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Abstract

The paper presents CoFormer (Convolutional Fourier
Transformer), a robust and adaptable transformer architec-
ture designed for a range of scene text tasks. CoFormer in-
tegrates convolution and Fourier operations into the trans-
former architecture. Thus, it leverages convolution prop-
erties such as shared weights, local receptive fields, and
spatial subsampling, while the Fourier operation empha-
sizes composite characteristics from the frequency domain.
The research further proposes two new pretraining datasets,
named Textverse10M-E and Textverse10M-H. Using these
datasets, we demonstrate the efficacy of pretraining for
scene text understanding. CoFormer achieves state-of-the-
art results with and without pretraining on two downstream
tasks: scene text recognition (STR) and scene text editing
(STE). The paper further proposes LISTNet (Language In-
variant Style Transfer), a novel framework for bi-lingual
STE. It also introduces three datasets, viz., TST500K for
STE, CSTR2.5M and Akshara550 for STR. The source-code
of CoFormer is available at https://github.com/
CandleLabAI/CoFormer-WACV-2024.

1. Introduction
Scene text, also known as text in a visual context, is ubiq-

uitous in our daily lives and is found on signs, labels, adver-
tisements, and more. An accurate understanding of scene
text is crucial for numerous applications, e.g., image re-
trieval and organization, accessibility for visually impaired
individuals, preserving and communicating information and
autonomous decision-making in human-designed environ-
ments. Scene text understanding (STU) refers to interpret-
ing the text present in scenes, such as images, videos, and
real-world sceneries.

Scene text recognition (STR) and scene text editing

Sparsh is the corresponding author. Dhruv, Gayatri and Onkar con-
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Figure 1. Sample results of LISTNet (our proposed network)

(STE) are essential tasks in STU. STR involves recognizing
and transcribing the text present in images and videos. With
the increasing reliance on textual cues for interpretation in
various domains, STR has become a crucial aspect of infor-
mation retrieval and human-machine interaction. STR can
help automate tasks such as document scanning, transla-
tion and text-to-speech conversion. STE complements text
understanding by facilitating the generation of diverse text
samples with different styles. It involves analyzing style
features, training models on diverse style variations, and
generating text in specific styles. By manipulating the ap-
pearance of text in a scene, such as changing its font, style,
and background, STE provides valuable insights into how
text styles impact information perception. STR and STE
tasks are crucial for creating visually appealing designs and
graphics in fields such as marketing and advertising.

Recent years have seen the introduction of novel deep-
learning techniques for these tasks. Some works have pro-
posed two-stage networks [24] for detecting and recogniz-
ing words. Some works have used “convolutional neu-
ral networks” (CNNs), and “recurrent neural networks”
(RNNs) for scene text tasks [20, 39, 54]. A few works em-
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ploy attention mechanisms to selectively focus on relevant
regions in an image [3, 16, 38, 39, 57], while others have
used semantic segmentation [19]. Still, several challenges
remain. Real-world scenes show noise, occlusions, and
variability in style, font and orientation of the text. These
factors make it difficult for deep learning models to gener-
alize well to new data, leading to poor recognition accu-
racy. Transformer-based models [1, 33] address some of
these challenges but incur huge memory and computation
overheads. Further, the transformer lacks inductive bias and
fails to focus on local features. In the field of pretraining,
there has been only limited emphasis on generalizing the
model to identify and process text in complex and cluttered
environments. Also, the existing STU datasets are limited
in terms of the number of images, complexities, and diver-
sity of text styles, fonts and backgrounds.

Contributions: To address the aforementioned chal-
lenges, we propose (1) CoFormer, a backbone for diverse
scene text tasks (2) LISTNet, a network for STE and (3)
five novel datasets. Our major contributions are:

A. CoFormer brings together the best of convolution,
self-attention and Fourier transformation (Sec. 3). Un-
like the vision-transformer (ViT) [6], which takes im-
age patches as input, CoFormer accepts the entire RGB
image as input and passes it through C-block (convolu-
tion+GeLU+BatchNormalization). This simplifies network
architecture and enables CoFormer to easily accommodate
different resolutions of input images, which are crucial
to many vision jobs. CoFormer includes a “multi-headed
channel attention” (MCA) module that operates in the fre-
quency domain and helps draw attention to critical regions.
MCA identifies frequencies corresponding to background,
boundaries and structures. On top of this, the convolution
operation present in CoFormer specifically targets these fre-
quencies, resulting in improved model performance. Over-
all, convolution processes spatial local characteristics, while
Fourier analyzes global features. CoFormer has 48M pa-
rameters and performs 3.2G FLOPs.

B. We present a novel network named LISTNet (lan-
guage invariant style transfer) for STE (Sec. 5.2). It con-
sists of two stages: the first stage uses a CoFormer encoder
to create the background and intermediate style-transferred
text image. The second stage combines them to create the
final image with style-transferred text and background. A
novel decoder block architecture shows the benefits of ap-
plying the Fourier transform followed by channel attention.

C. We introduce five new datasets (refer to supplemen-
tary). (1) Textverse10M-E (English) and (2) Textverse10M-
H (Hindi) are utilized for pre-training on STU tasks (Sec. 4).
(3) Text Style Transfer-500K (TST500K), which has 100K
images for STE between each of the following five lan-
guage pairs: English-Hindi, Hindi-English, English-Tamil,
English-Chinese and English-Bengali. (4) Complex Scene

Text Recognition-2.5M (CSTR2.5M) for text recognition.
(5) Akshara550 is a real-life dataset of 557 images for STR.

D. We evaluate CoFormer for two downstream tasks:
STR and STE (Sec. 5). We show that (1) our proposed
pretraining datasets improve the performance of both our
technique and the previous techniques on the downstream
tasks. (2) CoFormer is the best on nearly all STR datasets
(Sec. 6-Sec. 7). For example, on the COCO-Text dataset,
without and with pretraining, CoFormer achieves a word ac-
curacy of 64.09% and 82.96%, respectively. For STE, LIST-
Net is the best on all language pairs (e.g., English-Tamil) of
the TST500K dataset. For instance, on English-Hindi STE,
LISTNet achieves a PSNR of 34.98 and an SSIM of 0.9099.

E. While CoFormer design is inspired by scene text
characteristics, the architecture itself is not limited to this
domain. For image classification on ImageNet-22K [36]
dataset, CoFormer achieves a top-1 accuracy of 85.72%,
surpassing CNN models, e.g., ConvNeXt-T [22] (82.9%)
and ConvNeXt-S (84.6%), and transformer models, e.g.,
Swin-B [21] (85.2%). Although ConvNeXt-L (86.6%) and
Swin-L (86.3%) yield higher accuracy than CoFormer, they
require more complexity and twice the FLOPs. Detailed
results are presented in the supplementary.

Application of our proposed model: Generating en-
gaging and readable content is essential to content market-
ing strategies, particularly in social media, advertising, and
blogging. However, creating content that resonates with di-
verse audiences with varying preferences, languages, and
cultural backgrounds can be challenging. For example, a
tagline written in the Chinese language may be inaccessible
to those who do not understand Chinese. Visual translation
methods such as Google Lens only translate the text content
without copying the style, background, and font (Fig. 1).
Due to this, they leave a patchy effect. As a result, the im-
pact and appeal that the marketer intends to deliver through
the tagline’s style and appearance may be lost.

This is where STE comes into play, which enables
mimicry of the original image’s style and appearance and
replacing the text with the target text. As shown in Fig. 1,
LISTNet, our proposed STE model, can effectively replace
scene text on images with target text. It adapts the original
text style without leaving any patchy artifacts on the im-
age. LISTNet is a powerful tool to get stylistically appro-
priate and highly appealing visually translated results for
scene text. By using it in conjunction with a visual trans-
lation method like Google Lens, its application scope can
be increased further. It can be used to translate PowerPoint
slides, social media memes and taglines of brands, where
the appearance and style of text are crucially important.

2. Related Work
Text recognition: Recent advancements [42, 58, 60]

have significantly improved word-level STR. Some meth-
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Figure 2. (a) CoFormer architecture. It has four stages. The number of CoFormer blocks (CFB) in each stage is shown inside each box.

ods [30, 56] use attention maps to focus on target text re-
gions and improve recognition results. However, these
models face challenges in preserving content and gener-
ating visually appealing results. Transformer-based ap-
proaches such as ViTSTR [8], and MaskOCR [25] seek
to improve vision extraction capabilities. ABINet [7] uses
a transformer-based language modality to improve vision
model prediction. However, these models are computation-
ally intensive and struggle with complex scene text images.
They often produce unnatural results when applied to styl-
ized text or mixed styles.

Scene Text Editing: Both SRNet [54] and SwapText
[57] divide STE into three tasks: copying input text style
to the target text, background inpainting, and fusing these
two to produce the final text image. SRNet is a GAN-
based model, and SwapText enhances SRNet by consider-
ing text geometry using spatial points. RewriteNet [17] uses
an encoder to separate content and style features, followed
by a generator that produces the image with desired con-
tent and style. AGGAN [47] uses attention mechanisms to
guide the transfer process. Self-supervised methods such
as TextStyleBrush [14] teach the networks to preserve both
source style and target content using text perceptual loss
functions. MOSTEL [31] proposes semi-supervised hybrid
learning to train the model using both: labeled synthetic
images and unpaired real-world images. STEFANN [35]
is a font adaptive neural network that replaces individual
characters in the source image with a target alphabet. This
approach assumes per-character segmentation, which is im-
practical in many real-world images.

Transformers in computer vision: Recently introduced
transformer-based models [21, 51, 52, 55] solely focus on
patch relationships and drastically increase computational
complexity. CvT [53] uses convolution-based projection
within the transformer to capture the spatial structure and
low-level details in image patches. CoFormer provides su-
perior results than these networks (Sec. 7).

Fourier transform in computer vision: Tanick et al.
[46] use Fourier features for capturing high-frequency char-
acteristics with low dimensions, whereas LaMa [45] pro-
pose a Fourier-based image restoration network. GAFNet
[44] uses “Fourier Feed Forward” block to learn the rela-
tionship between text and image modalities. FNet [18] re-

places the self-attention module in the transformer encoder
with a 2D FFT operation, which mixes tokens and makes
them available to the feed-forward module. FrFNet [37]
extends FNet by introducing fractional-order Fourier trans-
form, which allows accessing any intermediate domain be-
tween time and frequency. CoFormer benefits from the
properties of convolution, such as shared weights and fo-
cusing on local features. With the help of the Fourier trans-
form, it learns the presence of specific frequencies, such
as edges and textures, to detect objects or features in im-
ages. We hypothesize that a model with an inductive bias
and rotational equivariance feature extractor towards edge
and texture information will perform better on images with
these features. For scene text images, these features are the
edges and structure of the text. As shown in Fig. 4, Co-
Former effectively interprets scene text images by focusing
on the edges and structure.

3. CoFormer: Our proposed architecture
This section covers CoFormer architecture (Sec. 3.1), its

CoFormer block (Sec. 3.2), and the MCA module (Sec. 3.3).

3.1. Overall Architecture

Fig. 2 presents the CoFormer architecture, which extends
the transformer design with convolution-based operations
and uses Fourier transform as a foundation. We eliminate
positional embedding and use C-Block at the input. The
C-Block consists of a 3×3 convolution layer, GeLU activa-
tion [11], and a batch normalization (BN). Unlike ViT [6],
which takes image patches as input, CoFormer accepts the
entire RGB image and passes it through C-block. This not
only simplifies the architectural design but also allows Co-
Former to easily accommodate different resolutions of input
images, which are crucial to many vision jobs.

The CoFormer architecture (Fig. 2), consists of four
stages that generate feature maps of different sizes, with
each stage comprising a fixed number of CoFormer blocks.
The design of CoFormer block is shown in Fig. 3(c). The
first stage involves three CoFormer blocks, resulting in a
feature map of dimension B×C1×H

2 ×W
2 . Here, B, C1, H,

and W stand for batch size, number of channels, and height
and width of the feature map, respectively. The output of
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Figure 3. (a) FNet [18] (b) CvT [53] (c) Proposed CoFormer block (CFB) (d) Proposed multi-headed channel attention (MCA).

each stage is passed to the next stage, and corresponding
feature maps are produced. The feature map from the last
stage can be utilized for downstream tasks by modifying the
tail part of the model. For example, for STR, CoFormer can
be used as an encoder/backbone to extract the image rep-
resentations, and these representations can be given to the
BLSTM (bi-directional LSTM) to recognize the text.

3.2. CoFormer block

Figures 3(a), (b), and (c) show the design of FNet, CvT
and CoFormer, respectively. As for the input, FNet takes
embeddings; CvT takes convolution projections, and Co-
Former takes 2D FFT projections. FNet does not use atten-
tion at all; CvT uses an MSA [48] block, whereas CoFormer
uses a multi-headed channel attention module. In the latter
part of the block, both FNet and CvT use MLP, whereas
CoFormer uses a C-block (convolution+GeLU+BN).

CoFormer block combines the advantage of convolution
(viz., shared weights, local receptive fields, and spatial sub-
sampling) and the Fourier transform. Given an input feature
map, we first generate three copies of the input for the key,
query, and value. Then, we perform the Fourier transform
to transfer the values from the spatial domain to the fre-
quency domain to obtain the constituent frequency compo-
nents. Then, we project each of these components n times,
where n shows the number of attention heads. These pro-
jections are then fed into the MCA. Here, Fourier transform
determines the frequency present in the feature map and,
thus, automatically differentiates between high-frequency
and low-frequency features. This enables the model to draw
attention to crucial aspects with the help of the MCA block.

Fig. 4 shows sample input images along with Fourier

Input 
Image

Fourier
Projection

Figure 4. Fourier projection

projections obtained by taking the output after four Co-
Former blocks and projecting it along the input image.
Here, the Fourier transform converts feature maps of input
images to the frequency domain. Since the background, text
boundaries and structure present in the image correspond to
different frequencies in the frequency domain, CoFormer
can clearly distinguish between them. This explains why
CoFormer, which uses the Fourier transform, performs well
in the scene text understanding tasks. On top of this, the
convolution operation present in CoFormer specifically tar-
gets these frequencies, resulting in improved model perfor-
mance. Here, convolution processes spatial local character-
istics, while Fourier analyses the global features.

Our MCA block operates in the frequency domain.
MCA helps in identifying and improving the essential char-
acteristics. The feature vector acquired by MCA is trans-
formed back into the spatial domain using the inverse
Fourier transform. The hidden representation acquired after
the inverse Fourier transform is fed into layer-normalization
(LN), and the resulting feature map is added to the input of
the CoFormer block. Finally, the feature vector is sent via
C-block, LN, and residual connection.
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3.3. Multi-headed Channel Attention (MCA)

While traditional MSA operates in the spatial domain,
our proposed MCA operates in the frequency domain.
MCA differentiates between distinct frequencies by encap-
sulating several intricate interactions that exist among them.
The MCA has n self-attention heads (Fig. 3(d)). Each head
i has its own weight matrices, which are learnable and de-
noted by Ki, Qi, and Vi.

While traditional MSA uses linear layers, MCA uses C-
blocks to make K, Q, and V matrices learnable and capture
correlations across different frequencies. This provides two
key advantages (1) The linear layer function is too simplis-
tic to learn all frequency characteristics. In convolution, a
sliding window convolves over the feature map and com-
putes the weighted sum of the feature map’s value within
the window. This outputs the new feature map that reflects
the local information within the window. In our case, the in-
put of the MCA is the feature map in the frequency domain
containing the frequency distribution. So, convolution helps
to approximate these distributed frequencies and create ef-
ficient attention matrices allowing CoFormer to understand
which frequencies to preserve or eliminate. (2) Convolution
layers require fewer parameters than linear layers. We use
multi-headed channel attention to capture various frequency
relationships and improve performance. The outputs of all
the heads in the MCA module are concatenated and sent to
the next CoFormer block layer. More details about MCA
are presented in the supplementary.

4. Pre-training

To understand the scene-text image, we adopt two pre-
training tasks, STR and masked image modeling (MIM).
We pre-train CoFormer for both Hindi and English to learn
a universal representation of the two text scripts.

Fig. 5 depicts the pre-training architecture. We first ran-
domly mask around 40% of the image regions using irreg-
ular patches and feed this masked image to the CoFormer.
The concealed representation obtained from CoFormer is
passed to both STR and MIM branches. In the STR branch,
the feature map generated by the CoFormer block is fed into
a BLSTM for STR. This branch employs the “connection-
ist temporal classification” (CTC) loss [9] to penalize text
recognition errors. The MIM branch upsamples the Co-
Former feature map to reconstitute the original image with
missing patches. This branch uses L1 loss. Patch comple-
tion and text prediction assist the models in comprehending
visual and textual representations.

5. Down-stream tasks

We showcase the use of CoFormer for scene text recog-
nition and scene text editing.

CoFormer

Transpose

Up-sampling
Block

Reshape
BLSTM Calottery

X N

Masked Image

Image Without Mask

Masked Image Modelling (MIM)

Scene Text Recognition (STR)

Figure 5. Pretrainng approach consisting of STR and MIM

5.1. Scene text recognition

As shown in Fig. 6, CoFormer serves as the backbone
of the architecture, providing robust 2D feature represen-
tations for the input image. The output is derived from
each stage of CoFormer and fed into an ASPP (atrous spa-
tial pyramid pooling) block [4]. We use the ASPP block to
get different levels of spatial information from CoFormer.
ASPP output is provided to the transformer decoder (GPT)
[32], which predicts the text present in the image in an auto-
regressive manner. The auto-regressive version is shown as
CoFormer-A. We use six blocks of GPT decoder to make
the training more robust and accurate. We also trained
our model with the normal CTC-based loss; this version
is termed CoFormer-N. Although this version takes lower
latency for training and inference than CoFormer-A, it pro-
vides lower accuracy (Table 1) due to its inability to prop-
erly align the text in the image.

C

CoFormer ASPP GPT
Decoder

C a l o t

a l o t t

eos

X 6 block

Figure 6. (Autoregressive) Network for scene text recognition task

5.2. LISTNet: Our proposed architecture for STE

We propose a novel STE architecture, named LISTNet,
which is shown in Fig. 7(a). We explain it for the example
of English-to-Hindi STE. It works in two stages. The first
stage has a dual-stream setup, which utilizes CoFormer en-
coders to separately process the target text image (IT ) and
input style image (IIS). The intermediate style image (IS)
and background image (IB) are produced by separate de-
coders in the first stage. The final style transferred image
(IST ) is then generated in the second stage by concatenat-
ing the outputs from the first stage decoders and feeding
them into a single decoder.

Stage-1: The Stage-1 generator has two streams:
Stream-ST for the target text image (IT ) and Stream-Bg for
the style image (IIS). These streams use CoFormer to ex-
change information and improve their understanding of the
images. Stream-ST uses a CoFormer to replicate the style
of IIS to IT , while Stream-Bg uses a CoFormer to predict
the background of IIS . Our model uses the query trans-
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Figure 7. (a) LISTNet architecture for English-Hindi text editing (b) perceptual loss computation

mission method from ViLBERT [23] to incorporate cross-
visual attention between IIS and IT . The CoFormer blocks
in Stream-ST obtain hidden representations from Stream-
Bg’s CoFormer blocks and use these representations as a
query in the MCA. This query transfer mechanism enables
style-text-conditioned attention.

The outputs of CoFormers from both streams are fed
into BLSTM and the decoder. Stream-Bg’s BLSTM pre-
dicts English text on IIS , and Stream-ST’s BLSTM predicts
Hindi text on IT . Both BLSTM modules use CTC loss,
denoted by LDTR and LETR in Fig. 7(a). This helps the
model recognize text on the image. Further, a contrastive
loss (LContrastive) is calculated between their outputs to
grasp the context of Hindi and English text.

Our novel decoder (refer to supplementary) for both
streams uses cross Fourier attention, enabling information
flow between streams through lateral connections. Fig. 7(a)
shows decoder losses (LST and LBG) for style and back-
ground images (IS and IB). These losses allow models to
evaluate diverse but complementary aspects using L1 loss
and SSIM loss. The L1 loss quantifies pixel-level differ-
ences, while SSIM loss accounts for structural information
like edges, color contrasts, and brightness variations. The
Stage-1 critic module receives a stacked output from both
decoders. The critic uses a WGAN loss with a gradient
penalty (LS1C) to keep training constant. At last, Stage-
2 receives the stacked IS and IB as input. The gradients
are obstructed during the weight update of Stage-2. This is
shown by the blue arrow in Fig. 7(a).

Stage-2: In Stage-2, the background texture (IB) and
style image (IS) are fused to generate the final style trans-
ferred image. The decoder of Stage-2 (refer to supplemen-
tary) uses perceptual loss, L1 loss, and SSIM loss. As
shown in Fig. 7(b), the perceptual loss is the L1 distance
between the hidden representation of the ground truth style-
transferred image (YST ) and the predicted style-transferred
image (IST ). Both these images are derived from a pre-
trained CoFormer model trained on Hindi scene text data.

Similar to Stage-1, the Critic module present in Stage-2 per-
forms GAN-based training. The whole network is end-to-
end trained. The critic modules of both stages have the same
structure. They are made of five C-blocks.

6. Experimental results

The details on the dataset and implementation are pro-
vided in the supplementary material.

6.1. Results on Scene Text Recognition

Tab. 1 presents STR results on ten English datasets.
The first half of the table reports the outcomes without
any pretraining, while the second half reports results af-
ter pre-training on the Textverse10M-E dataset. In the for-
mer case, we utilize the results of previous methods as re-
ported in [3]. Our proposed CoFormer model outperforms
all previous techniques for both synthetic and real train-
ing datasets, achieving state-of-the-art (SOTA) results. Pre-
training the models on the Textverse10M-E dataset substan-
tially increases the word accuracy of every model, demon-
strating the effectiveness of our proposed pretraining dataset
and the pretraining method in improving the understanding
of scene text. Moreover, CoFormer consistently achieves
competitive results on all the benchmark datasets, with and
without pre-training and for both synthetic and real training
data. This indicates the effectiveness of our convolution-
based Fourier projection model in identifying scene text.

Tab. 2 displays STR results on Hindi datasets. The IIIT-
ILST [26] and MLT-Devnagari [28] datasets contain syn-
thetic images, while our proposed Akshara550 dataset con-
tains real images. CoFormer outperforms all previous tech-
niques on all three datasets. The accuracy is lower on the
real-scene datasets since they are inherently more challeng-
ing. Clearly, CoFormer is effective for a range of applica-
tions involving STR in complex environments.
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Table 1. Word accuracy results on benchmark datasets. Train datasets are divided into two categories: synthetic (S) and real (R). The syn-
thetic datasets (S) include MJ and ST, while the real datasets (R) include Uber [61], ArT [5], COCO-Text [49], RCTW17 [40], LSVT [43],
ReCTS [59], MLT19 [28], OpenVINO [15] and TextOCR [41]. Normal and autoregressive models are denoted by N and A, respectively.

Method Data IIIT5K [27] SVT [50] ICDAR 2013 [13] ICDAR 2015 [12] SVTP [29] CUTE80 [34] COCO-Text [49] ArT [5] UBER [61] CSTR-2.5M

Without any pre-training

CRNN [2] S 91.20 85.70 90.90 70.80 73.50 78.70 49.30 57.30 33.10 57.65
VITSTR-S [1] S 94.00 91.70 95.10 78.70 83.90 88.20 56.40 66.10 37.60 74.76

TRBA [2] S 96.30 92.80 95.00 80.60 86.90 91.30 61.40 68.20 38.00 78.82
ABINET [8] S 95.30 93.40 95.00 79.10 87.10 89.70 57.10 65.40 34.90 80.00

PARSeq-N [3] S 95.70 92.60 95.50 81.40 87.90 91.40 60.20 69.10 39.90 83.92
PARSeq-A [3] S 97.00 93.60 96.20 82.90 88.90 92.20 64.00 70.70 42.00 84.32
CoFormer-N S 96.01 93.01 95.76 82.90 88.78 92.99 63.98 69.92 41.87 84.02
CoFormer-A S 97.20 93.66 96.32 82.91 89.05 93.33 64.09 70.12 42.12 85.61

CRNN [2] R 94.60 90.70 94.50 78.50 80.60 89.10 62.20 66.80 51.00 64.64
VITSTR-S [1] R 98.10 95.80 97.70 87.10 91.40 96.10 74.10 81.10 78.20 86.62

TRBA [2] R 98.60 97.00 97.60 88.70 93.70 97.70 77.50 82.50 81.20 88.02
ABINET [8] R 98.60 97.80 97.80 88.50 93.90 97.70 76.40 81.20 71.50 87.76

PARSeq-N [3] R 98.30 97.50 98.10 88.40 94.60 97.70 77.00 83.00 82.40 89.89
PARSeq-A [3] R 99.10 97.90 98.40 89.60 95.70 98.30 79.80 84.50 84.50 90.09
CoFormer-N R 98.03 97.09 98.12 89.82 96.00 98.21 79.87 84.40 83.92 89.92
CoFormer-A R 99.18 98.03 98.49 90.23 96.08 98.33 80.01 85.12 87.00 91.01

With pre-training on Textverse10M-E

CRNN [2] S 93.29 87.88 92.36 73.47 75.57 80.92 53.21 60.01 36.78 60.12
VITSTR-S [1] S 95.92 93.21 96.94 79.88 86.76 90.01 59.02 67.97 40.00 75.61

TRBA [2] S 98.32 94.03 96.55 83.09 88.04 92.07 63.76 70.09 40.21 80.11
ABINET [8] S 96.72 94.93 97.92 81.29 88.91 90.92 57.17 66.99 37.90 83.31

PARSeq-A [3] S 98.21 94.40 97.71 84.93 89.91 95.31 66.29 73.31 44.78 87.72
CoFormer-N S 96.67 94.98 96.60 84.98 90.41 94.75 65.93 72.99 44.09 86.92
CoFormer-A S 98.04 95.00 97.88 85.01 91.37 96.00 66.98 74.07 44.98 88.09

CRNN [2] R 95.21 92.87 95.06 80.88 82.34 91.19 64.75 69.19 53.08 68.19
VITSTR-S [1] R 98.41 96.71 98.00 89.32 93.21 97.92 76.18 84.09 79.99 78.98

TRBA [2] R 98.79 97.67 98.34 91.99 95.02 98.76 78.82 86.54 81.07 84.41
ABINET [8] R 99.00 97.99 98.21 92.35 94.99 98.65 78.81 86.76 81.01 87.88

PARSeq-A [3] R 99.97 98.78 99.02 94.04 98.02 98.78 81.21 86.99 87.32 93.32
CoFormer-N R 98.39 98.79 98.98 93.91 98.02 98.31 80.98 85.48 87.13 93.00
CoFormer-A R 99.89 98.92 99.00 94.49 98.49 98.49 82.96 86.57 88.97 94.75

Table 2. Word accuracy results on Hindi datasets (Training was
done on Textverse10M-H dataset)

Method IIIT-ILST [26] MLT-Devnagari [28] Akshara550

CRNN [2] 66.71 65.90 52.23
VITSTR-S [1] 72.30 67.82 58.98

TRBA [2] 74.88 68.29 60.03
ABINET [8] 76.42 69.98 62.39

PARSeq-A [3] 77.98 71.21 64.32
CoFormer-N 76.91 70.67 63.77
CoFormer-A 77.98 72.09 64.99

6.2. Results on Scene Text Editing

We now evaluate several STE models on the TST500k
dataset and for English-English STE we have utilised
dataset from SRNet. To ensure a fair comparison, we do
not pre-train any of the networks since SRNet, RewriteNet,
and SwapText networks do not utilize any backbone that can
be pre-trained using pretraining tasks mentioned in Sec. 4.
Tab. 3 shows the results. SRNet, which uses a modular
GAN-based architecture, does not perform well, possibly
due to the known limitations of GANs, such as instability
during training and the issue of mode collapse. SwapText
outperforms SRNet, as it accounts for the spatial transfor-
mations of text. However, Rewritenet has limitations, as it

does not share information between the encoders responsi-
ble for generating style features and content features. Due
to this, it gains only a limited contextual understanding of
how the style was transferred to the text.

MOSTEL and TextStyleBrush outperform SRNet and
SwapText by using stroke guidance maps to find explicit
text regions to alter. Yet, they are unable to match the higher
generational quality of our LISTNet. We observe that the
image encoders from MOSTEL and TextstyleBrush cannot
catch the scene text stroke-level features. Hence, both per-
form poorly on the Indian scene text datasets, where the font
stroke is particularly important. The supplementary section
provides empirical support for our claim, offering a visual
breakup of how our LISTNet excels in capturing intricate
stroke-level features compared to the other models. The
LISTNet encoder learns the boundaries and edges quickly
due to the use of Fourier transform and channel-wise paired
self-attention. It performs the best on all the metrics. It uses
CoFormer as a backbone, which enables the model to un-
derstand different frequency patterns corresponding to the
style, background, or structure of the image. Also, the use
of WGAN-GP [10] training method ensures stable training
of the network and avoids mode collapse.
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Table 3. Results on TST-500K. Values are shown as PSNR/SSIM/LPIPS (For PSNR/SSIM: higher is better. For LPIPS: lower is better)

SRNet [54] Swaptext [57] RewriteNet [17] MOSTEL [31] TextStyleBrush [14] LISTNet

English-Hindi 26.11/ 0.7943/ 0.57 31.09/ 0.8376/ 0.49 32.04/ 0.8667/ 0.36 32.98/ 0.8821/ 0.21 33.01/ 0.8800/ 0.20 34.98/ 0.9099/ 0.19
English-Bengali 25.67/ 0.7532/ 0.51 27.31/ 0.7787/ 0.42 31.02/ 0.8789/ 0.29 33.01/ 0.8901/ 0.20 33.98/ 0.9001/ 0.16 34.56/ 0.9127/ 0.15
English-Tamil 24.31/ 0.7631/ 0.52 27.01/ 0.7831/ 0.47 29.98/ 0.8567/ 0.33 32.01/ 0.8892/ 0.19 32.96/ 0.8900/ 0.19 33.98/ 0.9012/ 0.18
English-Chinese 23.09/ 0.7402/ 0.49 27.07/ 0.7978/ 0.44 28.98/ 0.8645/ 0.30 30.12/ 0.8909/ 0.18 31.88/ 0.8992/ 0.18 32.99/ 0.9147/ 0.17
Hindi-English 25.05/ 0.7500/ 0.58 27.96/ 0.7977/ 0.49 30.09/ 0.8812/ 0.35 31.87/ 0.9001/ 0.17 32.09/ 0.9119/ 0.20 33.97/ 0.9232/ 0.21
English-English 27.88/ 0.7881/ 0.52 24.32/ 0.7772/ 0.44 24.99/ 0.7808/ 0.36 31.82/ 0.8871/ 0.18 33.00/ 0.9001/ 0.19 34.00/ 0.9219/ 0.16

Qualitative results: The visual results in Figure 8 sup-
port above findings. LISTNet excels at manipulating text
under extreme geometric distortion. In contrast, MOSTEL
and TextStyleBrush struggle to effectively transfer styles
between different languages due to their inability to cap-
ture scene text stroke-level features, particularly in Chinese
and Tamil. LISTNet stands out in this aspect by leverag-
ing Fourier transform and attention mechanisms to accu-
rately identify text structures, resulting in impressive style
and background generation. This is especially noticeable
for complex text symbols found in languages like Chinese,
Tamil, and Bengali. In English-to-English style transfer,
while MOSTEL and TextStyleBrush successfully transfer
style, LISTNet outperforms both by generating high-quality
results. The images produced by LISTNet also exhibit
greater clarity and sharpness.

Style Image Target Image LISTNetTextStyleBrushMOSTEL

E-H

E-C

E-T

H-E

E-B

E-E

Figure 8. Sample STE results. E, H, C, T, and B denote English,
Hindi, Chinese, Tamil, and Bengali, respectively. “E-H” signifies
English to Hindi scene text editing, and so on.

7. Ablation Study

Tab. 4 shows the ablation results of LISTNet on the
English-Hindi set of the TST500K dataset. The results of a
similar ablation study for the STR task have been presented
in the supplementary section.

1. We examine the effect of pre-training by incorporat-
ing pre-trained CoFormers into LISTNet. Evidently, pre-
training improves model performance on both metrics. 2.
We assess the contribution of Fourier projections in Co-
Former by removing 2D FFT and inverse FFT layers from

Table 4. STE ablation results.

Experiments PSNR SSIM LPIPS
0. Default LISTNet (without pretraining) 34.98 0.9099 0.19
1. LISTNet with pretrainning 38.91 0.9300 0.16
2. Without Fourier 32.91 0.8862 0.21
3. Without Fourier and without pretraining 31.98 0.8991 0.23
4. Without contrastive loss 33.19 0.8901 0.20
5. Replacing MCA with MSA 31.98 0.8692 0.24

6. Different training methodologies (Default uses WGAN-GP)
6a. Pix2Pix 33.79 0.9001 0.18
6b. WGAN 34.02 0.9037 0.19

7. Different model size (Default uses 13 CoFormer blocks)
7a. LISTNet (With 4 CoFormer Blocks) 32.98 0.8901 0.21
7b. LISTNet (With 8 CoFormer Blocks) 33.46 0.8957 0.20

8. Different backbones (Default uses CoFormer)
8a. ViT 31.34 0.8992 0.20
8b. Swin Transformer 32.97 0.9011 0.19
8c. PVT-L 32.75 0.9005 0.19
8d. CvT-13 33.42 0.9087 0.18

the CFB block. The results indicate that model performance
degrades without Fourier projections. 3. Removal of both
FFT and pretraining from the model degrades the quality
metrics. Our results demonstrate that FFT improves model
performance by highlighting frequency domain composite
features, while pre-training enhances the model’s ability to
understand scene text images.

4. The model performance degrades on training the
LISTNet model without using contrastive loss between the
output of two BLSTM modules. This shows that the con-
trastive loss helps the model understand the context of both
languages. 5. We replace MCA with MSA while maintain-
ing the overall design of CoFormer. This reduces both the
metrics. 6. WGAN-GP-based training methodology pro-
vides stable training and superior performance than other
GAN-based methodologies. 7. Our default LISTNet uti-
lizes 13 CoFormer blocks. We further test with LISTNet
versions having 4 and 8 CoFormer blocks. Expectedly,
these versions provide inferior results than the default LIST-
Net. Interestingly, they do provide better results than the
previous techniques (refer Tab. 3). This shows the efficacy
of our technique. 8. We evaluate LISTNet with a different
transformer backbone than CoFormer. Clearly, CoFormer
is superior to previous transformer backbones.

Conclusion: We introduce CoFormer, an innovative vi-
sion transformer architecture that leverages the strengths of
Fourier and convolution operations. Experimental results
confirm superiority of CoFormer. Our future work will es-
tablish CoFormer’s efficacy on downstream tasks, e.g., text
super-resolution, text erasure, and scene text segmentation.
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