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Abstract

Star-convex shapes arise across bio-microscopy and ra-

diology in the form of nuclei, nodules, metastases, and

other units. Existing instance segmentation networks for

such structures train on densely labeled instances for each

dataset, which requires substantial and often impracti-

cal manual annotation effort. Further, significant reengi-

neering or finetuning is needed when presented with new

datasets and imaging modalities due to changes in con-

trast, shape, orientation, resolution, and density. We

present AnyStar, a domain-randomized generative model

that simulates synthetic training data of blob-like objects

with randomized appearance, environments, and imaging

physics to train general-purpose star-convex instance seg-

mentation networks. As a result, networks trained using our

generative model do not require annotated images from un-

seen datasets. A single network trained on our synthesized

data accurately 3D segments C. elegans and P. dumerilii

nuclei in fluorescence microscopy, mouse cortical nuclei in

µCT, zebrafish brain nuclei in EM, and placental cotyledons

in human fetal MRI, all without any retraining, finetuning,

transfer learning, or domain adaptation. Code is available

at https://github.com/neel-dey/AnyStar.

1. Introduction

Motivation. Assigning dense semantic labels for biomed-

ical segmentation is difficult, individual instance annota-

tions are even more expensive, and doing so in 3D is of-

ten infeasible. Even if a given dataset is painstakingly an-

notated, any subsequently trained segmentation network is

unlikely to generalize to new datasets, scanners, and imag-

ing configurations. For example, an instance segmenta-

tion network trained to segment C. elegans nuclei in fluo-

rescence microscopy is unlikely to also segment similarly-

shaped nuclei in the mouse brain in micro-CT images. Con-

sequently, high-throughput morphometric workflows across

biosciences and radiology are bottlenecked by the need for

*Webpage: https://www.neeldey.com/any-star/

Table 1. Biomedical instance segmentation methods first train on

real image-label pairs and then transfer to each new dataset with

or without labels, corresponding to supervised/few-shot learning

or domain adaptation, respectively. We instead synthesize image-

label training data and generalize without labels or retraining.

Requirements
Supervised

Learning

Few-shot

Prompting

Domain

Adaptation
Ours

Real images for training data ✓ ✓ ✓ ✗

Manual labels for training data ✓ ✓ ✓ ✗

Manual labels for new datasets ✓ ✓ ✗ ✗

(Re-)training on new datasets ✓ ✗ ✓ ✗

reengineering and/or retraining networks for new datasets.

Moreover, to retrain or adapt networks, biologists and clini-

cians need specialized hardware, data annotation pipelines,

and machine learning expertise and infrastructure, which

discourages rapid data analysis and adoption. We present a

zero-shot segmentation approach with appropriate appear-

ance & shape priors that addresses practitioner needs.

Current approaches. Major efforts have been made to ad-

dress these challenges. Domain adaptation methods train

on annotated source domain images and either adapt trained

networks to unlabeled target domain images [37] or perform

cross-domain image translation [10, 40]. Unfortunately,

these approaches typically succeed only when source and

target domains are closely related [49]. Importantly, they

also require biomedical specialists to train unstable and

artifact-prone generative models (e.g. CycleGAN [54]) for

each new dataset and to produce or acquire structurally sim-

ilar annotated datasets to use as source domain data.

Another generalist approach collects large-scale inter-

modality real-world annotated images for supervised train-

ing [38,44]. However, these methods require the new data to

be well represented in the training corpus and are currently

limited to 2D due to the difficulty of volumetric labeling. To

our knowledge, there is no large-scale multi-organism and

multi-modality corpus of 3D annotated instances to enable

such generalist training with real data. Recent semantic seg-

mentation methods in neuroimaging [4, 5] employ domain

randomization [46] and use training labels to simulate syn-

thetic training images to generalize to new modalities and
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Figure 1. Qualitative results. After training an instance segmentation network only on 3D synthetic images generated by the

AnyStar generative model, a single trained network can segment foreground objects in real biomedical images across several imag-

ing modalities, contrasts, and organisms without ever having seen any real images prior to testing and without any retraining or adaptation.

imaging configurations without finetuning in settings with

relatively low variation such as anatomical neuroimage seg-

mentation. In contrast, our goal of instance segmentation

for several distinct biomedical foreground objects in arbi-

trary environments across organisms significantly expands

image variability and necessitates novel methodology.

Contributions. We present AnyStar, a generative model

that synthesizes generalist training data to enable instance

segmentation networks to segment any star-convex instance

across bio-microscopy and radiology (Fig. 1). Biomedical

targets such as nuclei and nodules can often be approxi-

mated by blob-like star-convex shapes [41, 50]. Using this

prior, we simulate image-label training data with domain-

randomized object appearances, environments, densities,

and imaging physics. An instance segmentation network

trained using AnyStar gains empirical contrast-invariance

in arbitrary environments. As a result, this network gen-

eralizes to five completely unseen datasets across biomed-

ical microscopy and radiology without retraining. An

AnyStar-trained network approaches the segmentation

accuracy of fully and weakly supervised domain-specific

networks that require expensive annotations and outper-

forms supervised and/or pretrained networks when they are

presented with out-of-domain data. Finally, we investigate

several generative modeling ablations with distinct intensity

prior assumptions and find that a single generalist model

that incorporates all assumptions is often sufficient.

2. Related work

Biomedical instance segmentation. Established non-

deep learning frameworks [8, 28, 35, 43] typically use

Otsu [36], feature engineering, and Watershed-based [3]

pipelines to segment foreground objects. Using deep net-

works, early supervised semantic segmentation methods

segmented cluttered objects by modeling a boundary class

for improved separation [11, 18]. More recently, instance

segmentation frameworks such as region-proposing [48,53]

and spatial embedding [26] networks typically achieve bet-

ter instance-specific performance. In particular, [41, 50]

found that fitting instances using star-convex shapes led to

improved biomedical instance segmentation due to the wide

applicability of the star-convex shape prior. Building on the

star-convex shape prior, we develop a generative model that

removes the need for retraining or adaptation and yields a

universal star-convex instance segmentation network.
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(a) Synthetic Seg. (b) GMM X Perlin (c) Synthesized augmented samples for training (labels not shown)
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Figure 2. Generative model. Starting from n labels in a synthetic segmentation L (col. 1), we sample intensities in g(L) from a n-

component GMM which is pointwise modulated by Perlin noise (col. 2). A carefully designed augmentation sequence A(·) then simulates

training data for instance segmentation (cols. 3–6). Rows 1–3 showcase ablations with different specified priors over structure and contrast.

Domain adaptation using generative models. Given an

annotated source dataset and a source-domain trained seg-

mentor, cycle-consistent GAN losses are often used to close

the domain gap to unlabeled target datasets. While suc-

cessful in both microscopy [14, 27, 30, 52] and radiology

[9,10,23,40], these methods require domain pairs to contain

similar structures for stable training and require retraining

on each new dataset. In contrast, our method does not re-

quire source data (whether annotated or not) for training as

it does not need to adapt to new domains at test time.

Generalist models and few-shot prompting. Recently,

large models pretrained on multiple real datasets have

achieved strong segmentation performance on unseen natu-

ral and biomedical 2D datasets using test-time prompts like

points/bounding boxes [25] and context sets [6]. 2D mod-

els such as Segment Anything [25] can be applied zero-shot

slice-wise as well to biomedical images but require finetun-

ing and/or interactive filtering of extraneous predictions for

usable performance [12,22,33]. Further, they are practically

hard to finetune as 3D biomedical datasets with instance an-

notations are exceedingly rare and small in sample size, thus

hindering their biomedical application. From another per-

spective, generalist bio-microscopy methods [38,44] merge

several 2D datasets to train models on diverse real images

with the aim of generalizing to similar images. We in-

stead perform 3D segmentation directly, focus only on star-

convex objects, require no interaction or context sets, do not

necessitate acquiring multiple real datasets, and generalize

to structures not represented in multi-dataset corpora.

Realistic synthetic image generation. Another class of un-

supervised methods simulate label maps and train dataset-

specific generative models to simulate training images [14–

17, 21, 34]. These approaches typically train CycleGAN-

like models to translate between the simulated organism-

specific labels and real images from the target dataset. They

then use the trained generative model to generate image-

label pairs to train a second dataset-specific segmentation

network. Our approach differs as it synthesizes both images

and labels in a domain-agnostic manner and our generative

model does not require any domain-specific training.

Biomedical domain randomization. Instead of synthesiz-

ing high-fidelity photorealistic training data, domain ran-

domization methods [20, 46, 47] anticipate domain shifts

at deployment by synthesizing unrealistic training exam-

ples with much higher variability using fully-controllable

generative models. Consequently, domain-randomized se-

mantic segmentation networks using a small number of

training labels (without corresponding real images) [4, 5]

achieve strong generalization across modalities and resolu-

tions in neuroimaging. In our work, alongside appearance

randomization, AnyStar also performs label randomiza-

tion to train a universal star-convex instance segmentor for

disparate organisms in variable imaging environments.

3. Methods

Star-convexity. A set S ⊂ R
n is star-convex if there ex-

ists an element s0 ∈ S that can be connected to each s ∈ S
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Spatial Crop (p = 1.0)
crop size 64 x 64 x 64

Affine Deformation (p = 1.0)

per-axis translations ~ U[-16, 16]
per-axis rotations ~ U[-π/4, π/4]
global scaling ~ U[0.28, 1.82]

global shear range ~ U[0.5, 1.5]
(reflection-padding)

Bias Field (p = 1.0)
3rd degree polynomial

coefficients ~ U[0.0, 0.1]

Gaussian Noise (p = 0.25)
μ = 0.0, σ = 0.1

K-space Spike (p = 0.2)

intensity range ~ U[0.95i, 1.10i]
(i is mean log-intensity)

Gaussian Blur (p = 0.8)
(independently per xyz axis)
σx ~ U[0, 1/3], σy ~ U[0, 1/3]

σz ~ U[0, 1/3]

Rician Noise (p = 0.2)
μ = 0.0, σ = 0.05

Gibbs Ringing (p = 0.5)
K-space mask radius ~ U[0, 0.5]

Gaussian Sharpen (p = 0.25)
amount ~ U[10, 30]

σ1 ~ U[0.5, 1.0], σ2 = 0.5
Gamma Adjust (p = 0.8)

γ ~ U[0.5, 4.5]
Histogram Shift (p = 0.1)

10 control points
Axis-aligned Flip (p = 1.0)

90° Rotation (p = 1.0)

Elastic Deformation (p = 1.0)
smoothing kernel σ ~ U[2, 5]
offset magnitude ~ U[8, 20]

(zero-padding)
Cutout (p = 0.2)

20 holes
spatial size 12 × 12 × 12

Foreground Noise (p = 0.2)
Type ~ U{Gauss., Poisson, Speckle}
μ = 0.0, σ = 0.1 if Gauss. or Speckle

(GMM × Perlin, Label) Sample

Synthesized (Image, Label)
Min-max [0, 1] Intensity Rescale

Figure 3. Augmentation pipeline A(·). AnyStar augmentations and their probabilities p and hyperparameters (white boxes), read top-

to-down left-to-right. Inputs and outputs are outlined in grey boxes and joint image-label and image-only augmentations are depicted by

red and blue boxes, respectively. µ and σ denote means and standard deviations and other notational conventions follow [7].

by a line segment entirely within S. Following [50], we as-

sume 3D biomedical foreground objects to be star-convex

polyhedra parameterized by distances to the object bound-

ary along pre-defined unit rays from each internal voxel.

Label synthesis. We first generate synthetic discrete fore-

ground label maps (Fig. 2a) with oblong and irregularly

shaped instances by adopting an existing synthetic nuclei

generation approach [51]. Specifically, we place n spheres

of radius r and centers ci, i = {1, . . . , n} at the vertices

of a regularly spaced 3D grid. The spheres are then in-

dependently randomly translated and scaled and up to a

third of them are randomly removed. To simulate non-

spherical shapes, the distances dij between each voxel j

(with coordinates xj) and object centers c1, . . . , cn are cor-

rupted by voxel-wise additive Perlin noise pj [39] as dij =
∥xj−ci∥2+0.9rpj . Voxel j is then assigned instance label

i if mini d
i
j < ri and is considered background otherwise.

These initial label maps are zero- or reflection-padded in-

dependently along each axis to simulate varying instance

densities and are scaled to a common image grid. We note

that other label simulation approaches such as randomly

distorted ellipsoids [45] would yield visually similar images

using our image synthesis pipeline described below.

Intensity mixture modeling. Given a label map L with

n instances, we synthesize an initial image g(L) (Fig. 2b).

We sample foreground intensities of g(L) from an n-

component Gaussian mixture model (GMM) whose param-

eters {µi, σi}
n
i=1 are drawn from a uniform distribution for

each image. If a foreground voxel belongs to instance i,

then its intensity is sampled from N (µi, σ
2
i ). We then ap-

ply multiplicative Perlin noise to emulate the spatial texture

(e.g., staining differences) common in biomedical imaging.

Background synthesis. To model variable backgrounds

and environments in g(L), we investigate several choices

corresponding to the rows of Fig. 2. To synthesize bright

foreground instances, we model background intensities as

an additional (n + 1)th component in the GMM described

above with µn+1 < min{µ1, . . . , µn}. Alternatively, to

simulate instances that may be brighter or darker than their

surroundings, we simply sample µ1, . . . , µn+1 uniformly at

random as before. However, both assumptions do not yet

account for instances that may be embedded in strongly tex-

tured environments with non-star-convex background struc-

tures as in radiology, for example. We therefore build on the

shapes generative model of [20] to simulate b ∼ U{1, B}
random geometric shapes in the background, again using

a b-component GMM. To generate spatial background sub-

categories to later assign GMM components, we sample a b-

channel Perlin noise volume and deform each channel inde-

pendently with a smooth deformation. We next assign each

background voxel a background sub-category correspond-

ing to the channelwise argmax (not used during segmenta-

tion training). We then draw from a b-component GMM for

each background voxel analogously to the foreground.

Ablations. Our complete generative model, AS-Mix, uses

all three of the above background models and randomly

assigns one to each synthesized sample. Our generative

model ablations include AS-BrightFG-PlainBG and

AS-RandFG-PlainBG which simulate bright and ran-

domized contrast foreground instances on untextured back-

ground, respectively. AS-RandFG-PerlinBG only uses

textured backgrounds with randomized foreground contrast.

Augmentation sequence. L and g(L) are sampled to lie

on a 1283 grid and are augmented by an extensive pipeline

A(·) to generate the final training images as illustrated in

Fig. 2 cols. 3–6. We randomly crop 643 subvolumes, fol-

lowed by affine spatial deformations (translations, rotations,

scales, and shears) with reflection padding used to simu-

late variable instance densities. We then employ several in-

tensity augmentations including random bias fields, k-space

spikes, Gibbs ringing, sharpening, gamma adjustments, and

cutout [13] to simulate variable imaging artifacts. Further,

Gaussian blurring along each axis independently is used to
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Table 2. Experimental datasets. 3D datasets used for evaluations. No real volumes are used for AnyStar training. Training data listed

below are only used for training supervised baselines and validation data are used to tune probability and NMS thresholds only.

Name Organism Modality Image Resolution Image Grid #train #validation #test

CE [19, 31, 32] C. elegans Fluo. Mic. 0.116× 0.116× 0.122µm3 1050× 140× 140 18 3 7

NucMM-Z [29] Zebrafish sEM 0.480× 0.510× 0.510µm3 64× 64× 64 25 2 27

NucMM-M [29] Mouse µCT 0.480× 0.510× 0.510µm3 192× 192× 192 4 - 4

PlatyISH [26] P. dumerilii Fluo. Mic. 0.450× 0.450× 0.450µm3 300× 300× 300 2 - 1

Placenta Human BOLD 3.000× 3.000× 3.000mm
3 80× 80× 64 Qualitative evaluation

simulate partial voluming common to anisotropic biomedi-

cal images. This is followed by spatial deformations using

random axis-aligned flips, 90◦ rotations, and elastic defor-

mations with zero padding. Zero padding and cutout are

used at the end of A(·) to simulate blank regions common in

bioimaging. Finally, we add Gaussian, Poisson, or speckle

noise to the non-zero regions. All augmentations and their

stochastic probabilities are summarized in Fig. 3.

Segmentation network. While the training data produced

by our generative model can train any 2D or 3D instance

segmentation network, we use a StarDist network [50]

as it matches our expected shape prior. StarDist re-

gresses distance maps and “centerness” probability maps

whose dense label predictions are filtered by non-maximum

suppression to obtain final segmentations. We use its de-

fault losses and hyperparameters with 96 rays. As we focus

on data generation, we train identical architectures and loss

functions for all ablations and upper-bound supervised net-

works and change only their training and validation data.

Implementation details. The same 5-resolution U-Net ar-

chitecture (with 2× Conv-BN-ReLU blocks) is used for

all methods, starting with 32 convolutional channels at the

highest resolution and doubling thereafter after each max-

pooling for all training runs. All networks are trained for

180,000 iterations using the Adam optimizer [24] with an

initial learning rate of 2 × 10−4 which is linearly decayed

to 0. Fully and weakly-supervised baseline StarDist

networks use the same architecture and optimization as

AnyStar, with their augmentations and training durations

adjusted for their optimal performance. For fair compar-

ison, we tune the object detection probability and non-

maximum suppression thresholds of StarDist for all ap-

plicable methods on validation data as in [41, 50]. All

StarDist networks are implemented using the open-

source library: https://github.com/stardist

and all augmentation implementations are taken from

MONAI [7]. Due to AnyStar’s extensive augmentation

pipeline which can CPU-bottleneck training, we sample

hundreds of thousands of augmented synthetic training vol-

umes offline alongside using inexpensive on-the-fly aug-

mentations during training. Further implementation details

are provided in the supplementary material.

4. Experiments

Data and preprocessing. Table 2 summarizes the

datasets and splits evaluated in this work. Our experimen-

tal data includes publicly available annotated datasets (CE,

NucMM-Z & M, PlatyISH) and a clinically-acquired fe-

tal EPI MRI time-series dataset (Placenta) which is not

annotated and thus qualitatively evaluated. These datasets

are highly diverse and include a wide variety of object con-

trasts, densities, and background environments (Fig. 1, top).

As NucMM-M and PlatyISH have limited samples, vali-

dation is performed on a held-out crop from the training set.

For the qualitative clinical application, we aim to seg-

ment individual placental cotyledons in Placenta images

as their MRI intensities are critical for characterizing fetal

oxygenation [1]. Therefore, non-placental tissue is removed

from the images using a publicly-available network [2] to

focus on placental cotyledons. Further preprocessing de-

tails such as image registration, cropping, and resizing are

provided in the supplementary material for all datasets.

Baselines. We establish upper-bounds on performance us-

ing StarDist networks trained using all or one of the tar-

get dataset’s training images, corresponding to fully- and

weakly-supervised settings. Weakly-supervised networks

are not trained for NucMM-M and PlatyISH datasets due

to their limited sample sizes and supervised networks are

not trained for Placenta as it does not have training la-

bels. We assess the out-of-domain performance of these

dataset-specific networks using the other datasets contain-

ing similar shapes and contrast. As AnyStar does not use

real images or annotations, its performance is expected to

lie between out-of-domain and fully-supervised baselines.

To test the performance of synthetic domain-randomized

training data over collections of large-scale multi-dataset

real images, we also compare against the generalist pre-

trained cyto and nuclei models available in Cell-

Pose [38]. These models are trained on large-scale publicly

available real (non-synthetic) 2D biomedical microscopy

images with manual annotations and are used as general-

purpose microscopy image segmentors. As suggested, we

use their slice-by-slice and along-all-planes 3D segmenta-

tion implementation in our experiments, tune the object di-

ameter hyperparameter manually on validation data, and in-
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A. Ablation Analysis
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Figure 4. Quantitative results. A. Top: Accuracy vs. IoU threshold analysis of the proposed ablations and target dataset-trained fully

and weakly-supervised upper bounds across four 3D datasets. Bottom: Accuracies at an IoU threshold of 0.5 for easier inspection.

B. Benchmarking zero-shot segmentation performance against fully-supervised networks trained on similar images from different but

structurally-similar datasets. C. AnyStar networks are more stable against blur as opposed to domain-specific fully-supervised networks

trained with blur augmentation. D. Zero-shot instance segmentation enables region-specific temporal analysis of placental MRI.

vert image contrast on the NucMM-M dataset where fore-

ground units have dark contrast. We note that compar-

isons between our work and CellPose are confounded by

changes in architecture and training loss. Lastly, we ex-

clude Segment Anything [25] from comparisons as it is a 2D

model, requires significant manual interaction in the form of

points or bounding boxes for each 2D slice within large 3D

biomedical volumes, and needs users to manually filter mul-

tiple extraneous region predictions in its zero-shot mode.

Evaluation criteria. All results are reported on held-out

test data. To measure performance, we follow established

instance segmentation evaluation strategies. A predicted in-

stance is considered a true positive if it overlaps with a la-

beled instance by more than a specified IoU threshold. As

in [26,38,44,50], to jointly measure detection and segmen-

tation quality, we report mean accuracy computed against

increasing the IoU threshold from 0.1 to 0.9 for in/out-of-

domain supervised methods and our ablations. Further, as

deployed networks may encounter unforeseen image cor-

ruptions, we measure the performance change of AS-mix

and the fully-supervised network (trained with blur aug-

mentation) when evaluated on images from the highest-

resolution dataset (CE) with increasing strengths of Gaus-

sian blurring. We report the mean average precision for

these experiments at an IoU threshold of 0.5 with accu-

racy reported in the supplement. Lastly, previous work

on placental oxygenation reports average BOLD intensity

across time for the entire placenta which obfuscates differ-

ences between distinct subregions [42]. We speculate that

cotyledon instance segmentation may reveal biomedically-
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Figure 5. Out-of-distribution and ablation result visualization. A. Visualizations of zero-shot segmentation performance against

fully-supervised networks trained on similar images from other domains. B. The outputs of ablation models on a mouse visual

cortex sample (NucMM-M) with dark foreground (nuclei) contrast in µCT. Ablations using a narrow mis-specified intensity prior

(AS-BrightFG-PlainBG) do not generalize across organisms and illustrate the importance of randomizing object contrast.

relevant cotyledon intensity time series within placentae.

4.1. Results

Fig. 1 visualizes zero-shot segmentation predictions using

AS-mix on all five datasets. Figs. 4 and 6A report relevant

quantitative statistics. We observe the following:

AS-mix achieves strong inter-dataset generalization.

While a specific ablation may outperform others on a

specific dataset, usually when its priors match the tar-

get dataset appearance, AS-Mix achieves consistently

strong performance across all datasets (Fig. 4A). The

AS-BrightFG-PlainBG ablation which trains only on

images with bright foreground objects predictably fails

when the target dataset (NucMM-M) has foreground in-

stances with dark contrast as visualized in Fig. 5B. Con-

sequently, we recommend AS-Mix over other ablations for

general use, unless the target dataset has a consistent inten-

sity pattern matching one of our other ablations.

AnyStar outperforms pretrained networks on unseen

datasets. Fully supervised methods provide an upper bound

for in-domain performance when large sets of annotated im-

ages are available and task-specific models can be trained.

Surprisingly, AnyStar approaches the performance of in-

domain supervised methods without any in-task training

data. Importantly, relative to supervised networks evalu-

ated on unseen datasets containing instances of similar size,

appearance, and contrast, AnyStar demonstrates consis-

tently better performance (Figs. 4B, 5A). Representing a

mild domain shift, a supervised network trained with ex-

tensive augmentation on PlatyISH nuclei in fluorescence

microscopy does not generalize as well to CE nuclei as

AnyStar, which has never seen this modality. When eval-

uated on a larger domain gap via the NucMM-Z dataset, the

fluorescence microscopy models trained on instances with

similar contrasts underperform, whereas AnyStar pro-

duces better segmentations (Figs. 4B, right; 5A, top).

In Fig. 6, in comparison to CellPose’s pretrained cyto

and nuclei models, we find two distinct outcomes. On

CE and PlatyISH whose imaging modality (fluorescence

microscopy) and shapes (nuclei) are well represented in

the CellPose training data, AS-Mix performs similarly to

these pretrained models (Fig. 6A, left col.). However, on

datasets containing imaging modalities unseen by CellPose

(NucMM-Z & M), AS-Mix generalizes better, highlighting

the benefit of training on randomized synthetic appearances.

AnyStar gains robustness to blur degradation

(Fig. 4C). Compared to a network trained with all avail-

able CE training data and augmentation (including blur),

AnyStar-mix better maintains segmentation performance
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Figure 6. Comparison against generalist models. A. Accuracy vs. IoU threshold analysis of our model and two pretrained generalist

CellPose models trained on a large multi-dataset corpus of real images [38, 44]. B. Arbitrarily selected segmentation examples from the

NucMM-M and NucMM-Z datasets produced by our model and CellPose. White arrows point to false positive predictions.

as test images are progressively corrupted by Gaussian

filtering, indicating improved robustness to texture changes.

AnyStar enables exploratory data analysis on unla-

beled data. We select an arbitrary Placenta subject and

compare the EPI time course over 321 motion-stabilized

frames for the entire placenta vs. the average temporal in-

tensities of the centroids of the segmented cotyledon re-

gions. We smooth both their normalized intensities by a

temporal Gaussian kernel with σ = 3.0. In Fig. 4D, using

AS-mix we visualize the relative BOLD intensity changes

in cotyledon subregions within the placenta with maternal

oxygenation which showcases AnyStar’s practical utility

on unlabeled datasets for exploratory data analysis. Further

cotyledon segmentations are provided in the supplement.

5. Discussion and conclusions

Limitations and future work. The presented method has

limitations which will be addressed in future work. For

example, by definition, contrast invariant AnyStar net-

works will segment any star-convex object. This property

may yield task-irrelevant predictions on datasets containing

multi-contrast star-convex instances with only a few con-

trasts being of interest. However, task-specific prediction

filtering methods based on intensity and shape priors would

directly address these applications. Also, as AnyStar does

not currently represent non-star-convex objects such as neu-

rons and vessels, multiple other shape priors can be inte-

grated into future pipelines. Further, due to strong variabil-

ity in biomedical image scales and the lack of a canoni-

cal resolution (as in neuroimaging [5]), we use sliding win-

dow inference on large volumes that performs best when

the patches contain objects that are sized similarly to the

simulated objects. We expect that multi-scale training and

inference methods would overcome this limitation. Im-

portantly, dataset-specific (re-)training typically improves

performance over zero-shot methods. If retraining exper-

tise and infrastructure are available in biomedical centers,

AnyStar can produce zero-shot segmentations that can be

quickly refined to construct training sets, thereby reducing

annotation effort and enabling rapid prototyping.

Conclusion. In contrast to proposing a new architecture

or loss, we focused on synthesizing data to train a gener-

alist biomedical instance segmentation model. To that end,

we developed AnyStar, a domain-randomized generative

model with a carefully designed stochastic appearance and

shape model to simulate variable biomedical environments.

A single network trained on the synthesized data zero-shot

segmented 3D biomedical objects across five unseen radiol-

ogy and bioimaging datasets without any form of retraining

and yielded both strong evaluation performance relative to

current generalist approaches and enabled a novel and pre-

viously infeasible clinical application in fetal MRI.
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