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Figure 1. This paper presents a pre-training model that learns facial omni-representations via a prototype-based self-distillation (ProS) .
For pre-training, ProS learns a general face representation from given large-scale unlabeled face images. Afterwards, the learned omni-
representaion can be conveniently utilized in multiple downstream tasks by simple fine-tuning.

Abstract

This paper presents a novel approach, called Prototype-
based Self-Distillation (ProS), for unsupervised face rep-
resentation learning. The existing supervised methods
heavily rely on a large amount of annotated training fa-
cial data, which poses challenges in terms of data collec-
tion and privacy concerns. To address these issues, we
propose ProS, which leverages a vast collection of unla-
beled face images to learn a comprehensive facial omni-
representation. In particular, ProS consists of two vision-
transformers (teacher and student models) that are trained
with different augmented images (cropping, blurring, col-
oring, etc.). Besides, we build a face-aware retrieval sys-
tem along with augmentations to obtain the curated images
comprising predominantly facial areas. To enhance the dis-
crimination of learned features, we introduce a prototype-
based matching loss that aligns the similarity distributions
between features (teacher or student) and a set of learn-
able prototypes. After pre-training, the teacher vision trans-
former serves as a backbone for downstream tasks, includ-
ing attribute estimation, expression recognition, and land-
mark alignment, achieved through simple fine-tuning with
additional layers. Extensive experiments demonstrate that

our method achieves state-of-the-art performance on vari-
ous tasks, both in full and few-shot settings. Further, we in-
vestigate pre-training with synthetic face images, and ProS
exhibits promising performance in this scenario as well.

1. Introduction

Learning good face representation is crucial for face
analysis tasks such as face recognition [ 14,44,45,52,61,60,
78-80], attribute estimation [8, 48, 70], expression classifi-
cation [85, 93], landmark localization [32,40, 82]. Among
these tasks, existing state-of-the-art (SoTA) methods own
their success not only to the sophisticated network design
but also large-scale training datasets. However, acquiring
manually-annotated large-scale facial images is expensive
and difficult for large labor-work and privacy issues [25].
For instance, it is hard to obtain the consent of all involved
identities for face recognition datasets.

Recently, self-supervised learning has gained intensive
interest due to the remarkable success of training general-
izable models in both natural language processing [5, 10,
59,60] and computer vision [1, 10,12,24,26,27,54,83,90].
Such a pre-trained model has shown the following advan-
tages: (a) the learned feature shows superiority on transfer-
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Figure 2. The proposed prototype-based self-distillation method. There are two branches: global and local. The global and local images
are obtained through the multi-crops [9, 10]. To obtain the curated face images in local branch, we propose a face-aware retrieval system
followed by the augmentations. The teacher and student models have the same vision-transformer architectures (ViT-S/16) but with
different parameters. The self-knowledge-distillation between the student and teacher features is penalized via the similarity distribution
between features and the learnable prototypes. By this, the networks are forced to leverage the mutual semantics between local and global

views.

learning especially in few-shot settings, where it achieves
a promising performance when data acquisition is limited.
(b) the learned model is scalable for further development on
diverse downstream tasks. To our acknowledgment, only
few works [6,95] explored the semi/self-supervised learning
on face model. FaRL [95] explored a contrastive loss and
masked image modeling for learning features from image-
text pairs. FRL [6] learned the face representation based on
ResNet [28] via SWAV [9].

Different from those previous methods, we propose a
vision-transformer framework for learning face representa-
tion via prototype-based self-distillation (ProS). As shown
in Figure 1, ProS aims to learn the advanced feature repre-
sentations given large-scale face images without labeling.
In particular, ProS is trained in self-knowledge-distilling via
a local-to-global manner. Our work is inspired by DINO
[10] but with (i) a modified sample-to-prototype matching
loss and (ii) a proposed face-aware retrieval system for cu-
rated data augmentation.

As shown in Figure 2, the global and local images are
obtained from the same input image via multi-crop [9, 10]
followed by the proposed face-aware retrieval system. The
face-aware retrieval system aims to filter out most non-face
images. Afterward, the curated images are fed into two sets
of separate augmentations. The augmented images in global
and local views are given to the teacher and student mod-
els respectively. By matching the features extracted from
the teacher and student models, the loss gradient is back-
propagated to the student model only for updating param-
eters. The parameters of the teacher model are updated
through the exponential moving average [24].

During training, we observed that there are certain
amounts of non-face images obtained in the local view as

BN
U

(a) uncurated

(b) curated

Figure 3. The multi-cropped samples from MS1M [25]. We com-
pare the (a) uncurated and (b) curated local samples with/without
the facial-retrieval system. The global images are shown on top
for reference. The non-face images (with red bounding boxes) are
deduplicated.

highlighted by the red bounding boxes in Figure 3(a). Re-
cent studies show those unidentifiable images are detrimen-
tal to the training procedure [37]. To eliminate those out-
liers, we build a face-aware retrieval system. In particular,
we compute the face embeddings using the pre-trained Ar-
cFace [14] for both the global and local images. The cosine
similarity is used as a distance measure between local and
global images. We displace those local face images with
similarities lower than a threshold. We demonstrate two cu-
rated samples for the same input images in Figure 3(b).
After the face-aware retrieval system, we find there are
lots of variations in the curated images. To boost the feature
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discrimination, we introduce a set of learnable prototypes
during training. Instead of directly computing the similar-
ity of the features between the teacher and student sam-
ples, we compute two sample-to-prototype distributions:
one between teacher samples to the prototypes, and the
other one between student samples to the prototypes. We
use the differences between these two distributions to penal-
ize the model training. In this manner, both the prototypes
and teacher-student models are optimized in every iteration
where the features try to get close to positive prototypes
and keep away from negative prototypes [15]. In addition,
to mitigate the privacy issue of using real face data, we also
explore synthesized face images for learning face represen-
tations. In particular, we simply train a StyleGAN2 [33,36]
from scratch on MSIM [25]. The synthetic data is gener-
ated by randomly-sampled noise from a normal distribution.

To this end, our contributions in this paper can be sum-
marized as follows:

* We propose a novel pre-training framework (ProS) for
learning facial omni-representation from large-scale
face images without labeling. A learnable prototype-
based matching loss and a face-aware retrieval system
are introduced along with ProS.

* We conduct extensive experiments for evaluating ProS
on various face analysis tasks. Our proposed ProS can
achieve state-of-the-art results over different baselines
on all the tasks in few-shot settings.

* We explore the capability of ProS on synthetic face im-
ages. To our best knowledge, ProS is the first to work
on self-supervised pre-training on large-scale synthetic
face images. We show that our method still obtains
promising performances.

2. Related work

We walk through the related literature on self-supervised
training, facial representation learning, and face synthesis
in this section.

2.1. Self-supervised training

Self-supervised learning methods [3,9, 10, 12, 13,26, 54,

,96] have gained remarkable attention as an effective un-
supervised learning strategy for learning robust image rep-
resentations and eliminating the need to annotate vast quan-
tities of data manually. For instance, SimCLR [12] maps
the initial embeddings from two augmented views of an im-
age into another space where the infoNCE loss is applied to
encourage similarity between the views. DINO [10] feeds
two different views of an image into the teacher and stu-
dent encoders and maps the student network’s weights to
the teacher’s by a moving average. SWAV [9] simultane-
ously clusters the data while enforcing consistency between

cluster assignments when given different augmented views
of an image. In addition, MAE [26] and SimMIM [90] are
two concurrent masked image modeling (MIM) that directly
reconstruct masked image patches.

2.2. Facial representation learning

Existing face representation learning methods can be
categorized into two classes: the proxy-based learning
[14,44,45,61,78-80] and pair-wise learning [25, 52, 66].
As the class labels are known, proxy-based learning aims
to optimize the similarity between given samples and a set
of proxies representing each class. On the one hand, those
methods [11, 14,31,37,44,73,78,80] put a margin penalty
into the softmax loss and a global comparison between sam-
ples and proxies is conducted. On the other hand, those
methods [53, 62, 66,69,71,81,87] involve different triplet
strategies (representation selection, hard-mining) in mini or
larger batch to leverage the underline pairwise information.

Recently, a few studies have been done for face anal-
ysis on few-shot [4], weakly-supervised [95], and self-
supervised learning [0, 7, 86]. For instance, Browatzki et
al. [4] proposed a few-shot face alignment framework with
an image reconstruction by an auto encoder-decoder. Zheng
et al. [95] proposed the FaRL for pre-training the vision-
transformer model by leveraging the semantics between
web-text and face image pairs. Wiles et al. [86] introduced
a self-supervised manner for predicting the motion field be-
tween two facial images to learn efficient face representa-
tions. Vielzeuf et al. [77] introduced a common embedding
for multi-source features from different trained models by
an auto-encoding framework. Bulat et al. introduced the un-
supervised training model FRL [6] for pre-training ResNet
on the collected large-scale dataset.

2.3. Face synthesis

With the remarkable ability of GANs [22, 23], face syn-
thesis has seen rapid developments, such as StyleGAN [35]
and its variations [33, 34, 36] which can generate high-
fidelity face images from random noises. Synthetic face
data has shown significant improvements on various tasks
such as learning pose-invariant models [17, 75, 91, 94],
cross-spectrum models [18, 19, 56, 92], bridging domain
gaps [43], serving as a training set [38], as well as reduc-
ing data bias [39, 58, 63, 69]. Unlike previous methods,
we explore the possibility of using synthesized face images
for self-supervised pre-training. We hope the synthetic data
could be used as an alternative to real face images to avoid
privacy issues when collecting data.

3. Proposed method

The proposed prototype-based self-distillation pre-
training method is illustrated in Figure 2. In particular, it
contains two branches: the global and the local. The global
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and local images are multi-cropped from the same original
image, resized at different scales and fed into the teacher
and student models separately to obtain the corresponding
features.

During the experiments, we find there are some non-face
images cropped from the local branch which could diminish
the discrimination of the learned features. Therefore, a face-
aware retrieval system has been built for eliminating non-
face images. Specifically, we utilize the pre-trained Arcface
[14] to extract the features from both the global and local
images. We filter out the local images that have a lower
cosine distance between local-global features. In this paper,
we set the distance threshold § = —0.5 € [-1.0,1.0] by
visual inspection of the retrieval results.

Inspired by recent findings [37, 68] that a high” simi-
larity score would be obtained from features of low-quality
face images, a set of prototypes is utilized for penalizing the
knowledge distillation. During each training iteration, the
similarity scores are calculated between the teacher/student
image features and these memorized prototype features in-
stead of directly between the teacher/student features them-
selves. The cross-entropy loss is calculated between the
similarity vectors. The student network parameters are op-
timized by back-propagating the loss gradient while the
teacher network parameters are updated via an exponential
moving average (EMA) of the student parameters [24]. Ad-
ditionally, the prototypes are also optimized along with the
network parameters by backpropagation.

3.1. Prototype-based self-distillation

Given a large-scale collection of unlabeled face images,
the knowledge distillation aims to train the teacher and stu-
dent models, parameterized as 6;, 65, for matching the out-
put features fp, (x) and fy, (x) given an input image x.

In each iteration, we sample a mini-batch of B images
{x;}B,. The global images {x? ..}M | are obtained
by a random crop of i-th original images followed by a
set of global augmentations. Similarly, the local images
{xL ..}V, are based on another random crop of i-th orig-
inal image followed by a set of local augmentations. For
brevity, we omit the captions as x?, and x!,. Following
prior work [21], we “patchify” the input images into a set
of sequential patches without overlapping. After, the global
and corresponding local patches are fed into the teacher and
student models respectively.

Let fo,(x9,) € R and fy, (x!) € R? denote the d-dim
feature vectors obtained from teacher network and student
network respectively. Additionally, a set of the learnable
prototypes is denoted as p € R¥*?. Instead of directly
utilizing the teacher and student features, we use the cosine
similarity between the student/teacher feature and these pro-
totypes as the features. The prediction is calculated as fol-

lows:

(p'feil(xln)) s9 :softmax(%(xgn))v (1)

I _
s,, = softmax ;89

where - denotes the dot product and 7, € (0,1),7; € (0,1).
All the output features are L, normalized to mitigate the
scale influence. To prevent the model collapse, we choose
T4 to be smaller than 7;, and the global sharpening is uti-
lized by so ftmax during training. The training objective is
defined as follows:

B
EZ Sgrwsn H(gl)a (2)

where H;(s9,, s.,) is the i-th cross-entropy between s¢,, sl,
as Eq (3):
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while H(3') is the entropy regularization [2] as Eq (4):
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3.2. Model architecture

The teacher and student models are the vision-
transformer encoders [21,74]. For a fair comparison with
other face analysis tasks, ViT-S/16 [74] is chosen, whose
number of parameters is similar to the common ResNet-
50 [28] (21M vs 23M). Specifically, ViT-S/16 is a 12-layer
384-width visual transformer with 224 x 224 resolution in-
put. In our work, the global input images are 224 x 224
while the local images are 96 x 96. These global/local im-
ages are firstly split into 14 x 14 and 6 X 6 patches re-
spectively. Thus, one learnable cls token is prepended to
the 196/36 embedding. In pre-training, additional 3 fully-
connected layers are added as the projector to the output
transformer for further optimization by Eq. (2). The pro-
totypes are a set of learnable variables with random initial-
ization. We set the output feature dimension as 256 as the
prototypes.

3.3. Pre-training details

The teacher and student models are trained from scratch
with randomly initialized parameters. The total training
runs 20 epochs with a total batch size 64 x 4 on 4 Nvidia
3090 GPUs. The AdamW optimizer is utilized with weight
decay as 0.04. The initial learning rate is 0.0002 with 2
warmed-up epochs to 0.001 and then cosine decay to 1le — 6
in the next 18 epochs. The teacher/student temperatures
are set as 0.025 and 0.1. The number of prototypes is set
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Figure 4. Samples of synthetic face images.

to 1,024. The learnable prototypes are randomly initial-
ized with a uniform distribution between [—1/+/d, 1/1/d),
where d is the output dimension here. The prototypes are
updated iteratively along with the network parameters by
back-propagation. To make use of all the unlabeled images,
we directly input the raw face images for pre-training with-
out any further preprocessing like face detection, cropping,
or alignment.

3.4. Synthetic data

We train the original StyleGAN2 [36] on MS1M dataset
[25] to obtain the synthetic data. In particular, the images
are all resized to 256 x 256 to train the adversarial gen-
erative networks. The “paper256” setting [33] is utilized.
When training on different data sizes, images are randomly
selected. Once the training is completed, the synthetic face
images are obtained through the corresponding generator
via input noise vectors, which are sampled from a standard
normal distribution. Samples of the synthesized face images
are shown in Figure 4.

3.5. Downstream tasks

Face attributes recognition is a multi-class classification
task that predicts multiple facial attributes (e.g. gender, race,
hair color) given one facial image. In this work, we evalu-
ate the pre-trained model on two datasets: CelebA [48] and
LFWA [30,48], containing 202, 599 and 13, 143 images re-
spectively. They both have 40 annotated attributes per im-
age. Following the protocols [48, 70, 95] we use 162, 770
images for training and 19, 962 for testing on CelebA, and
6,263 images for training and the rest for testing on LFWA.
Other than the initial weights from ProS, we follow the
same protocols and the average accuracy on all attributes
is reported.

Face expression recognition is a single-class classification
task that estimates one facial expression (e.g. happy, anger,
disguising) of a given face image. We evaluate the pre-
trained model on two datasets: RAF-DB [41,42] and Af-
fectNet [51]. RAF-DB contains around 29,670 face im-
ages from real-world databases, of which 15,339 images
for 7 expression classifications. There are 12,271 images
for training and the remaining 3, 068 for testing. Affect-
Net [51] is a large-scale database for facial expressions. We
use the most challenging AffectNet8 (including the addi-
tional “contempt” category) data, with 287, 651 training im-
ages and 3, 999 testing images. The average accuracy from

all emotion classes is used as the evaluation metric.

Face alignment targets to regress the 2D coordinates of
face landmarks on a face image. We evaluate our pro-
posed model on two popular datasets: 300W [64, 65] and
WFLW [88]. 300W dataset contains 68 landmarks per face
with 3,837 training images and 600 testing images. The
WFLW dataset contains 68 landmarks as well, with 7, 500
training and 2, 500 testing samples. We measure the perfor-
mance by the normalized mean error (NME).

4. Experimental results

Besides the results in this section, more ablation stud-
ies, like “baseline methods pre-trained on face dataset” and
“numbers of prototypes”, can be found in supplementary
material.

4.1. Implementation

After pre-training, the teacher model is used for down-
stream tasks training with additional head(s), both with end-
to-end fine-tuning or head-only fine-tuning. For different
tasks, the head designs are slightly varied. We donate the
features from h-th head of k-th layer, including the last and
intermediate layers, of the visual transformer as feat; =
{fcls,lw ka, f2,k7 ce 7fh,k}7 where k = {1, 2, ey, 12}

In particular, we use the multi-task classifiers [8] for face
attributes classification. The cls-token feature vector from
the last layer (fc;s,12) is layer-normalized and appended
with 40 separate linear layers to generate the logits for bi-
nary classification on each attribute. The model is trained
with the averaged binary-cross-entropy loss on each head
and is optimized by AdamW [49]. We set the effective
learning rate as be — 4, weight decay as 0.05, and layer
decay as 0.65. The learning rate decreases to zero in 100
epochs.

For face expression recognition, we use the original ViT-
S/16 but change the last linear layer output dimension.
Specifically, the output vector dimension for RAF-DB is set
to 7, and AffectNet8 is set to 8. When fine-tuning, the learn-
ing rate is be—4, the weight decay is 0.5, and the layer decay
is 0.65. The total training epochs are 100 for RAF-DB and
10 for AffectNet8. Like previous settings [85], we use the
imbalanced data sampler for AffectNetS8.

For face alignment, the ground-truth landmarks are ren-
dered as Gaussian heat-map at a size of 128 x 128 with
o and values € [0,1] [32,82]. The non-cls tokens on layers
{4,6, 8,12} are utilized. To leverage the spatial distribution
of these tokens, we reshape each to the 2D feature map of
14 x 14. The UperNet [89] is followed to fuse these feature
maps from each layers to a final heat-map logits [47, 95].
Following the prior work [95], a simple soft-label cross-
entropy loss is utilized for training the model. We use the
AdamW with a learning rate of 0.01 and a weight decay of
le — 5.
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Table 1. Performance comparison of pre-trained models on various downstream tasks. We choose ViT-16/B for MAE due to the availability.

[Keys: Best, Second best]

Downstream Tasks

. . CelebA [48] | RAF-DB [41,42] | 300W [64,05]

Method Model - # of params | Pre-train Datasets | Data Scale | Supervision mAce. T mAce. T I S—
100% | 1% | 100% 10% 100% | 10%

DeiT [74] ViT-S/16 - 21M ImageNet-1K 1.3M images, labels | 90.79 | 88.27 | 87.87 75.36 3.40 4.34
MAE* [26] ViT-B/16 - 86M ImageNet-1K 1.3M images 91.16 | 90.17 | 88.33 76.84 3.36 4.13
DINO [10] ViT-S/16 - 21M ImageNet-1K 1.3M images 91.25 | 89.62 | 88.23 75.85 3.53 4.57
MSN [1] ViT-S/16 - 21M ImageNet-1K 1.3M images 91.17 | 89.99 | 87.81 76.21 3.48 4.26
FRL [6] ResNet50 - 23M Large-Scale-Face SM face images | 91.04 | 90.04 | 90.07 80.57 3.85 4.25
ProS-full-real VIT-S/16 - 21M MSIM 8.6M face images | 91.88 | 90.86 | 91.04 82.10 3.27 3.92

Table 2. Comparison with baseline methods of face attribute estimation on CelebA and LFWA datasets with limited data. The mAcc. 1 is

used as the evaluation metric. [Keys: SoTA , Best, Second best ]

Dataset CelebA [48] LFWA [30,48]
Portion 0.2% | 0.5% 1% 2% 100% 5% 10% 20% 50% | 100%
# of training data | 325 843 1,627 | 3,255 | 162,770 | 313 626 1,252 | 3,131 | 6,263
PS-MCNN [¢] - - - - 92.98 - - - - 87.36
Slim-CNN [67] | 79.90 | 80.20 | 80.96 | 82.32 91.24 70.90 | 71.49 | 72.12 | 73.45 | 76.02
FixMath [72] 80.22 | 84.19 | 85.77 | 86.14 89.78 71.42 | 72.78 | 75.10 | 80.87 | 83.84
VAT [50] 81.44 | 84.02 | 86.30 | 87.28 91.44 72.19 | 74.42 | 76.26 | 80.55 | 84.68
SSPL [70] 86.67 | 88.05 | 88.84 | 89.58 91.77 78.68 | 81.65 | 83.45 | 85.43 | 86.53
FARL [95] 88.51 | 89.12 | 90.24 | 90.55 91.88 82.57 | 83.58 | 84.80 | 85.95 | 86.69
ProS-1M-syn 88.60 | 89.78 | 90.57 | 90.92 91.57 82.69 | 83.92 | 85.50 | 86.75 | 86.83
ProS-1M-real 88.70 | 90.15 | 90.72 | 91.08 91.58 82.73 | 84.57 | 85.24 | 86.79 | 87.06
ProS-full-real 88.76 | 90.43 | 90.86 | 91.17 91.88 83.25 | 85.13 | 86.25 | 86.85 | 87.08

4.2. Comparing with other pre-training models

We clarify our models under different settings:

* ProS-1M-syn: pre-trained with 1M synthetic images
from the generator, which is trained with randomly se-
lected 1M real images.

e ProS-1M-real: pre-trained with randomly selected 1M
real images from MS1M dataset.

e ProS-full-real: pre-trained with all real images from
MS1M dataset.

We investigate how the pre-training models influence the
downstream tasks’ performance in Table 1. We compare
the models from different architectures on various datasets.
In particular, five different pre-training models are included:
(1) DeiT [74]: was the improved ViT trained on ImageNet-
1K with distillation under full supervision. (2) MAE [26]:
was an auto-encoder learner for images reconstructed from
masked input. It was trained on ImageNet-1K with self-
supervision. (3) DINO [10] was trained on ImageNet-1K
as a form of mean teacher self-distillation under image
self-supervision. (4) MSN [1] was a masked Siamese net-
work trained on ImageNet-1K with self-supervised learn-
ing. (5) FRL ! [6] trained ResNet50 [28] on a large-scale

Ihttps://github.com/1adrianb/unsupervised-face-representation

face dataset without labels. For a fair comparison, we use
ViT-S/16 as the backbone for DeiT, DINO, and MSN but
ViT-B/16 for MAE due to the availability. We compare the
proposed method with those baselines in the downstream
tasks as illustrated in Table 1. As we can observe, all these
models show a reasonable performance. The ProS-full-real
shows superior performance over both fully-supervised and
self-supervised methods. The ProS-1M-syn shows a com-
petitive performance to the other baselines as well.

4.3. Comparing with state-of-the-art face methods

We compare our proposed model with other SOTA meth-
ods in both full-shot and few-shot settings in multiple down-
stream tasks. All the input images are resized to 224 x 224
and the official aligned version (if applicable) is used. We
conduct all the following experiments five times and report
the average performance.

Face attributes recognition We compare our proposed
method with baseline methods under both full-shot and few-
shot settings. As we can observe in Table 2, our proposed
method shows superiority over all the other methods in few-
shot and rank the 2-nd under the full-shot with FaRL [95].
Note the PS-MCNN-LC [8] achieved a higher accuracy by
using extra identity labels and a fine-grained network de-
sign to leverage the attribute relation. Meanwhile, we can
observe that our method indeed benefits from a larger data
scale (ProS-1M-real vs ProS-full-real). With only 1M syn-
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Table 3. Comparison with SoTA results of facial expression recog-
nition on AffectNet8 and RAF-DB datasets. The mAcc. 1 is used
here as the evaluation metric. [Keys: SoTA , Best, Second best]

AffectNet3 [51] RAF-DB [41,17]
Methods 2% [ 10% | Full | 1% [ 2% [ 10% [ Full
EAC [0 ] E T 63.11 | 57.95 | 64.05 | 82.07 | 89.99
DAN [85] | 43.16 | 52.41 | 62.09 | 53.17 | 58.46 | 78.05 | 89.70
ProS-Im-syn | 43.46 | 49.96 | 62.59 | 58.74 | 66.13 | 80.11 | 89.06

ProS-1M-real | 43.64 | 50.16 | 63.44 | 61.04 | 67.60 | 80.32 | 89.83

ProS-full-real | 45.91 | 50.66 | 63.64 | 63.06 | 70.61 | 82.10 | 91.04

thetic data, ProS-1M-syn also outperforms the baselines in
all the few-shot settings. It is impressive to see that when
trained with only 50% data in LFWA, our proposed methods
are still better than the close competitor FaRL [95] in 100%
data usage. When comparing results from ProS-1M-syn vs
ProS-1M-real, the synthetic face data give competitive re-
sults with the one with real data in both settings. In gen-
eral, the largest real data model ProS-full-real outperforms
both ProS-1M-syn and ProS-1M-real, which achieves the
best results among all in the few-shot settings.

Face expression recognition We conduct another set of
experiments on facial expression recognition. Similar to
previous experiments, we evaluate in both full-shot and
few-shot settings. Due to the limited models for few-shot
face expression recognition, we compare the proposed mod-
els with two SoTA baselines: DAN [85] (ResNet-18) and
EAC [93] (ResNet-50). For the full-shot results, the re-
sults are copied from the paper report. For the few-shot
results, we run the experiments with their published codes
23 For a fair comparison, both DAN and EAC models were
initialized with trained weights from fully-supervised train-
ing on MS1M dataset. As shown in Table 3, the ProS-full-
real model achieves a better performance than the EAC and
DAN methods in both RAF-DB and AffectNet8 datasets un-
der both full and limited data settings. Similarly, we can ob-
serve the larger pre-training data gives better performance
(ProS-full-real vs ProS-1M-real). When comparing the Af-
fectNet8 results of DAN using 100% and 10% training data
to the ones from our ProS, one reason for the degradation on
100% could be the long-tail bias [45, 55] from the MS1M
weights in fully-supervised training.

Face alignment We also evaluate the ProS models on face
alignment tasks using WFLW and 300W test-set. As shown
in Table 4, our ProS-full-real model surpasses all baselines
under the full settings and most under the few-shot settings.
We also include the SoTA (FaRL [95]) method in this ta-
ble, which was trained in semi-supervision on 20M web-
text and image pairs while we are self-supervision on fewer
face images only. For the close competitor FRL [6], it only
surpasses ours under the 0.7% few-shot setting on WFLW.

Zhttps://github.com/yaoing/DAN
3https://github.com/zyh-uaiaaaa/Erasing-Attention-Consistency

When comparing ProS-1M-real and ProS-1M-syn, we can
see using the real face images leads to a better result.

4.4. Visualization of learned prototypes

In order to exhibit the variances captured by the learned
prototypes, we perform a t-SNE visualization [76] on the
set of 1024 prototypes derived from the ProS-1M-real and
ProS-full-real. Specifically, we employ nearest-neighbor re-
trieval to establish connections between the learned proto-
types and the training images. Figure 5 illustrates the re-
sults, indicating that the learned prototypes are predomi-
nantly dispersed in a sparse distribution. Comparing with
Figure 5a and Figure 5b, we can observe that the learned
prototypes show a better span coverage when using the full
size of the training dataset.

4.5. Visualization of pre-training model

In order to investigate the knowledge acquired through
the pre-training and fine-tuning stages of our proposed
ProS model, we visualize the attention mechanism using
heatmaps, as depicted in Figure 6. Specifically, we use the
teacher model of ProS-full-real and analyze the heatmap
values obtained from the attention heads in the final self-
attention layer. During the pre-training phase, our ProS
model successfully localizes the facial region in input im-
ages, effectively capturing various variations such as pose
and scale. These heatmaps exhibit a similar pattern to hu-
man attention patterns. Comparing the heatmaps generated
by the pre-trained model and the fine-tuned models, we ob-
serve that the features learned through fine-tuning become
more task-specific, while the features derived from the pre-
trained model maintain a more generalized representation.

5. Discussion

Ethical considerations For training, ProS requires large-
scale face images. We use the MS 1M data, one of the largest
datasets in the world, collected by Microsoft in 2016. The
images in this dataset are scraped off the web under the
terms of the Creative Commons license and are limited to
the academic usage of the photos. Studies [97] show that
the MS1M dataset is subject to biases due to label noise,
duplicate images, and non-face images. It is essential to ac-
knowledge and address these biases to prevent the propaga-
tion of unfair or discriminatory practices in the development
and deployment of face recognition systems.

Social Impact and Limitation We have identified certain
limitations in the pre-training phase of our ProS model.
Specifically, we found that the bias issue present in the
MS 1M dataset is still present in the learned representations
of ProS. Moreover, our model does not perform exception-
ally well in face parsing tasks on the LaPa dataset [46], as
evidenced in the supplementary documents. One possible
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Table 4. Comparison of facial alignment on WFLW and 300W (test-set) dataset. The results of each column in 300W stand for the
Common, Challenge, and Full subsets respectively. The NMEiper-ocutar | is used here as the evaluation metric. [Keys: SoTA , Best, Second

best]
WFELW [88] 300W [64,65]

Methods 0.7% | 5% | 10% | 20% | 100% 1.5% 10% 100%
FaRL ["7] 6.02 | 4.83 | 455 | 433 | 4.03 | 5.87 3.24 3.76 | 2.81 4.83 3.21 | 2.56 4.45 2.93
RCN+ [29] - - - - - ————— | ——6.63 447 | 3.00 498 3.46

SA [57] - - 720 | 600 | 439 | ————— | ————4.27 | 3.21 6.49 3.86

TS® [20] - - - - - —— ———— | 4.67 9.26 5.64 | 291 590 3.49
3FabRec [4] 839 | 7.68 | 6.73 | 6.51 | 5.62 | 4.55 7.39 5.10 | 3.88 6.88 4.47 | 3.36 5.74 3.82
FSMA [84] - - - - - —————— 1 3.59 7.01 445 ] 3.12 6.14 3.88

FRL [6] 7.11 - 5.44 - 457 | ———— | — ——425 | ————3.85
ProS-1M-syn | 8.63 | 6.25 | 5.70 | 5.18 | 4.55 | 4.65 8.89 549 | 3.70 6.57 4.25 | 2.95 5.06 3.36
ProS-1M-real | 8.13 | 6.08 | 5.56 | 5.11 | 4.51 4.56 8.55 5.35 | 3.54 6.20 4.06 | 2.90 5.05 3.32
ProS-full-real | 7.73 | 5.75 | 530 | 490 | 437 | 4.38 7.88 5.08 | 3.41 6.01 392 | 2.86 4.92 3.27

(a) 1M real images

(b) Full real images

Figure 5. t-SNE visualization [76] of learned prototypes by finding the nearest neighbor in synthesized training face images.

(a) Pre-trained on MS1M [25]

(b) Fine-tuned on CelebA [48]

(c) Fine-tuned on RAF-DB [41,42]

Figure 6. Comparison of attention heatmaps of teacher models
from pre-trained (a) on MS1M [25]; and fine-tuned (b) on CelebA
[48] and (c) on RAF-DB [41,42] respectively.

explanation for this performance gap is that the learned fea-
tures in ProS tend to be more semantic-specific rather than

spatial-specific. This observation is further supported by
Figure 6, where we can observe that the attention mecha-
nism does not adequately attend to the hair region.

6. Conclusion

In this paper, we present a self-supervised pre-training
method (ProS) for learning face representation from unla-
beled large-scale images only. One modified prototype-
based matching loss and a face-aware retrieval system are
introduced along with the ProS. We explore the ProS on
both real and synthetic face images. In addition, we show
the face representations learned from ProS can be well-
transferred to multiple downstream face analysis tasks in-
cluding attribute estimation, expression recognition, and
face alignment. Compared with SoTA methods, our pro-
posed ProS shows the superiority of performance in the lim-
ited data. Moreover, the proposed method surpasses the pre-
vious SoTA methods in facial expression recognition.
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