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Figure 1. System Overview. Starting with real and fake videos from several generators, our approach selects fixed-window
samples, extracts and aligns faces, applies deep and phase-based motion magnification to aligned faces, combines magnified

outputs, trains a 3D CNN, and aggregates predictions into video predictions to classify if a video is real or its generator.

Abstract

With the proliferation of deep generative models, deep-
fakes are improving in quality and quantity everyday. How-
ever, there are subtle authenticity signals in pristine videos,
not replicated by current generative models. We contrast
the movement in deepfakes and authentic videos by mo-
tion magnification towards building a generalized deepfake
source detector. The sub-muscular motion in faces has dif-
ferent interpretations per different generative models, which
is reflected in their generative residue. Our approach ex-
ploits the difference between real motion and the amplified
generative artifacts, by combining deep and traditional mo-
tion magnification, to detect whether a video is fake and
its source generator if so. Evaluating our approach on two
multi-source datasets, we obtain 97.77% and 94.03% for
video source detection. Our approach performs at least
4.08% better than the prior deepfake source detector and
other complex architectures. We also analyze magnifica-

tion amount, phase extraction window, backbone network,
sample counts, and sample lengths. Finally, we report our
results on skin tones and genders to assess the model bias.

1. Introduction
Since the introduction of Generative Adversarial Net-

works [35] in 2014, deep generative models have been in-
vading the domain of face generation with increasingly pho-
torealistic results. With the advances in transformer and
attention-based modules, the control over and the inter-
pretability of such generators are also escalating. The re-
cent Zelensky video [3] spreading misinformation about the
Russian invasion, or the debate about Bruce Willis’ deep-
fake rights [1] are just the tip of the iceberg for a desolate
digital future where we cannot trust anything we see on-
line [24]. On the other hand, deepfake detection initiatives
finally start to take action towards unifying the efforts [5,9].
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Deepfake detection research has been historically inves-
tigated from two main perspectives: Blind detectors [11,
23, 27, 57, 75] that try to learn the artifacts of fakery by
training on several datasets, and prior-based detectors [12,
20, 30, 40, 55, 85] where the authenticity is somehow rep-
resented by hidden signals in pristine videos. Blind detec-
tors have the disadvantages of (1) overfitting to the datasets
they are trained on and (2) being prone to adversarial at-
tacks [19, 72]. Thus, our approach follows the second
perspective towards more generalizable deepfake detectors,
where we define the hidden watermark of being human as
sub-muscular motion in this paper.

Moreover, prior approaches in deepfake domain solve a
simpler task of “is this video real or fake?”. Our approach
performs source generator detection, which is classifying
videos into real or several generative model classes used for
creating the video. Source detection has been a much less
investigated problem than deepfake detection as it goes be-
yond binary classification. We anticipate that the aforemen-
tioned motion cues are representative enough to provide not
only the video authenticity, but also the generative model
behind a fake video. Although from a research perspective
it would make sense to pose this problem only as “which
generator created this video?”, that question requires prior
knowledge about the video being fake. Posing it as “is it
fake, and if so, which generator created it?” defines a more
relevant and practical source detector in a general setting,
enabling any video to be processed without assumptions.

To reveal the real motion and its projection in genera-
tive spaces of different models, we use motion magnifica-
tion. In pristine videos, magnified motion follows the reg-
ular human motion with an emphasis, so action units and
other muscles are still correlated temporally and spatially.
In fake videos, we observe that the generative noise over-
powers the sub-muscular motion. Thus, when motion is
magnified, generative noise gets amplified instead of the
regular human motion patterns. Our approach

• combines traditional and deep motion representations
to analyze motion patterns in real and fake videos from
different generative sources,

• proposes a novel, robust, and generalizable deepfake
source detector based on motion cues, and

• improves both source detection and fake detection,
evaluated on two datasets.

Following the motion magnification literature, we com-
bine traditional phase-based magnification [82] which cap-
tures small temporal motions and deep magnification [66]
which is more robust towards mixed motion patterns. In
addition to this dual representation, we employ a 3D CNN
variation to train a robust source detector which learns hu-
man motion (and its extents) in real videos and amplified

generative noise in deepfakes from different source genera-
tors. Overview of our approach is depicted in Fig. 1.

We evaluate our deepfake source detector on Face-
Forensics++ [71] and FakeAVCeleb [47] datasets, obtaining
97.77% and 94.03% source detection accuracies, among 6
and 4 classes, respectively. We compare our source detec-
tion results against both complex blind detectors and prior-
based detectors, overperforming the best one by 4.08%. To
understand the importance of motion magnification compo-
nents, we conduct several experiments with different mag-
nification levels, simple to complex backbones, different
phase-windows, varying sample counts, and for all skin
tones. Finally we discuss how it can be deployed in cur-
rent deepfake detection workflows.

2. Related Work
Deepfake Generation. Deepfakes have been increas-

ing in quality and quantity since the introduction of Gen-
erative Adversarial Networks (GANs) [35]. These ap-
proaches can (1) generate novel faces from learned dis-
tributions [22, 29, 45, 46] mostly in image domain, (2)
transfer or modify facial expressions, speech, identity, or
mouth movements from a reference motion onto the target
faces [68, 78], and (3) swap entire faces from source to tar-
get media [4, 7, 53, 77]. Our approach can classify videos
created with any of these deepfake generation techniques
and our test datasets indeed include generators from each
category [4, 6, 7, 43, 53, 68, 77, 79]. To put these genera-
tors in context; [6,79] are graphics based approaches using
blendshapes for face transfer, [77] utilizes deep neural tex-
tures, [7, 53] are GAN models for face swapping, [68] is a
GAN based lip-sync model, [4] is an autoencoder for face
swapping, and [43] uses separately trained encoder, synthe-
sis, and vocoder networks for audio generation.

Deepfake Detection. As deepfakes’ malevolence starts
to impact the society [2, 8, 24], the arms race between gen-
eration and detection intensifies [61, 80]. Initial deepfake
detection research focus on finding pixel-level artifacts di-
rectly from data, proposing “blind” detectors [11,14,17,36,
37,48,54,64,76,89,90,90]. These approaches tend to learn
specific artifacts of the datasets they are trained on, prevent-
ing their generalization and domain-transfer to any unseen
video. In addition, they are more prone to be affected by
adversarial attacks [19, 72].

In contrast, novel deepfake detectors aim to extract
unique authenticity signals from real videos as watermarks
of humans, such as headpose [85], blinks [55], heart-
beats [20], eye and gaze properties [30], lighting [74],
breathing [50], and other natural, physical, or biological
characteristics. While motion-based deepfake detectors
emerged recently [34, 60], neither of them can do source
detection, uses a dual motion representation, performs cross
dataset validation, and [34] is only tested on a small dataset.
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The consistency and correlation of these interpretable sig-
nals are broken for fake videos, so these approaches provide
better generalizability as long as the GAN does not exploit
the specific prior as a loss.

Source Detection. As previously defined, source detec-
tion tackles the task of identifying the generative model that
outputs a synthetic data, only by inspecting the sample. The
hidden artifacts that enable source detection, called the gen-
erative residue of GAN fingerprints, have first been identi-
fied in the patterns of CNN generated images [83]. Since
then, several approaches investigate these artifacts in syn-
thetic images, with frequency analysis on 4 GANs [86],
in image patterns [59], using latent representations [31],
to infer model hyperparameters [15], for camera attribu-
tions [13], by sensor noise [58], or to poison GANs [87].
Unfortunately, previous work in this domain investigates
images that are fully synthetic, which is not aligned with
real world scenarios. Furthermore, most of them assumes
that the entire image is AI-generated, in contrast to more
traditional deepfakes where only the portion of the image is
swapped, sync’ed, or manipulated.

Relatively less work is proposed for videos and only one
work proposes source detection on deepfakes [21]. The
authors classify deepfakes by their source generator, pro-
jecting their generative residue into a biological signal do-
main. Our approach tackles the same problem of deepfake
source detection, however we propose that motion artifacts
are more representative (for pristine videos) and more frag-
ile (for fake videos) in the context of generative fingerprints.

Deepfake Datasets. Several video datasets have been
proposed for deepfake detection research, we categorize
these as single-, multi-, and unknown-source datasets. Im-
age datasets are skipped as there is no motion in single
images. Single-source deepfake datasets are created by
easy-access GANs and include UADFV [85], Deepfake-
TIMIT [52], FaceForensics [70], Celeb-DF [56], and Deep-
erForensics [44]. These datasets are crucial for deepfake de-
tection, but not for source detection. Multi-source datasets
are FaceForensics++ [71] with 5 generators and 6K videos,
DFDC [32] with several unknown and undocumented gen-
erators and over 100K videos, and FakeAVCeleb [47] with 3
generators and 20K videos. Considering the diversity, con-
sistency, and labeling of the datasets; we select FaceForen-
sics++ (FF) and FakeAVCeleb (FAVC) datasets for training,
testing, and evaluation of our approach. Finally, unknown-
source deepfake datasets (i.e., in-the-wild deepfakes) have
also been proposed [20, 69], which are important for evalu-
ating and understanding model capabilities in an in-the-wild
setting. We use the in-the-wild dataset of [20] for cross-
model evaluation of our deepfake detector. This validation
both acts as a cross-model experiment and as a supporting
generalization claim towards unknown methods.

3. Understanding Motion in Deepfakes
Motivated by finding authentic signals in real videos, we

follow the discussion of [20] about biological signals. Pho-
toplethysmography (PPG) and Ballistocardiography (BCD)
signals are proposed for understanding heart beats of deep-
fakes, discussing that BCD extraction would require still
faces, else the motion of veins would be overpowered by
the actual movement. Inspired by this claim, we would like
to understand the motion consistency in deepfakes.

Motion magnification is a mature research area with nu-
merous application-specific solutions [26, 51, 65, 84], re-

Figure 2. Motion in Deepfakes. Each row contains 3 consecutive
frames from 2 videos, where motion is magnified by traditional
(even rows) or deep (odd rows) methods. Real magnified frames
(top 2) are followed by magnified fake frames from 5 generators.
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cently extending to deep-learning-based counterparts [66].
Motion magnification has also been explored for deep-
fake detection recently, obtaining negative results with Eu-
ler video magnification [28], without explicit motion mag-
nification [60], and using a two stage CNN+LSTM ap-
proach [33]. Unlike prior work focusing on deepfake detec-
tion, we claim that, motion discrepancy is useful not only
for deepfake detection, but also for source detection, which
is a different and harder problem as the next step in the bat-
tle against deepfakes. We also claim that, although deep
motion magnification learns and models motion robustly, it
may not accurately capture smaller motions requiring tem-
poral filters as mentioned in [66], thus, phase-based mag-
nification is also needed for the submuscular motion to be
differentiated in real videos. The dual-motion representa-
tion strengthens our approach both theoretically and practi-
cally (as in Sec. 5.4).

To analyze deepfake motions, we first apply traditional
and deep motion magnification to real and fake pairs of
videos. Fig. 2 depicts the magnified motion, which is re-
flected as blurs in deep-motion-magnified frames, are more
structural and local in real videos, whereas fake videos
experience significant deformations. For the phase-based
magnification, we note that the motion is reflected as an
accumulation, rather than a blur. This visual observation
can also be backed up by comparing the PSNR and SSIM
of each real and fake motion-magnified frame. Moreover,
different generators (named in the header column) experi-

Figure 3. Quantifying Motion. Real and 5 corresponding fake
images, their deep (row 2) and phase-based (row 5) motion mag-
nifications, differences (rows 3, 6), PSNR, and spectra (row 4).

ence this motion dissimilarly as seen in rows 4-13, which
supports our main hypothesis of “motion magnification on
deepfakes reveal their source generative model, because the
generative noise is amplified as opposed to real motion.”.

In Fig. 3, image, frequency, and noise differences of deep
and phase-based motion magnified versions of a real image
and its five fake variations are shown. We observe that the
structure, noise, and distribution of motion differ consis-
tently in all. Real videos have submuscular motion on the
cheek, Deepfake videos show asymmetric magnification,
and videos that are generated with Neural Textures [77] and
Face Swap [6] have magnified boundaries. These ampli-
fied differences are also visible in the spectra of magnified
motion and serve as the base for our source detector.

4. Motion-based Source Detection
As depicted in Fig. 1, our approach consists of frame

sampling, face processing, motion magnification, neural
network training, and prediction aggregation.

4.1. Frame Selection

To amplify and understand the motion of the generative
residue in deepfake videos, we select k sample intervals of
ω frames from each video for training. These samples are
selected uniformly from every (100/k)th percentile of the
video. The intuition behind this sampling is that videos in
these datasets have varying lengths and we do not want any
video to dominate the training process. After these fixed
samples are gathered, we run face detection on every frame
and align faces to extract consistent signals. Each aligned
face is fit to a w × h image to unify the representation.
Also, the existence of large actor motions in fake videos
may overpower the motion of the residuals, so we tend to
sample from lower number of frame sets.

4.2. Motion Magnification

As discussed in [66], phase-based motion magnification
may still perform better than deep motion magnification
where temporal filters are needed to extract small motions.
Thus, we combine both traditional and deep motion magni-
fication by applying them to aligned faces of each k samples
of ω frames, obtaining k×(ω−(t−1))×1 size phase-based
magnification output (where t is the frame range parameter
of phase-based magnification) and k×ω× 3 size deep mo-
tion magnification output, per video.

4.2.1 Methodology

Traditionally motion magnification works by decomposing
the video into frame representations to magnify the motion
by hand crafted filters. In deep motion magnification [66],
these filters are learned by a CNN network in three parts.
First, the encoder acts as a spatial decomposition filter that
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extracts a shape representation from consecutive frames and
separate texture representations from the shape. Second,
the manipulator uses this shape representations to magnify
the motion by creating a new magnified shape representa-
tion using the shape representations from multiple frames.
Finally, the decoder reconstructs the new shape representa-
tion with the original texture representations as the motion-
magnified frames. This constitutes our deep motion magni-
fication output per video. Phase-based magnification [82],
on the other hand, uses an Eulerian approach to motion
processing, based on complex-valued steerable pyramids,
where their phase variations correspond to local motions in
spatial subbands of an image. Phase-based magnification
computes local phase variations to measure motion without
computing optical flow and performs temporal processing
to amplify motion in temporal frequency bands, outputting
the second part of our motion-magnified representation.

4.2.2 Parameters

Deep motion magnification uses an amplification factor of
m and phase-based magnification uses a sliding window of
t frames, thus the output is reduced in length. We merge
these two kind of motion magnification outputs into a tensor
of w× h× (ω − (t− 1))× 4 for corresponding frames per
sample, per video, as the input to our network. We left the
discussion on ω, t, and m to our ablation studies in Sec. 5.4.

4.3. Network Architecture

Source detection task is formulated as a multi-class
classification problem where n deepfake generators in the
dataset plus the originals constitute the class categories.
Considering the spatio-temporal nature of our data, we at-
tempt to use transformer-like architectures for source detec-
tion. We observe that our motion-enriched representation
is powerful enough that transformers easily overfit to our
data. Thus, we architect a simpler 3D convolutional neural
network, similar to c3d [81]. Our 4D tensors are first in-
put to 64 convolutional kernels of size 3x3x3, followed by
batch norm, relu, and maxpool layers; then same block is
repeated 4 times with 128, 256, 512, and 512 kernels; fol-
lowed by two fully connected layers of size 4096 with 0.5
dropout. The selection of this architecture is also backed up
by our experiments in Sec. 5.4.

Our dual motion representation relaxes the classification
network, so we can use simple and efficient architectures,
which significantly reduces the training time. With limited
compute resources, for carbon-friendly training, and espe-
cially for real-time inference on CPU, it is preferable to use
simpler architectures. One can also claim that this reduces
the inference time under the assumption that time(simple
network + motion extraction) < time(complex network).

4.4. Prediction Aggregation

After we obtain results per each sample of each video,
we combine k class predictions with their confidences per
sample into n video predictions. We experiment with dif-
ferent aggregation techniques in Tab. 7. Providing both seg-
ment and video accuracies enables our approach to be suit-
able for both streaming-based and offline applications.

5. Results

Our approach is implemented in Python utilizing
OpenCV [18] for image processing, PyTorch [67] for deep
learning, OpenFace [16] for face detection and alignment,
vit-pytorch [10], and Efficient-3DCNN [49] libraries for
flexible neural network implementations. Most of the train-
ing and testing is performed on a desktop with an NVIDIA
GeForce RTX 3070, where 100 epochs take a few hours to
train. Applying motion magnification is the most compu-
tationally expensive part of the system, however, it is an
offline task done once per dataset (and for each ablation
study with varying motion parameters). Unless otherwise
noted, we set w = h = 112, ω = 16, k = 4, t = 5, and
m = 2x. Phase-based motion magnification frequency co-
efficients are used as-is from the original paper [82] with
BP = 600 fps, LP = 72 fps, and HP = 92 fps fil-
ters. FF [71] is set as the main dataset with the same 70/30
split for all evaluations – 700 real and 700 fake videos from
each 5 source generators for training, as a total of 4200
videos for training; and 300 real and 300 fake videos from
each 5 source generators, as a total of 1800 videos for test-
ing. FAVC [47] is also used for evaluations (500 real, 700
FaceSwap, 3963 FSGAN, 5014 Wav2Lip videos) with the
same split percentages for training and testing.

5.1. Evaluation

The confusion matrices in Fig. 4 demonstrate our source
detection accuracy per class. On FF dataset, we obtain
97.77% video source detection accuracy, 95.92% sample
source detection accuracy, and 91% real class accuracy. On
FAVC, we obtain 94.03% video source detection accuracy,
89.67% sample source detection accuracy, and 91.43% real
class accuracy. We emphasize that, our per-class accura-
cies are much higher for fake classes than the real class,
because the model learns the amplified motion of the gener-
ative residue. In that sense, real class becomes the “chaotic”
class where unknown (or less confident) predictions are
pushed into the real class. Real class accuracy (91.43% on
FAVC) should not be confused with fake detection accuracy
(95.12% on FAVC) as it is produced by a different and com-
plex classification.
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Figure 4. Source Detection Results. Our approach obtains
94.03% and 97.77% overall video source detection accuracy on
FAVC (top) and FF (bottom) datasets, respectively.

5.2. Comparison

In addition to the only other deepfake source detector in
the literature [21], we compare our results on FF against
complex network architectures used for deepfake detection,
in order to emphasize the strength of our dual motion mag-
nification representation in Tab. 1. Our approach beats the
best source detector by 4.08% and is much simpler than
the deeper networks listed, thus, it has significantly less in-
ference time and it is more generalizable, not over-fitting
to specific generators, artifacts, or datasets. We note that
source detection is relatively an unexplored area and there
is no other method suitable for direct comparison, so we
compare with tangential methods doing deepfake detection.
Comparing to [60] with 93% fake detection accuracy, which
does not perform source detection and uses only phase-
based motion magnification, we obtain 97.77% source de-
tection accuracy on the same dataset.

Models Source Det. Acc.
ResNet50 [38] 63.25%

ResNet152 [38] 68.92%
VGG19 [73] 76.67%

Inception [75] 79.37%
DenseNet201 [41] 81.65%

Xception [23] 83.50%
PPG-based [21] 93.69%

Ours 97.77%

Table 1. Comparison on FF. Source detection accuracies of sev-
eral models on FF dataset.

5.3. Cross-model Evaluation

Although cross-model experiments make sense for deep-
fake detection, there does not exist two multi-source deep-
fake datasets with the same set of generators to perform
a cross-dataset evaluation for source detection. Thus, we
assess the generalization of our approach on real class ac-
curacy across datasets. We test our 97.77% model on an
in-the-wild dataset [20] (with unknown generators; large
motion, illumination, and occlusion artifacts), obtaining
92.64% real class accuracy. Investigating hard failure
cases, large actor motion in deepfakes affects accuracy,
whereas other factors are not as relevant. We propose this
as the first step to explore open set scenarios with unknown
generators, as explored in [25], which enables retraining the
model for new generators as their outputs emerge.

5.4. Analysis & Experiments

In this section, we analyze the impact of varying motion
parameters t and m, training and testing accuracies of dif-
ferent backbone models, and analyze the accuracies across
genders and skin tones.

Magnification Parameter Source Det. Acc.
Deep m = 2x 91.54%
Deep m = 3x 86.86%
Deep m = 4x 83.16%
Deep m = 10x 74.90%
Phase t = 3 79.88%
Phase t = 5 85.61%
Phase t = 7 81.26%
Phase t = 10 82.92%
Phase t = 16 64.85%
Both m = 2x and t = 5 95.92%

Table 2. Motion Magnification Parameters. Different motion
settings for traditional and deep components, with varying magni-
fication coefficient (m) and phase-extraction interval (t).

5.4.1 Analyzing Motion Parameters

In motion magnification literature, the amount of magnifi-
cation is a significant parameter fine-tuned per application.
Over-magnification may lead to complete loss of genera-
tive signals, as suspected to be the case in [28]. To inves-
tigate this claim, we experiment with several magnification
coefficients for deep motion magnification and several win-
dow sizes for phase-based motion magnification in Tab. 2.
Note that these experiments are done without the dual rep-
resentation to understand the contribution of each parame-
ter individually. Motion vectors created by generative noise
are small, thus we conclude that 2x deep magnification and
5 frame windows for phase-based magnification reveal the
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sweet spot for emphasizing the motion. As observed from
these experiments, only traditional or only deep magnifi-
cation is not enough to capture generative artifacts, which
underlines the contribution of our dual representation.

5.4.2 Visualizing Motion Parameters

In addition to this quantitative analysis, we demonstrate the
effects of different parameter values in Fig. 5, for a real
video and two deepfakes created from it. We can observe
that even for the real video, 10x magnification deteriorates
the content. On the other hand, 10-frame phase extraction
tends to converge to a mean image of the video, which is not
useful either for capturing small motions. Based on these
observations and the experiments in Tab. 2, we conclude
with m = 2x and t = 5 values.

Figure 5. Magnification Parameters. Following the experiments
on different magnification parameters, we depict the effects of
deep motion magnification amount m (left three columns) and
phase-based magnification interval t (right three columns).

5.4.3 Backbone Network Analysis

As mentioned in Sec. 4.3, we experiment with different net-
work architectures in accordance with the characteristics of
our data 3 and report both training and testing accuracies for
source detection. As the motion magnified tensor represen-
tation already fortifies the generative artifacts, deeper and
more complex networks (like transformers) tend to over-
fit. In order to observe this phenomenon better, we report
the per-sample source detection accuracies before the ag-
gregation step, both for training and testing. We conclude
that C3D [81] is powerful enough to robustly learn from the
dual-motion representation.

5.4.4 Demographics Analysis

As the last experiment, we want to detect and mitigate any
possible racial or gender bias in our dataset or in our algo-
rithm (see [63] for the impact of synthetic data on demo-

Backbone Training Acc. Testing Acc.
Simple3DViT [10] 93.11% 53.56%

3DViT [10] 98.60% 45.97%
CNN-LSTM [62] 95.76% 44.21%
ShuffleNet [88] 98.85% 48.16%
SqueezeNet [42] 99.19% 62.65%
Ours (C3D [81]) 99.66% 95.92%

Table 3. Architecture Analysis. Training and testing accuracies
with several architectures for sample source detection to support
the strength of our representation and the choice on our backbone.

graphics). To that end, we use the labels in FAVC dataset
to report per gender and per skin tone source detection ac-
curacies. We observe that the largest discrepancy in accu-
racies is between Asian women and American men, with
84.21% and 97.44%. We suspect that this difference may
rise from the fact that deepfake generators are not creating
such faces with the same fidelity, thus, detection results are
also skewed. We also observe that sample detection accu-
racy is lower for African males, however the aggregation
step corrects that. We leave further analysis as future work.

Skin Tone Gender Sample Acc. Video Acc.
African Men 79.58% 89.19%
African Women 96.56% 93.59%

American Men 95.63% 97.44%
American Women 89.79% 94.74%

Asian Men 85.76% 89.74%
Asian Women 84.25% 84.21%

European Men 86.46% 92.11%
European Women 93.12% 94.87%

Indian Men 90.83% 94.87%
Indian Women 81.94% 87.18%

Table 4. Gender & Skin Tone. We report per sample and per
video source detection accuracies on 5 skin tones and 2 genders.

6. Ablation Studies
We experiment with varying number of samples per

video (k), changing number of frames in a sample (ω), and
different methods for gathering several sample predictions
into one video predictions.

6.1. Number of Samples

In order to find optimal parameters, we experiment with
changing values for k samples per video. In Tab. 5 we
document experiments with k = {1, 2, 3, 4}, concluding
that k = 4 is more informative and creates a more diverse
dataset, increasing the accuracy. Larger values have incre-
mental contributions within the variance, so we set k = 4
with the optimum performance.

4786



k Value FF Video Acc.
1 95.72%
2 94.83%
3 96.88%
4 97.77%

Table 5. Sample Size Analysis. k samples per video affects the
accuracy. After k = 4, contributions are almost constant.

6.2. Sample Length

In order to find optimal parameters, we experiment with
ω frame length per sample. In Tab. 6 we document exper-
iments with ω = {4, 8, 16}, concluding that ω = 16 is an
ideal length where the understanding of temporal motion
(per sample accuracy) and the elimination of large motion
artifacts (per video aggregation) is balanced. Larger ω val-
ues tend to impact the video accuracy by leaking large mo-
tion artifacts into the temporal representation.

ω Value Sample Acc. Video Acc.
4 91.18% 94.95%
8 91.12% 95.61%

16 95.95% 97.77%

Table 6. Sample Length Analysis. Video samples with ω frames
affect the accuracy up to ω = 16.

6.3. Aggregation Methods

We experiment with different aggregation methods to
combine k segment predictions into one video prediction in
Tab. 7. We choose averaging over other methods since our
sample prediction accuracies seem to result higher, as long
as there is no large motion or illumination change. Aver-
aging eliminates outliers and grounds the aggregation with
respect to the possible artifacts in our videos. Averaging is
also a better fit as our sample size is smaller, as opposed to
using log of odds, which may work better for longer videos.

Log of Odds Majority Voting Averaging
90.61% 97.17% 97.77%

Table 7. Prediction Aggregation. Combining sample predictions
into video prediction by averaging gives the best accuracy.

7. Conclusion and Future Work
Following several other questions about deepfakes, such

as their emotions [39], gazes [30], and hearts [21], we ask
“How do deepfakes move?”. We propose that motion mag-
nification emphasizes the generative artifacts in deepfakes
while preserving pristine motion, which can be used for
source detection. Combining deep and phase-based motion

magnification, we build a motion-based source detector,
achieving accuracies higher than existing source detectors
and other complex networks. We support our observations
and design choices with ablation studies and experiments,
while also performing evaluations on multiple datasets with
a cross dataset validation.

In the battle against deepfakes, we believe that source de-
tection plays a crucial role for continuous deployment and
integration of detectors into trusted platforms. Emergence
of novel generators as well as tracking the malevolent uses
of current ones are enabled by source detection, to timely
prevent deepfakes causing catastrophic events [3]. Motion
as a spatiotemporal signal reflects the sources of these deep-
fakes and we would like to further analyze and correlate
motion with other signals, especially in the multi-modal set-
ting, understanding the relationship of sound, speech, gaze,
and gesture with motion.
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