of iVOS.
VOS dataset annotation. Manually annotating object
masks is time-consuming. Annotating a VOS dataset re-
quires per frame object masks, linking object masks over
time, and quality assurance [20, 22, 57–59, 66, 77, 80]. As
a result, VOS datasets have fewer annotations than image
datasets. For instance, the densely annotated DAVIS 17 [58]
VOS dataset contains only 13K annotations, vs the 500K
annotations in COCO [42]. Youtube-VOS [80] scaled up
the number of annotations to 197K by annotating every 5
frames. UVO [77] consists of 200K annotations at 1 fps for
training and 30 fps for validation. The sparsely annotated
masks are interpolated using STM [49] to cover all frames,
and annotators correct the interpolated masks. Similarly,
VISOR [20] has 271k annotations. Finally, OVIS [59] and
MOSE [22] are annotated every 5 frames without any inter-
polation resulting in 296K and 431K masks, respectively.
These datasets have a similar time-consuming annotation
pipeline, constituting a bottleneck. Instead, our method im-
proves this by selecting both the frame and the annotation
type (box, clicks, mask) and significantly reduces the cost.
Segment Anything (SAM) was recently introduced [37]
and it immediately inspired many new methods [18, 39, 45,
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48,61,74,81]. SAM was trained on SA-1B [37] which is the
largest dataset for image segmentation as it consists of over
1 billion masks. Track Anything (TAM) [81] uses SAM and
XMem [14] to do interactive VOS with clicks. In particu-
lar, the initial mask at the target object is generated from
SAM using click prompts and XMem tracks the target ob-
ject throughout the video. If the quality of the output masks
from XMem is low, either SAM is prompted with clicks that
are extracted from the affinities of XMem or the annotator
prompts SAM to refine the segmentation mask that will be
propagated by XMem. Our method differs from TAM be-
cause it finds both the frame and the annotation type that
SAM will be prompted with to maximize the performance
of the propagation while minimizing the annotation cost.
Frame Selection in VOS. The goal of this task is to find a
set of frames for the annotator to annotate that maximizes
the overall video segmentation quality. BubbleNets [24]
predict only the initial frame instead of always using the first
frame, which is the standard in the field. GIS-RAmap [28],
XMem++ [5] and IVOS-W [86] iteratively predict a frame
at each annotation round of the iVOS setting. Both GIS-
RAmap [28] and XMem++ [5] are VOS models that first
segment frames and then predict the next frame for an-
notation. GIS-RAmap [28] uses the pixel-wise scores of
each frame, while XMem++ [5] uses the key features of
each frame and all previously annotated frames to predict
the next frame. IVOS-W [86] uses reinforcement learning
(RL) and is also the most closely related work to ours, as
it is not based on any VOS model. Both IVOS-W and our
method regress the quality of each frame to predict the next
one. However, IVOS-W assumes explicit information about
the target object because it extracts the region of the image
around it [5]. Instead, our method uses the entire frame and
regresses its quality. In Sec. 5.1, we modify IVOS-W [86]
to work for different annotation types other than scribbles,
and compare it to our method. To the best of our knowl-
edge, our method (EVA-VOS) is the first in the VOS field
that predicts the annotation type for each frame.

3. Method
In this work, we propose EVA-VOS, a human-in-the-

loop pipeline to annotate videos with segmentation masks
using as little annotation as possible (Fig. 2). EVA-VOS
consists of four stages: (a) Mask Propagation (Sec. 3.1),
(b) Frame Selection (Sec. 3.2), (c) Annotation Selection
(Sec. 3.3), (d) Annotation and Mask Prediction (Sec. 3.4).

More formally, at each iteration t, the mask propagation
receives the input video V = {f1, f2, . . . , fN} of N frames
and a set K containing all previously annotated frames to
predict a new set of masks Mt = {M t

1,M
t
2, . . . ,M

t
N}

for all frames. Then, the frame selection determines the
frame f∗ that should be annotated given V and Mt. The
annotation selection determines the most suitable annota-

tion type af∗ from a pool of candidate annotation types
A = {a1, a2, . . . , aL}. For annotation types, we consider
both the case where the annotator manually draws a com-
plete mask (‘mask drawing’), and the case of weak anno-
tations, where the human intervention is much faster, e.g.,
‘corrective clicks’, ‘bounding boxes’, ‘scribbles’, etc. Fi-
nally, the annotator annotates f∗ with af∗ , and the annota-
tion is passed on to the mask prediction, where a new mask
M t+1

f∗
is predicted and added to K. Note that at t = 0, the

annotator selects the target object and draws a mask on f1.

3.1. Mask propagation

At this step, we predict a set of masks Mt for all frames
using all annotated masks from the set K. For this, we use a
pre-trained VOS [15] module which takes as input the video
V and the masks K and predicts a mask Mi for each frame.

3.2. Frame selection

Given a video V , the predicted masks of each frame Mt,
and the set K containing all previously annotated frames,
our aim is to find the frame to be annotated f∗ at itera-
tion t in order to have the highest improvement of the video
segmentation quality at iteration t + 1. Annotating f∗ will
enhance the segmentation quality of the video V via mask
propagation, and as a result, we want to select the frame that
will have the most impact on the mask propagation stage
(Sec. 3.1). Intuitively, we want to select frames that maxi-
mize the diversity among the selected ones and at the same
time have low segmentation quality so that we maximize
the impact on the final performance. We first train a model
to assess the segmentation quality of each frame, and then
we use the learned frame representations to select f∗.
Architecture. To assess the mask quality of each frame,
we introduce the Quality Network (QNet) which takes in a
frame fi and its corresponding mask M t

i and performs mask
quality classification into B classes, where 0 represents the
worst quality and B−1 the best. The value of B determines
the number of bins in which the segmentation quality is di-
vided. QNet consists of two image encoders [27] in parallel
branches, one for the frame fi and one for the mask M t

i .
The embeddings from each encoder are then concatenated
and fed into a linear classifier with B outputs.
Training. We train QNet in a supervised way with a cross-
entropy loss on a simulated training set. To generate a re-
alistic training set, we simulate a number of iterations with
EVA-VOS (Fig. 2); at each iteration, we compute the seg-
mentation quality of each frame and assign a quality label
to each mask M t

i . We simulate our training set with ran-
dom and oracle selections at each iteration as follows: A
random selection chooses f∗ randomly, excluding frames
in K, while an oracle selection chooses the frame f∗ with
the worst segmentation quality.
Selected frame f∗. We select f∗ as the one with the max-
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Figure 2. EVA-VOS. At each iteration t, Mask propagation (Sec. 3.1) receives a video V of N frames and a set K containing all previously
annotated frames to predict a new set of masks Mt = {M t

1,M
t
2, . . . ,M

t
N} for all frames. Subsequently, the Frame selection (Sec. 3.2)

stage selects the frame f∗ that should be annotated given the video V , the predicted masks Mt and all previously annotated frames K. The
Annotation selection (Sec. 3.3) takes as input the selected frame f∗ and its corresponding mask to predict the most suitable annotation type
af∗ . Finally, in the Human annotation and mask prediction (Sec. 3.4) stage, the annotator interacts with f∗ using the annotation type af∗

and A2M (in this work, we use SAM [37]) predicts the new mask M t+1
f∗

of the frame f∗, which is then added to the set K.

imum distance in the feature space from its closest previ-
ously annotated frame. To this end, we first extract embed-
dings Ei from QNet. Next, we compute the L2 distance be-
tween each embedding of a frame j in K and all frames of
V . Finally, we assign the minimum distance to each embed-
ding i, and we select the frame with the maximum distance.
This process can be mathematically described as:

f∗ = argmax
i∈{1,2...N}

{
min

j∈{1,2...t}
{d(Ei, Ej)}

}
(1)

3.3. Annotation selection

Given a pool of annotation types A = {a1, a2, . . . , aL},
the goal of this step is to choose the most suitable type af∗
for f∗. Following [9, 38], we formulate this problem as a
Markov Decision Process and train a model using reinforce-
ment learning (RL). The model observes the image of f∗
and its predicted mask M t

f∗
and predicts the most suitable

annotation type af∗ . This annotation type is then utilized
by the annotator to generate a new mask M t+1

f∗
for f∗. The

annotation is performed iteratively (e.g. 3 clicks are per-
formed one by one). Therefore, we denote the annotation
iteration as g. The input M t

f∗
has an initial segmentation

quality SQ1 (g = 1).
Environment. To give our model the ability to play the
annotation selection game, the environment consists of the
Human annotation and mask prediction stage (Sec. 3.4).
The state of the environment consists of f∗ and its mask.
Each step g yields SQg using the input action, which repre-
sents an annotation type from A.

Reward. The reward function reflects the trade-off between
the quality of M t

f∗
and the cost of the annotation type. Each

a ∈ A requires a different annotation cost denoted by θa.
The reward at g is formulated by comparing SQ before and
after annotation, divided by the total cost tc at g which is
the sum of the costs θa of all annotation types until g:

r =
SQg+1 − SQg

tc
. (2)

This equation captures the improvement of SQ, normalized
by the total cost, and our model is trained to maximize this
improvement while minimizing the annotation cost.
Architecture. The model has two image encoders [27, 37]
in parallel branches, one for the frame fi and one for the
mask M t

f∗
. The extracted embeddings from each encoder

are then concatenated and fed into two linear layers. The
first layer has L outputs (possible annotation types), while
the second layer has one output for the RL value.
Training. Following its success in several other tasks [50,
52], we use Proximal Policy Optimization [63] (PPO) to
train our model. At training, we use the simulated masks
described in Sec. 3.2. At each iteration t, we use f∗ and its
corresponding mask M t

f∗
to play the annotation selection

game and train our agent. We perform multiple environ-
ment steps and the process terminates when we reach the
maximum steps or the type of drawing a mask is selected.
Video Ranking. When EVA-VOS is used to annotate a col-
lection of videos, similar to active learning, we use the pre-
dicted value pv of our RL agent to estimate the improve-
ment of each annotation at each video. This allows us to
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Figure 3. Experimental results on MOSE. We report the J&F accuracy as a function of annotation time in hours. (a) The effect of the
frame selection stage (for fair comparison we use the same annotation type for all approaches). (b) The effect of the annotation selection
stage using the same frame selection (oracle) for all approaches. (c) The results of our full pipeline.

rank the videos and perform more annotation iterations in
videos where the RL value is higher. To this end, for each
iteration t, we first calculate the score s of each video and
perform an annotation iteration to the video with the maxi-
mum s. The score for each video is defined as a function of
pv, the annotation iteration t, and annotation cost θa:

s =
pv · γt

θa
+ c , (3)

where γ < 1 and it allows us to prioritize videos with less
annotations (smaller t). γ is necessary since our agent has
no information about the number of annotations of each
video. Finally, c scales the score s into a positive range.

3.4. Human annotation and mask prediction

Here, the annotator interacts with the selected f∗ to cre-
ate the input annotation type af∗ . When af∗ is ‘mask draw-
ing’, the annotator draws a detailed M t+1

f∗
. Otherwise, i.e.

clicks, this step predicts a new mask M t+1
f∗

using a pre-
trained annotation-to-mask (A2M) model [37]. A2M pre-
dicts M t+1

f∗
based on the input weak annotation.

A2M predicts the new mask M t+1
f∗

of the selected frame
f∗ with the input annotation type af∗ . There are various
models that predict a segmentation mask given a weak an-
notation type [4, 6, 33, 37, 41]. Since our method is inde-
pendent of this model, we opt for the recently introduced
Segment Anything Model (SAM) [37]. SAM can take as
input the following annotation types: A = {clicks (positive
and negative), bounding boxes, masks, and text} to predict
M t+1

f∗
. When af∗ is anything but a number of clicks, SAM

takes as input the annotation type af∗ and the current mask
M t

f∗
of f∗ to predict M t+1

f∗
. Otherwise, when af∗ is a num-

ber of clicks, SAM predicts M t+1
f∗

recursively. In particu-
lar, at each iteration, SAM takes as input one click and its
own previous mask prediction to output a new segmenta-
tion mask. This process is repeated as many times as the

number of clicks and the final prediction is the new mask
M t+1

f∗
of the selected frame f∗. It should be noted that this

process is initialized with M t
f∗

which is predicted by the
VOS [15] module and SAM can only take as input a mask
from its own previous prediction. Therefore, we simulate
clicks extracted by M t

f∗
and input them into SAM to gener-

ate a similar mask to the predicted by the VOS module.

4. Experimental setting

Datasets. DAVIS 17 contains 150 train and 30 validation
videos. It provides high-quality annotated masks for each
frame. MOSE inherits videos from OVIS [59] and it is one
of the largest available VOS dataset with 2149 videos, out of
which only 1507 come with available ground-truth masks.
In our work, to model long-range interactions we only con-
sider videos with 15 to 104 frames leading to MOSE-long
dataset with 1166 videos. We split it into 800 training, 150
validation, and 216 test videos.

In our experiments, EVA-VOS is pre-trained on Ima-
geNet [21] and trained on MOSE-long, unless stated oth-
erwise. Following the trend of zero-shot testing [60], to ex-
amine cross-dataset generalization, we evaluate EVA-VOS
on the MOSE-long test set and on the DAVIS validation set.
Metrics. To measure the segmentation quality of the pre-
dicted masks, we use both the intersection-over-union J
and the contour accuracy F [57]. For this, we follow [8]
and use the curve of J&F vs time. We also report the an-
notation time in hours at J&F = {0.75, 0.80, 0.85} (dif-
ferent levels of human annotation agreement for instance
segmentation [6, 26, 36, 87]), and the average J&F up to
200 hours of annotation time. We consider 80 sec for draw-
ing an object mask [42] and 1.5 sec for each click plus 1 sec
of overhead for the annotator to locate the object [4, 6, 54].
Implementation details. QNet consists of two ResNet-
18 [27]. We train it using SGD with lr=10−5, batch size
64, 30 epochs, with B=20. The frame branch of the RL
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Figure 4. Ablation study on the number of training videos in the
frame selection stage.

agent is the image encoder of SAM [37] while the mask
branch is a ResNet-18 [27]. The RL agent is trained using
Adam [35] and lr=10−5 for 50K iterations. For the video
ranking, we estimate the hyper-parameters of Eq. (3) in the
MOSE-long validation set. For all experiments, we use γ to
0.7 and c to −0.04. For the VOS module, we use a modi-
fied version of MiVOS [15], where we discard the original
interaction module [15] (as it only works with scribbles) and
replace the propagation module with STCN [16] for faster
propagation. To better examine the effect of frame and an-
notation selections, we pre-train this modified version only
on YouTubeVOS [80] and not on DAVIS [58]. In our exper-
iments, we consider two annotation types: ‘mask drawing’
and ‘corrective clicks’ [6]. For ‘corrective clicks’, the anno-
tator clicks 3 times to improve the given segmentation and
determines the number of positive and negative clicks. For
simplicity, for the remainder of this work, we denote ‘mask
drawing’ as Mask and ‘corrective clicks’ as Clicks.
Human annotator simulation. In this work, we only per-
form experiments by simulating the human intervention.
Given M t

f∗
and the ground-truth mask of f∗ mg , we sim-

ulate positive and negative clicks to prompt SAM [37] sim-
ilar to how a human would. Initially, we identify all false-
negative and false-positive pixels between mg and M t

f∗
.

Then, we determine the connected components of each er-
ror region, and the center of the largest component is se-
lected as the click location, whether positive or negative.

5. Experimental results
In all cases, we use figures for evaluation and show the

segmentation quality (J&F) of the predicted masks for all
methods in relation to the annotation time on a log axis. We
first evaluate the frame selection and annotation selection
(Sec. 5.2) individually and show the results in Fig. 3(a) and
(b), respectively. Then, we analyze the results of our full
pipeline (Sec. 5.3) and report results in Fig. 3(c). Finally,
in Sec. 5.4 we examine the generalization ability of EVA-
VOS, by performing a cross-dataset examination (Fig. 6).

Table 1. Comparison of annotation methods on MOSE [22].
We report the human annotation time in hours for each method to
reach different J&F values (0.75, 0.8, 0.85). We also report the
average J&F up to 200 hours. At the top of the table, we re-
port the oracle performance of oracle approaches for frame and/or
annotation selection. Bold is the overall best-performing model,
while Underline is the best-performing frame selection approach
that uses Mask-only as an annotation type.

Annotation Frame Hours at J&F =
Avg J&F ↑

Selection Selection 0.75 0.80 0.85 ↓

Mask-only Oracle⋆ 34.42 45.62 67.64 0.83
Clicks-only Oracle⋆ 14.05 15.65 22.85 0.87
Oracle⋆ Oracle⋆ 12.96 14.13 17.63 0.92

Mask-only IVOS-W [86] 39.37 94.33 192.26 0.78
Mask-only IVOS-W++ 40.53 59.81 113.93 0.79
Mask-only L2-ResNet50 40.55 59.92 109.42 0.80
Mask-only Random 40.55 69.60 107.40 0.80
Mask-only EVA-VOS 32.55 53.26 80.71 0.82

Random Random 24.08 36.10 65.84 0.85
Clicks-only Random 15.32 21.22 35.10 0.86
EVA-VOS EVA-VOS 14.24 17.25 29.80 0.87

5.1. Frame selection evaluation

Here, we evaluate the frame selection (Sec. 3.2) and dis-
play the results in Fig. 3(a). For a fair comparison among
all methods, we use only Mask as an annotation type.
Compared methods. We compare our method to a ran-
dom baseline that selects frames randomly. We also com-
pare EVA-VOS to IVOS-W [86], which is the state-of-the-
art frame selection method for VOS. Note that IVOS-W
was originally designed to work only under a scribble-based
iVOS scenario. Therefore, we modify it here to work for
different annotation types, and for a fair comparison, we
train this modified version in MOSE-long. Furthermore,
we implement and compare to it the IVOS-W++ in which
we replace the RNN with a transformer [68] and the dou-
ble Q-Learning [67] with PPO [63]. We also use powerful
image encoders [23,27,51] pre-trained for image classifica-
tion [62] to compute embeddings in Eq. (1) and we compare
the results with QNet. We implement an oracle approach
that selects the frame with the worst J&F and an upper
bound approach that selects the frame that has the highest
impact in the propagation stage after annotating it.
Comparison to the state of the art. Fig. 3(a) shows that
most methods have a similar performance close to Random.
Instead, EVA-VOS consistently stands out and yields higher
J&F and in some cases almost identical to Oracle. We now
analyze the results of all methods:
Random is shown as the green line in Fig. 3(a). We run all
random baselines 15 times and report the average result.
EVA-VOS (Ours) is shown as the black line in Fig. 3(a).
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Figure 5. We compare EVA-VOS with Mask-only which resembles the traditional VOS annotation pipeline in one video from MOSE [22].
The row (a) shows the ground-truth masks on 5 frames of a video with six annotated objects (purple, green, yellow, red, blue, and cyan).
The rows (b) and (c) show the predicted masks of EVA-VOS and Mask-only after 10 minutes of annotation while the rows (d) and (e) after
20 minutes. We observe that EVA-VOS consistently outperforms Mask-only at different annotation budgets. For example, in the second
frame, EVA-VOS correctly segments the blue and cyan objects at 20 minutes, while Mask-only fails. Similarly, in the third and fourth
frames, EVA-VOS correctly segments the red object at 10 minutes, while Mask-only fails even after 20 minutes.

Given the same annotation time, our framework consis-
tently outperforms Random. For instance, we achieve
J&F=0.85 at 80.7 hours, 26.7 hours faster than Random.
State-of-the-art frame selection (IVOS-W [86]) performs
significantly worse than our method. We observe that our
method reaches J&F of 0.85 2.3× faster than IVOS-W.
IVOS-W++ performs better than IVOS-W but our method
achieves J&F of 0.85 1.4× faster.
L2-Encoders yield approximately the same performance as
random. This shows that our task-specific QNet learns
much better representations and outperforms all pre-trained
encoders that have even 28× more parameters.
Oracle is shown as the red dashed line in Fig. 3(a). Interest-
ingly, we observe that for low budgets (up to 40 hours), our
method yields almost identical J&F .
Upper Bound consistently outperforms the oracle indicating
that the frame with the worst J&F is not the most impact-
ful one. Interestingly, the upper bound is only 2.1× faster
than our method at J&F = 0.85.

Ablation study on the number of training videos. QNet
is trained on MOSE-long (800 videos). We retrain it us-
ing 100, 200, and 400 videos to examine the impact of the
training data. In Fig. 4, we compare all of our frame selec-

tion models with the random method as it performs approx-
imately the same as the L2-Encoders and IVOS-W++. We
observe that all of our models outperform Random and even
with a reduced training dataset, i.e, 400 videos, QNet show-
cases J&F that closely aligns with the initial model trained
with a larger dataset of 800 videos. This reveals the robust-
ness and effectiveness of our training process (Sec. 3.2).

5.2. Annotation selection evaluation

Here, we evaluate only our annotation selection stage.
For a fair comparison, we set the frame selection for all ap-
proaches to oracle, i.e., the frame with the worst J&F is se-
lected to be annotated at each iteration (results in Fig. 3(b)).
Compared methods. To examine the design choice of RL
(Sec. 3.3), we implement two alternatives for annotation se-
lection. The first one is AT-Improv (Annotation Type Im-
provement), which is trained to regress the improvement of
each available annotation type. It selects the annotation type
that maximizes Eq. (2). The second one is AT-CLF (An-
notation Type Classification), and it is trained to classify
each f∗ into an annotation type. Furthermore, we compare
against approaches that consider only one annotation type
(Clicks or Mask). We also compare against a random base-
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Figure 6. EVA-VOS results on DAVIS 17. We report the J&F
accuracy as a function of annotation time in hours at log scale.

line that selects af∗ randomly, and an oracle approach that
selects af∗ using Eq.(2), i.e., it selects the af∗ that yields the
maximum quality improvement normalized by the annota-
tion cost. Moreover, the oracle approach ranks the videos
using Eq. (2), while our approach uses Eq. (3).
Comparison to annotation selection methods. In
Fig. 3(b) we observe the impact of annotation selection
since Clicks-only plateaus at lower J&F while Mask-only
is significantly slower. Furthermore, methods that do not
select the annotation type wisely, perform worse than Mask-
only. We now analyze the results of all methods:
EVA-VOS (Ours) is shown as the black line in Fig. 3(b). It
reaches J&F = 0.85 in only 29.8 hours.
AT-Improv, AT-CLF (blue and brown lines in Fig. 3(b)) per-
form significantly worse than EVA-VOS which is trained
using RL instead of supervised learning.
Random is shown as the green line in Fig. 3(b). Even
though it reaches J&F = 0.9 at a similar time as our
method, it performs significantly worse at lower budgets
(e.g., we yield J&F = 0.85 1.9× faster). Mask-only per-
forms consistently worse than random at all budgets, indi-
cating that the traditional way of manually drawing object
mask [57, 59, 80] is not a good approach.
Clicks-only performs on par with our method at low anno-
tation budgets. However, it plateaus quickly at lower J&F
values and it is not able to reach J&F = 0.9, whereas our
method can yield higher J&F at larger budgets.
Oracle (red dashed line in Fig. 3(b)) performs on par with
our method at low budgets. Oracle performs better in very
high annotation budgets that reach high J&F above 0.85.

5.3. Frame and Annotation selection evaluation

We evaluate here our full pipeline, showing the effect of
both selection modules (Fig. 3(c) and Tab. 1).
Compared methods. Similar to Sec. 5.2, we compare our
method to Clicks-only and Masks-only which select a ran-
dom frame and consider only one annotation type. Addi-
tionally, we compare against Oracle, which uses both oracle

frame selection and annotation selection.
Comparison of annotation methods. In Fig. 3(c), we ex-
amine the impact of both selection modules. Overall, we
observe that a large amount of annotation time can be saved
when annotating with more than one type and wisely select-
ing frames. We now present the results of all methods:
EVA-VOS (Ours) is shown as the black line in Fig. 3(c) and
yield a J&F of 0.85 in 29.8 hours (also, last row in Tab. 1).
Oracle uses both oracle frame selection and annotation
selection and shows the trade-off that EVA-VOS could
achieve with an ideal oracle training scenario.
Mask-Only resembles the traditional way of annotating
videos with segmentation masks [20, 22, 59, 77, 80]. Our
method performs significantly better and achieves a 3.5×
speed up compared to Mask-only at J&F = 0.85 (Tab. 1).
Click-Only performs similarly to EVA-VOS at 50 hours but
has a worse trade-off for either lower or higher budgets.

Tab. 1 compares EVA-VOS with the best frame and an-
notation selection approaches presented in Fig. 3. We quan-
tify performance using the human annotation time in hours
for each method to reach different J&F values and the av-
erage J&F up to 200 hours. Similar to Fig. 3, we ob-
serve that EVA-VOS overall outperforms all approaches,
thus supporting our hypothesis that selecting frames and an-
notation type leads to both performance and time gains.
Qualitative results. In Fig. 5, we qualitatively compare
EVA-VOS to Mask-only. Specifically, we illustrate the pre-
dicted masks of each method at different annotation bud-
gets. We observe that EVA-VOS predicts more accurate
masks faster than Mask-only.

5.4. EVA-VOS generalization ability

We now evaluate EVA-VOS in DAVIS 17 [58] without
training any of our components on it. Similar to Sec. 5.3, we
compare our method to Clicks-only and Masks-only. Fig. 6
illustrates the results, where we observe that EVA-VOS per-
forms on par with Clicks-only and significantly outperforms
Masks-only in lower annotation budgets.

6. Conclusions
We presented an alternative and efficient way to annotate

objects in videos with segmentation masks. Our EVA-VOS
framework shows significant gains in terms of annotation
time (3.5× speed up) compared to the traditional, manual
way of annotating objects in videos. Our experiments, es-
pecially on the challenging MOSE dataset, show that our
framework reduces the total human annotation time while
leading to high-quality segmentation masks for the videos.
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