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Abstract

In today’s ever-changing world, the ability of machine
learning models to continually learn new data without for-
getting previous knowledge is of utmost importance. How-
ever, in the scenario of few-shot class-incremental learn-
ing (FSCIL), where models have limited access to new in-
stances, this task becomes even more challenging. Cur-
rent methods use prototypes as a replacement for classifiers,
where the cosine similarity of instances to these prototypes
is used for prediction. However, we have identified that
the embedding space created by using the relu activation
function is incomplete and crowded for future classes. To
address this issue, we propose the Expanding Hyperspher-
ical Space (EHS) method for FSCIL. In EHS, we utilize an
odd-symmetric activation function to ensure the complete-
ness and symmetry of embedding space. Additionally, we
specify a region for base classes and reserve space for un-
seen future classes, which increases the distance between
class distributions. Pseudo instances are also used to en-
able the model to anticipate possible upcoming samples.
During inference, we provide rectification to the confidence
to prevent bias towards base classes. We conducted experi-
ments on benchmark datasets such as CIFAR100 and mini-
ImageNet, which demonstrate that our proposed method
achieves state-of-the-art performance.

1. Introduction

In recent years, deep convolutional neural networks
(CNNs) have made significant advancements in various vi-
sion tasks [5,9,21,25]. However, these methods heavily rely
on large-scale supervised datasets to train models capable of
learning a limited number of object classes. In real-world
scenarios, data is received in a continuous stream [8], with
new classes of data emerging regularly [4]. Humans pos-
sess the ability to continually learn new knowledge while
retaining past insights. Similarly, deep learning models
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Figure 1. FSCIL setting and our scheme compared with traditional
training. A model is needed to discriminate all classes, while ses-
sion with non-overlapping classes arrive in sequence. Adequate
data are available when training in base session, while instances
of each class are insufficient in the following incremental session.
The model should incorporate new classes without forgetting old
ones. In contrast to the traditional training approach, our method
separates the feature space into two distinct hyperspheres, namely
the upper and lower hemispheres for base and future classes re-
spectively, and utilizes cosine similarity to distinguish between
them.

must incrementally expand their knowledge and discrim-
inate new classes, known as Class-Incremental Learning
(CIL). The primary challenge of CIL is catastrophic forget-
ting [7], where the performance of the model on old classes
decreases significantly when updated with new classes. Ad-
dressing catastrophic forgetting has become the main focus
of deep learning researchers [11, 13, 31, 33, 38].

In addition, collecting and labeling data can be an expen-
sive process, resulting in models that may only be trained
on limited new data. This makes the task more challeng-
ing, particularly when addressing few-shot inputs in the
incremental learning scenario known as Few-Shot Class-
Incremental Learning (FSCIL), as illustrated in Figure 1.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

1967



In this scenario, a model must incorporate new classes with
only a limited number of instances while retaining previ-
ous knowledge, without experiencing catastrophic forget-
ting. Furthermore, it must also address the problem of over-
fitting when dealing with few-shot instances.

Several approaches [22, 37, 42] have been proposed to
tackle the FSCIL challenge from a few-shot learning per-
spective, with the aim of mitigating overfitting during model
updating. Among them, ProtoNet [22] has introduced the
concept of prototypes, which can somewhat alleviate catas-
trophic forgetting in the case of limited new data. In Pro-
toNet, the feature extractor is frozen after training on the
base session, and the average embedding of each class is
obtained to replace the classifier as a prototype. The model
discriminates classes based on the similarity, typically co-
sine similarity, between the embedding of the instances and
the prototypes. This approach can maintain a better perfor-
mance on instances from old classes as only the classifier
is updated in the incremental session, and the prototypes of
the base session remain unchanged. However, since the ex-
tractor is not trained on data from new classes, the embed-
dings of new classes may be mixed with old ones, resulting
in poor discriminability of new classes. Additionally, the
overlapping areas of the distributions of the old and new
classes not only cause the performance of the model on the
new class to degrade, but also the performance of the base
session.

To address the limitations of existing methods, recent ad-
vances [18, 39] in the field of FSCIL have sought to de-
sign more sparse embedding spaces. Building upon this re-
search, we have endeavored to further increase the sparsity
of the embedding space, which necessitates a more exten-
sive feature space. Our analysis and experiments indicate
that when employing the commonly used activation func-
tion relu and cosine similarity [29], the model is only ca-
pable of mapping features to a very limited region of the
hyperspherical space. Specifically, the embedding space is
confined to a small region of the complete hypersphere due
to the non-negativity constraints of the relu activation func-
tion. Since the feature space of a model that requires con-
tinuous updating is already too narrow to occupy the entire
hypersphere, the space becomes even more crowded as new
classes are added. Achieving embedding distribution across
the complete hypersphere could significantly improve the
sparsity of the feature space.

Besides, in incremental learning, the number of classes
keeps increasing with the arrival of new tasks, which poses
a challenge for the prototype-based approach since the em-
beddings of base classes will mix with those of new classes.
This mixing can negatively impact the model’s performance
on both old and new classes. To address this issue, it is im-
portant to limit the space allocated to base classes and re-
serve enough space for future classes. However, linear clas-

sifiers cannot allocate space for base and novel classes sepa-
rately in a general feature space. To overcome this problem,
we propose to use cosine similarity and embed the features
in a hypersphere rather than a general space. This hyper-
sphere has a specific shape that allows us to allocate space
for base and novel classes separately. We aim to reserve
as much space for future classes as for the base features,
which can be allocated as upper and lower hemispheres, re-
spectively. To achieve a sparse embedding representation,
we use regularization techniques to split the base and un-
seen classes and specify the space occupied by each.

The present study introduces the Expanding Hyperspher-
ical Space (EHS) for (FSCIL) to address the problem of lim-
ited space in the embedding representation of the model. In
order to achieve this, we employ an odd-symmetric acti-
vation function to ensure that the output of the feature ex-
tractor has both positive and negative values, and we use
a base vector to partition the embedding space into upper
and lower hemispheres. We also employ some regulations
in the loss function to allocate embeddings of base classes
to the upper hemisphere and pseudo-instances to the lower
hemisphere to enable the model to anticipate future classes.
During inference, we rectify the samples in the lower hemi-
sphere, reducing their confidence in being predicted as base
classes. Our experiments demonstrate that the proposed
method outperforms the previous state-of-the-art (SOTA)
methods on benchmark datasets.

2. Related Works
2.1. Few-Shot Learning

In order to learn with inadequate data as humans do,
Few-shot Learning (FSL) methods [2, 3, 6, 14, 16, 22, 24,
28, 34–36] can be classified into two categories: model op-
timization and metric-based methods. Optimization-based
methods [2, 3, 6, 16] aim to facilitate rapid adaptation of
models to few-shot data, as traditional gradient descent
techniques are challenging to apply in this context. For ex-
ample, model-agnostic meta-learning [6] proposes increas-
ing the gradient update steps to improve the model’s fast
adaptation capability. In contrast, metric-based methods
[14, 22, 24, 28, 34–36] focus on the distance metric between
novel query samples and the base knowledge representa-
tions. ProtoNet [22] introduced the notion of a prototype,
which replaces the classifier with the average embedding of
each class. The distance between prototypes and instance
features is used to determine the class to which a sample
belongs. Similarly, FRN [30] utilizes feature maps recon-
struction to achieve few-shot learning.

2.2. Class-Incremental Learning

Class-incremental Learning (CIL) is an approach to learn
new classes without forgetting previously learned ones from
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a continuous stream of data. CIL methods [1, 11, 13, 27,
33, 40] can be broadly categorized into two groups: re-
play and regularization. Replay methods rely on replay-
ing past experiences to alleviate forgetting. For instance,
DER [33] uses dark knowledge to distill past experiences
sampled throughout the training process. GCR [27] pri-
oritizes the most significant gradient changes between ses-
sions and replays them in a specific sequence. On the other
hand, regularization-based methods build a regularized fea-
ture space for both old and new classes. LwF [13] uses
distillation loss of the new model output and fine-tuning to
train the model on new tasks. EWC [11] mitigates catas-
trophic forgetting by finding a common solution between
two adjacent sessions through L2 loss applied to the model
weights.

2.3. Few-Shot Class-Incremental Learning

Few-shot Class-incremental Learning (FSCIL) is a
newly proposed learning scenario that focuses on handling
incremental learning with limited samples. To address
this challenge, researchers have proposed various methods
[15, 18, 26, 32, 37, 39]. Tao et al. [26] proposed a neural gas
network that preserves the topology of features from differ-
ent classes to minimize the forgetting problem. Mazumder
et al. [15] adopt a freezing mechanism to prevent catas-
trophic forgetting and reserve some model parameters for
learning future classes to mitigate overfitting. CEC [37] ap-
plies a graph model to the classifiers to balance the relation-
ship between the weights of old and new classes. FACT [39]
uses multiple virtual prototypes to reserve space for future
classes in the embedding space. ALICE [18] adopts a mar-
gin trick to learn a sparse feature representation for future
classes.

3. Prototypical Networks in FSCIL
In this section, we begin by presenting the FSCIL sce-

nario, and subsequently introduce the baseline of prototype-
based techniques along with its drawbacks.

3.1. Few-Shot Class-Incremental Learning

FSCIL combines the settings of few-shot learning and
class-incremental learning. In the base session, the model
receives training set D0 = {(xi, yi)}|D

0|
i=0 with sufficient

training samples xi ∈ RD of base classes yi ∈ Y0. Y0 is
the label space of base session. Then in the incremental
sessions, the model receive a sequence of insufficient train-
ing sets {D1,D2, ...DT }, where Dt = {(xi, yi)}|D

t|=NK
i=0 .

yi ∈ Yt where Yt is the label space of session t and these la-
bel spaces do not contain any overlap. Yi∩Yj = ∅ for i ̸= j
and model only access to Dt in session t. Each incremental
session can be defined as a N-way K-shot few shot lean-
ing problem to reflect the insufficiency of the instances. At

inference, the trained model on the current task t must clas-
sify test samples of current and old tasks i.e., {0, ...t − 1}.
A model should learn new classes and maintain the abil-
ity to classify old classes when facing a new session t, i.e.,
minimize the empirical risk over all testing set:∑

(xi,yi)∈D0∪...Dt ℓ(M(xi), yi), (1)

where ℓ is a loss function that measures the discrepancy be-
tween prediction of model M and ground-truth label. The
prediction is calculated from the similarity between embed-
ding and weights of linear classifier: M(x) = WT f(x),
where f : RD → Rd and W ∈ Rd×|Y0∪...Yt|. W can be
divided as: W = {w0, ...w|Y0∪...Yt|}, where wc is the clas-
sifier of class c

3.2. Prototypical Network

As a FSCIL method, ProtoNet [22] trains model with
cross-entropy loss in the base session. In the incremental
session, the embedding extractor f is frozen and used to
extract the average embedding of each class, which is called
prototype:

pc =
1

Nc

∑
{(xi,yi)∈Dt|yi=c} f(xi). (2)

Nc is the instance number of class c. Each prototype can be
viewed as the common embedding of each class and utilized
to replace classifier weight: wc = pc. Then the similarities
between samples and prototypes are denoted as the predic-
tion: PT f(x), where P = {p0, ...p|Y0∪...Yt|}. Instead of
linear classifier, some works use cosine similarity as model
prediction:

M(x) =
PT

||P ||
f(x)

||f(x)||
. (3)

It makes model focus on angles between normalized em-
beddings, which distributed on the unit hypersphere of d
dimension.

3.3. Ignorance of Activation Function

It should be noted that embeddings do not necessarily
distribute uniformly across the entire unit hypersphere. The
popular activation function relu is advantageous and widely
used in many models. However, its output is always non-
negative, which causes the elements of embeddings to be
non-negative as well. This limitation means that the em-
beddings can only occupy a very small portion of the entire
hypersphere space. For embedding vectors with d dimen-
sions, they are only able to utilize 1

2d
of the entire space.

A visual representation of this phenomenon is provided in
Fig. 2 for the two-dimensional case.

The clustering of features in a limited portion of the hy-
persphere poses challenges for prototype-based methods.

1969



(a) (b)

Figure 2. Hypersphere space with base vector (a) and case in two-
dimension (b). Through the cosine similarity between instances
and base vector, the embedding space can be divide into upper
(yellow) and lower (green) hemispheres. (b) shows case in two-
dimension that only part of hypersphere is utilized when using relu
as activation function.

This is because when the variance of the embedding distri-
bution is large for certain classes and the distance between
prototypes is close, instances may be incorrectly classified.
Moreover, in incremental sessions, the prototypes of newly
extracted classes tend to cluster near those of the base ses-
sion, resulting in overlapping embedding distributions of
base and new classes, and leading to confusion in classi-
fying samples in the overlapping region. Utilizing the un-
occupied feature space can help overcome these issues by
achieving sparser distribution of prototypes, and increasing
the distance between prototypes of different classes and be-
tween old and new classes.

4. Expanding Hyperspherical Space for FSCIL
To address the issue of mutual overlap between the dis-

tributions of each class and to maximize the cosine similar-
ity between the samples and their corresponding prototypes,
we want to ensure the sparsity of the feature space. This
is achieved through the use of an odd-symmetric activation
function which maintains the integrity and homogeneity of
the hypersphere. During the training of the base session,
regularization is utilized to distinguish between the base and
unseen classes, and to allocate space for each, with a margin
reserved between them. During inference, we apply rectifi-
cation to those samples that are distributed in the reserved
space for instances in incremental sessions, which reduces
the model’s confidence in predicting them as belonging to
the base classes.

We first introduce the selection of the activation function,
and then discuss how to partition the embedding space and
the rectification method at inference.

4.1. Odd-Symmetric Activation Function

The activation function relu is frequently used in vari-
ous models, but its output is always non-negative. Conse-
quently, the feature vectors produced by the extractor are

restricted to a very limited portion of the hypersphere, rep-
resenting only a fraction of the available feature space ( 1

2d
).

This issue becomes more pronounced as the feature dimen-
sion d increases, and a smaller proportion of the features
can be distributed throughout the hypersphere.

In order to increase the distance between the individual
prototypes and expand the space occupied by embeddings
to the entire hypersphere, we adopt the odd-symmetric acti-
vation function tanh. Unlike relu, which only outputs non-
negative values, the output of tanh is distributed symmet-
rically on both sides of the origin, with a value range of
[−1, 1]. Therefore, by using tanh as the activation function,
embeddings can be distributed over the entire hypersphere,
thereby improving the sparsity of the feature space.

4.2. Specifying for Base Classes

To optimize the distribution of embeddings and achieve
a clear separation between the features of base classes and
future classes, it is necessary to adjust the embedding dis-
tribution within the entire hypersphere. This will ensure a
greater distance between the prototypes of different classes,
minimizing the overlap between their distributions. Specif-
ically, we aim to distribute the embeddings of base classes
in the upper hemisphere and those of future classes in the
lower hemisphere. To achieve this, we set a base vector, de-
noted by base = ( 1√

d
, ... 1√

d
)d, as a reference vector to dif-

ferentiate between the upper and lower hemispheres, shown
in Fig. 2. The similarity between a feature and the base
vector is then calculated as:

simB(x) = baseT
f(x)

|f(x)|
. (4)

The similarity between the feature and the base vector is
used to determine whether the feature belongs to the upper
or lower hemisphere. A positive similarity indicates the up-
per hemisphere and a negative similarity indicates the lower
hemisphere. To enforce the distribution of base classes in
the upper hemisphere, a regularization is used, which is for-
mulated as follows:

LB = max(mB − simB(x), 0), (5)

where mb denotes the margin from the demarcation line of
upper and lower hemisphere. If simB > mB , the feature
distribution is on the upper hemisphere side of margin, and
the loss is 0. When simB < mB , the smaller the similarity
to the base vector, the further the feature is from the upper
hemisphere, and the greater the loss.

4.3. Reserving for Future Classes

Our objective is to equip the model with the capability to
anticipate future instances and effectively map them to the
lower hemisphere of the feature space. In order to achieve
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Figure 3. An illustration of feature distributions of simply cross-entropy loss trained model and the loss with two regularization terms
added. The light color arrows represent examples of different class features on the hyperspherical feature space. The dark color arrows
represent the average feature prototype of corresponding classes, with mixed up pseudo instances. Our two regularization terms reserve
space for future classes in base session.

this, we utilize the generation of pseudo-samples, which can
mimic the characteristics of the instances that the model
may encounter in the future.

Motivated by [39], we aim to fuse the features of two
samples to generate new features, which can be used as fea-
tures for a hypothetical sample that might appear in the fu-
ture. In order to accomplish this, we divide the extractor
into two components, denoted as f(x) = g(h(x)). To com-
bine the features of two different input samples belonging
to different classes, we merge the embeddings of the inter-
mediate layer of the extractor as follows:

z = g[γh(xi) + (1− γ)h(xj)], (6)

where yi ̸= yj and γ ∈ [0, 1] is sampled from Beta distribu-
tion. Similarly, we calculate the similarity between pseudo-
sample and the negative base vector:

simP (z) = −baseT
z

|z|
. (7)

Then loss that constrains the distribution of the future
classes in the lower hemisphere is:

LP = max(mP − simP (z), 0), (8)

where mP indicates the margin on the lower side of the up-
per and lower hemisphere dividing line. By generating vir-
tual instances, we can anticipate the potential distribution of
new classes that may emerge in the future. This is demon-
strated in the lower left corner of Fig. 3. The loss func-
tion LP is designed to move the mixed instance z towards
the opposite direction of the base vector until it reaches the

lower hemisphere. As a result, the embedding space is di-
vided into upper and lower hemispheres, which respectively
accommodate the base classes and the future classes. This
approach ensures that there is nearly half of the hypersphere
of embedding space left for the possible emergence of fu-
ture classes.

4.4. The Overall Loss

To summarize, our approach involves three loss func-
tions. First, the cross entropy loss LCE is used to learn
the base data. Second, the loss LB helps to distribute the
embeddings of base classes in the upper hemisphere. Fi-
nally, the loss LP helps to reserve the lower hemisphere for
future classes. These three loss functions are integrated to
form the overall loss function of the proposed method.

L = LCE + αLB + βLP . (9)

4.5. Rectification at Inference

By assigning base session features and incremental ses-
sion features to the upper and lower hemispheres of the
hypersphere, respectively, we can identify the session of a
given sample based on its similarity to the base vector, and
thus predict its label more accurately.

P r(yi) =

{
P (yi)× η, simB(xi) < 0 and yi ∈ Y0

P (yi), otherwise
,

(10)
where P (yi) is the prediction for class yi, and η ∈ [0, 1]
is penalty factor. In cases where the similarity of a sample
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Method Accuracy in each session(%) PD↓ Relative
0 1 2 3 4 5 6 7 8 Improvement

Finetune 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 61.45 +00.00

iCaRL [19] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 50.37 +11.08
Rebalancing [11] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 50.56 +10.89

TOPIC [26] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 34.73 +26.72
FSLL+SS [15] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 27.19 +34.26

CEC [37] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93 +37.52
PASS [41] 79.25 71.77 68.77 63.67 59.80 57.12 54.41 52.93 50.96 28.29 +31.62

ALICE [18] 79.00 70.50 67.10 63.40 61.20 59.20 58.10 56.30 54.10 24.90 +36.55
C-FSCIL [10] 77.47 72.40 67.47 63.25 59.84 56.95 54.42 52.47 50.47 27.00 +34.45

FACT [39] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 22.50 +38.95
SAVC [23] 78.63 73.01 69.62 65.26 61.49 59.24 57.34 55.09 53.19 25.68 +35.77

EHS1 73.98 70.11 66.66 62.75 60.11 57.33 55.59 53.75 51.59 22.39 +39.06
EHS2 71.27 67.40 63.87 60.40 57.84 55.09 53.10 51.45 49.43 21.84 +39.61

Table 1. Top 1 classification accuracy of each session on CIFAR100 dataset. We calculate performance dropping rate (PD) and show the
relative performance improvement of PD towards Finetune.

with the base vector is below 0, this indicates that the sam-
ple’s feature distribution is located in the lower hemisphere
of the hypersphere, which suggests that the sample is less
likely to belong to the classes in the base session. Conse-
quently, the confidence of the base class needs to be reduced
to account for this.

5. Experiments

5.1. Implementation Details

Datasets. Following the past works, we mainly conduct
comparison and ablation study on two datasets, CIFAR-100
[12] and miniImageNet [20]. CIFAR-100 contains 60,000
images from 100 classes. Following the split of past works
[26], we divide them into 60 base classes for base session
and 40 few-shot classes for 8 incremental sessions. In the
base session, each class has 600 images with a resolution
of 32 × 32, while new classes are formulated into eight 5-
way 5-shot incremental tasks. Similarly, we also split the
miniImageNet dataset into 60 base classes and 40 few-shot
classes for 8 incremental sessions with the resolution of 84
× 84.

Evaluation Protocol. Following prevailing works [26],
we measure the Top-1 accuracy after the i-th session as A.
Besides, we also measure the degree of forgetting with per-
formance dropping rate (PD), i.e., PD= A0 − AB , where
A0 denotes accuracy after base session and A0 stands fo ac-
curacy after the last session. We use the identical training
splits (including base and incremental sessions) for every
compared method for a fair comparison.

Training Details. We deploy all the models with Py-
Torch [17]. For CIFAR-100, we adopt ResNet20 [9] as

backbone, while for others we use ResNet18. The model
is trained with a batch size of 256 for 1000 epochs, and we
use SGD with momentum for optimization. The learning
rate starts from 0.1 and decays with cosine annealing. Both
balanced weights α and β are set as 2.5 in EHS1 and 3 in
EHS2, while the penalty factor η is set as 0.8.

5.2. Comparison with State-of-the-Art

We compare our method with several proposed FSCIL
methods. Finetune is regarded as the lower-bound of the
FSCIL setting. We compare relative improvement of PD of
all methods with respect to Finetune. Firstly, We compare
with classic CIL methods: iCaRL [19] and Rebalancing
[11]. For SOTA FSCIL methods, TOPIC [26], FSLL+SS
[15], CEC [37], ALICE [18], PASS [41], C-FSCIL [10],
FACT [39] and SAVC [23] are comopared with our algo-
rithm. Among them, PASS [41], ALICE [18], FACT [39]
and SAVC [23] are prototype-based methods and use co-
sine classifiers as we do. Besides, FACT and SAVC are both
methods enhancing reserved space. For our method, EHS2

slightly sacrifices the accuracy of base session on the basis
of EHS1, so that the base features and features in incremen-
tal sessions are more precisely distributed in the upper and
lower hemispheres. Specifically, we increase the values of
both LB and LP from 2.5 to 3 to enhance the trend of updat-
ing the model to obtain a more sparse feature representation
for FSCIL.

Results on CIFAR100. We can infer from Tab. 1 that
our method outperforms the current SOTA methods. For
iCaRL [19] and Rebalancing [11], which can alleviating
catastrophic forgetting in CIL setting, the relative improve-
ment of PD toward Finetune is only 11.08 and 10.89. It
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Method Accuracy in each session(%) PD↓ Relative
0 1 2 3 4 5 6 7 8 Improvement

Finetune 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 59.91 +00.00

iCaRL [19] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.10 +15.81
Rebalancing [11] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14 +12.77

TOPIC [26] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89 +23.02
FSLL+SS [15] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 24.93 +34.98

CEC [37] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37 +35.54
PASS [41] 79.68 70.16 67.04 63.12 61.33 58.56 55.97 54.83 53.04 26.64 +33.27

ALICE [18] 80.60 70.60 67.40 64.50 62.50 60.00 57.80 56.80 55.70 24.90 +35.01
C-FSCIL [10] 76.40 71.14 66.46 63.29 60.42 57.46 54.78 53.11 51.41 24.99 +34.92

FACT [39] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 22.07 +37.84
SAVC [23] 81.10 76.25 72.45 68.99 66.55 63.10 59.97 58.25 57.21 23.89 +36.02

EHS1 71.25 66.65 62.84 59.65 56.90 54.14 51.63 50.05 49.06 22.19 +37.72
EHS2 69.43 64.86 61.30 58.21 55.49 52.77 50.22 48.61 47.67 21.76 +38.15

Table 2. Top 1 classification accuracy of each session on miniImageNet dataset. We calculate performance dropping rate (PD) and show
the relative performance improvement of PD towards Finetune.

shows that simply CIL methods are affected by overfitting
due to few-shot instances. TOPIC [26], FSLL+SS [15] and
C-FSCIL [10] do not use prototype to replace classifer and
update model in the inremental session. They get better
performance than simply CIL approaches but worse than
those prototype-based methods, which may because the ef-
fect of overfitting and catastrophic forgetting is not com-
pletely eliminated. Although CEC [37] does not use the
prototype neither, it introduces an additional graph neural
network to combine classifiers learned on individual ses-
sions for incremental learning, which brings a lower per-
formance dropping rate (23.93). Using the prototype and
cosine classifier as well, our approach achieves lower per-
formance dropping rate (22.39 and 21.84).

Results on miniImageNet. Similar to the performances
on CIFAR100, our model also shows improvement on the
miniImageNet dataset, which is shown in Tab. 2. FSCIL
methods still outperform approaches only proposed for CIL.
Nevertheless, except for FACT [39], the performances of
prototype-based methods do not differ much from other
methods. For example, the performance dropping rate
of ALICE [18] and C-FSCIL [10] are very close (24.90
and 24.99).Our EHS2 (21.76) outperforming FACT [39]
(22.07). Even without sacrificing performance in the base
session, our performance (22.19) is very close to FACT [39]
(22.07) and far superior to other methods (at least 8%).

5.3. Ablation Study

In Tab. 3, we conduct ablation study on CIFAR100 and
miniImageNet. Our proposed EHS method involves two
loss terms, and the choice of activation function also plays
a crucial role in our learning paradigm.

Activation LB LP
CIFAR100 miniImageNet

Function PD ∆imp PD ∆imp

relu × × 25.72 +0.00 25.57 +0.00
tanh × × 23.55 +2.17 22.54 +3.03
tanh ✓ × 22.80 +2.92 22.43 +3.14
tanh × ✓ 24.53 +1.19 22.74 +2.83
tanh ✓ ✓ 22.39 +3.33 22.19 +3.38

Table 3. Ablation studies on CIFAR100 and miniImageNet. LB

and LP are terms of regularization in our loss. PD means per-
formance dropping rate. ∆imp denotes relative performance im-
provement toward simply prototype method.

We utilized the tanh activation function, which is an
odd-symmetric activation function, to extend the embed-
ding space to a complete hypersphere. By applying LB ,
we pushed embeddings of base classes to the hemisphere,
and LP reserved the lower hemisphere for pseudo instances,
making it more suitable for incoming novel classes. Our ex-
periments show that replacing the commonly used relu acti-
vation function with tanh greatly decreased the performance
dropping rate by 2.17 on CIFAR100. This replacement in-
creased the completeness of the feature space and made it
more sparse for the distribution of embeddings. The addi-
tion of LB further improved the sparsity of the feature space
and reduced catastrophic forgetting by 2.17 compared to
simply prototype methods and 0.75 compared to using tanh
alone on CIFAR100. However, only using LP does not
significantly improve the model’s ability to eliminate for-
getting. Since there is no regularization for the true fea-
ture distribution of the base session, pushing the pseudo
features to the lower hemisphere alone was insufficient
to reduce the overlapping area of base classes and novel
classes. The optimal performance is achieved by combining
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(a) without LB (b) margin=0.1 (c) margin=0.2 (d) margin=0.3

Figure 4. The distributions of features in base session corresponding to different margins (mp). The distance between two red dashed lines
reflects the degree of feature shift affected by LB .

both loss terms, LB and LP , as shown in the last line of Ta-
ble 3. This is because the interaction between these two loss
terms constrains the base classes to the upper hemisphere of
the feature space and pushes the features corresponding to
the pseudo instances to the lower half of the hypersphere,
effectively reducing the overlapping area between base and
novel classes. The use of LB and LP brings more improve-
ment on CIFAR100 while tanh plays a more important role
on miniImageNet.

5.4. Further Analysis

In this section, we will analyze the effect of margin on
feature distribution in our method. For different margins
(mp), the effect of LB on the distribution of features in base
session is shown in Fig. 4.

The distribution of embeddings when LB is not used to
specify feature distribution for base classes is shown in (a).
In this case, embeddings are found at the junction of the
upper and lower hemispheres, and the angle between aver-
age embeddings and the base vector is 90◦. However, when
LB with margin is employed in (b), (c), and (d), the shift
in features is evident, and the distribution of all base classes
becomes closer to the base vector as the average angle de-
creases. As a result, all features in the base session are dis-
tributed in the upper hemisphere of the hypersphere, which
is the region where the angle is less than 90◦.

As the margin value in LB increases, the features tend
to move closer to the base vector, specifically towards the
”upper pole” of the hypersphere. With a small margin, the
model’s feature distribution becomes more compact due to
the regularization effect, resulting in a reduced range of an-
gle between embeddings and base vector ((a) → (b)). How-
ever, with a large margin, it becomes more challenging to
optimize LB , especially for a model with gradient descent
update. This leads to a different degree of sample shift to-
wards the ”upper pole,” which is reflected in the larger dis-
tribution area shown in (c) → (d).

5.5. Discussion

As discussed in Section 5.4, our proposed loss is effec-
tive in handling feature shift and leaves enough space in the

lower hemisphere for the distribution of new class features.
However, there is still room for improvement as there is an
unused area near the base vectors in the upper hemisphere.
It may be beneficial to reserve this space for novel classes
by restricting the maximum similarity between features and
base vectors in our loss LB . Alternatively, increasing the
margin without setting an upper bound will cause the em-
beddings to move closer to the base vector, leading to the
compression of the feature space and a smaller area for fea-
ture distribution. Ideally, if we can reserve most of the
hypersphere for future classes, it would be more advanta-
geous. In addition, compared to relu, using tanh may
cause problems such as gradient vanishing during the
training process. Future work will include the seek of
a odd-symmetric activation function that combines the
advantages of relu.

6. Conclusion

In recent years, there has been an increasing interest
in few-shot class-incremental learning (FSCIL). This paper
presents a novel approach that addresses the limitations of
existing prototype-based methods. One of the key issues
with these methods is that embeddings are only distributed
over a small portion of the complete hypersphere space,
which limits their ability to handle incremental learning. To
address this, we propose using an odd-symmetric activation
function instead of the commonly used relu, which allows
for a more complete and sparse embedding space. Addition-
ally, we allocate space for features of base and incremen-
tal classes, with the help of pseudo instances generated by
mixed base samples. Our experimental results demonstrate
that this approach achieves State-of-the-Art performance.
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