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Abstract

Given a sequence of images taken in foggy weather, we
seek to estimate the atmospheric light and the scattering co-
efficient. These are key parameters to characterise the na-
ture of the fog, to reconstruct a clear image (defogging),
and to infer scene depth. Existing methods adopt a se-
quential estimation strategy which is prone to error prop-
agation. In sharp contrast, we take a more systematic ap-
proach and jointly estimate these parameters by solving a
unified non-linear optimisation problem. Experimental re-
sults show that the proposed method is superior to existing
ones in terms of both estimation accuracy and precision.
Our method further demonstrates how image defogging and
depth estimation can be linked to a visual localisation sys-
tem, contributing to more comprehensive and robust per-
ception in fog.

1. Introduction
Safe operation is of paramount importance for modern

autonomous vehicles and mobile robots. Challenges arise
not only in favourable weather, but are increased signifi-
cantly under adverse conditions such as fog.

Fog is caused by suspended small water droplets in air.
Their interactions with light can be well explained by the at-
mospheric scattering model summarised in [20]. This states
that the observed intensity in fog, I (x) (x denotes a pixel
location), is a convex combination (controlled by the trans-
mission coefficient t (x) ∈ [0, 1]) of the latent clear inten-
sity J (x) and the atmospheric light A (Eq. (1)). t (x) is
determined by the scattering coefficient β and the distance
d (x) between a scene point and the camera (Eq. (2)). d (x)
can be related to the depth z (x) given the camera intrinsic
parameters.

I (x) = J (x) t (x) +A (1− t (x)) (1)
t (x) = exp (−βd (x)) (2)
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Figure 1. Our method can be used to join other systems together
for more comprehensive and robust perception in fog.

Eq. (1) and Eq. (2) assume the fog to be homogeneous and
therefore β and A are global values regardless of the pixel
location x. Furthermore, β is often considered to be the
same for all colour channels within the visible spectrum.
For simplicity, in the rest of the paper we will omit the pixel
location x notation.

The fog parameters consist of A and β. Estimating A is
a key step in almost all image defogging methods includ-
ing [2, 14]. β is also an essential parameter because, as
Eq. (2) suggests, it governs the mapping between the scene
depth z and the transmission coefficient t. Consequently, an
accurate estimate of β plays a crucial part in simultaneous
defogging and stereo reconstruction methods [6, 11, 15].

In this paper, we present an elegant yet effective method
which jointly estimates A and β by solving a unified non-
linear optimisation problem. As by-products, our method
also generates defogged pixel intensities of relevant land-
marks in the map. As Fig. 1 depicts, it can be used to pro-
vide a connecting link from a visual Simultaneous Locali-
sation and Mapping (SLAM) or odometry system to an im-
age defogging and depth estimation system leading to more
comprehensive and robust perception in fog.

Our contributions are threefold:
1) We propose a novel approach to fog parameter estimation
which, unlike existing methods, jointly estimates the fog
parameters by non-linear optimisation. It also requires less
assumptions and achieves better performance.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2) Being versatile, our method can be plugged flexibly into
most existing visual SLAM/odometry systems as an add-on
module for foggy weather.
3) We demonstrate the use of our method for downstream
image defogging and dense depth estimation tasks.

2. Related Work
We review existing methods of estimating fog param-

eters. Some early approaches estimate A from multiple
images of the same scene acquired under different condi-
tions, such as the visibility [19] or manually changed polar-
isation [22]. This already makes such methods inherently
unsuitable for autonomous vehicle or mobile robot applica-
tions. In addition, some methods require further assump-
tions, such as the presence of a sky region in the images. In
the rest of this section, we focus on existing work that pro-
cesses a single image, a stereo pair of images or a sequence
of images that an onboard camera can acquire.

2.1. Estimating A

Estimating A is critical in conventional single image de-
fogging methods. To this end, [23] obtains A from the pix-
els that have the highest intensity in the input image, [14]
relies on the dark channel prior to first locating the most
haze-opaque region in an image then computes A from
these pixel intensities, [8] estimates A as the brightest pixel
value among all local minima, and [2] locates A in RGB
space by leveraging the observation that fog transforms the
pixel intensity distribution from tight clusters to stretched
lines (dubbed ‘haze-lines’). Given the limited amount of
information embedded in a single image, some of these
approaches have demonstrated their general effectiveness
in estimating A and therefore are adopted by later con-
ventional methods [7], and some pioneering deep learning
based methods such as [4]. Even some video defogging
methods such as [15] directly follow [14]’s approach in es-
timating A, due to its robustness and favouring its simplic-
ity. Similarly, [5] applies firstly [8]’s method to compute an
A value from the current frame. To impose temporal con-
sistency, they then refine their estimate of A by calculating
a weighted average of this A value and the A estimate from
the previous frame.

2.2. Estimating β

As Eq. (1) suggests, estimating β is typically of no in-
terest to methods that are developed for the sole purpose
of defogging as long as t can be directly inferred from I
(e.g. [2, 14]). This topic can be categorised into percep-
tual estimation and qualitative estimation. Methods includ-
ing [9,12,16] achieve referenceless prediction of perceptual
fog density from a single image. Although their predicted
perceptual fog density indices may correlate well with hu-
man judgements, the authors make no attempt to show how

these perceptual indices can be mapped to a numerical value
of β. To our best knowledge, the quantitative estimation of
β is little addressed in the existing literature. As Eq. (2)
implies, β is the key linkage between the problem of defog-
ging and the problem of scene depth estimation, and con-
sequently an accurate estimate of its value plays a crucial
part in various existing simultaneous defogging and stereo
reconstruction methods [6, 11, 15]. In general, estimating β
entails observing the same object (more precisely - the same
J) from a range of known distances, which makes this task
extremely challenging at best and not always possible when
only a single image or even only a stereo pair of images
is available. As a special case, [13] achieves β estimation
from just a single image but requires the image to contain
both the sky and the road, and that the road surface is homo-
geneous and flat (so that a known depth can be associated
with each image row from the road after calibration). These
are indeed very strong and application-specific constraints,
which make the method impossible to be applied to gen-
eral scenes. In contrast, [15] uses a sequence of images and
performs structure-from-motion to facilitate observations of
the same object from a range of known distances. After A is
estimated following [14], they use each pair of observations
whose inverse depth difference is large enough to compute
a β estimate by inverting the atmospheric scattering model.
Then all the estimates are gathered, from which they build
a histogram of β and choose the value from the highest bin.

To summarise, using a sequence of images [5, 15] to
estimate the fog parameters is much more robust com-
pared with using a single image or a stereo pair of im-
ages [2,8,13,14,23], because more information is available
and less assumptions or constraints have to be made. Never-
theless, existing methods still have a few shortcomings. [5]
estimates A only and intends to assure its temporal con-
sistency by introducing a weighted average scheme. How-
ever, as the key factor in controlling such consistency, the
weight itself becomes a learnable parameter and requires
fine-tuning for overall optimal performance in different sce-
narios. As will be shown in Sec. 4, the A and β estimation
strategy proposed in [15] has the following major draw-
backs. First, A is still estimated from a single image (i.e.
the current frame), which does not make use of temporal
consistency. Second, estimating β requires A to be esti-
mated beforehand and in this way any error in A’s estimate
propagates to β’s.

Distinct from the existing methods which estimate the
fog parameters sequentially, we propose an optimisation-
based method which jointly estimates A and β. Our method
assumes only local homogeneity of the fog, which is accept-
able in practice and widely assumed by existing methods.
Unlike [13], we do not rely on any strong assumption about
image content.
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Figure 2. An overview of our three-step method. Left - An example of a local map containing four frames and five landmarks connected
by arcs indicating observation relations (Sec. 3.1). Middle - The corresponding distance-intensity pairs (Sec. 3.2) and their scatter plot.
DI from the same landmark share the same colour. The dashed curves are generated by Eq. (6) using groundtruth values. There is no DI
associated with L1 or L5 because too few frames (less than four) observe them. Right - The corresponding optimisation problem depicted
by a graph (Sec. 3.3). Note these figures are for illustrative purposes only. In reality, the local map typically contains many more landmarks,
with each landmark observed by many more frames, and therefore the optimisation graph consists of many more vertices and edges.

3. Method
In a nutshell, our method estimates the fog parameters

(i.e. β, A and J’s) of a physical model (i.e. the atmo-
spheric scattering model described by Eq. (1) and Eq. (2))
given observations (i.e. d and I). Fig. 2 depicts the follow-
ing three steps from left to right: extracting a local map
(Sec. 3.1), generating distance-intensity pairs (Sec. 3.2),
and non-linear optimisation (Sec. 3.3).

3.1. Extracting a Local Map

We first build a local 3D feature map from a sequence of
image frames, then generate observations in the subsequent
step. The reasons why we use a local map, as opposed to
a global one, are twofold: a) The optimisation problem is
confined to an appropriate scale by limiting the number of
observations so that it can be efficiently solved; b) Doing so
implicitly assumes the fog to be only locally homogeneous,
which imposes a less strong (thus more realistic) constraint.

A local map is essentially a collection of observations
that sufficiently describe which local frames observe which
local landmarks. It can be depicted as a directed graph, in
which there exists an arc (i.e. a directed edge) pointing from
the mth frame Fm to the nth 3D landmark Ln if and only if
Fm can observe Ln. We use ⟨m,n⟩ to denote such an arc.
Then a local map is represented as a set M, a collection of
all such arcs. See the left of Fig. 2 for an example of a local
map containing four frames and five landmarks.

Furthermore, we use Mn ⊆ M to denote all inward arcs
pointing towards Ln and therefore |Mn| is the number of
frames that can observe Ln. M can be represented as a col-
lection of such non-overlapping subsets:

M = {Mn | n = 1, 2, . . . , N}, (3)

where N is the total number of landmarks in the local map.

3.2. Generating Distance-Intensity Pairs

This step (see the middle of Fig. 2 for an illustrative ex-
ample) prepares valid observations for the subsequent op-
timisation step in the form of distance-intensity pairs. We
denote such observations as a set DI that is composed of a
number of non-overlapping subsets DIn:

DI = {DIn | n = 1, 2, . . . , N ∧ |Mn| ≥ 4}. (4)

The number of such subsets is typically smaller than N be-
cause for each landmark Ln to generate DIn, we require that
at least four frames observe it. Each DIn is a collection of
distance-intensity pairs of Ln:

DIn = {(dmn , Imn ) | ⟨m,n⟩ ∈ Mn} ⊆ DI, (5)

where dmn denotes the Euclidean distance between Ln and
Fm, and Imn denotes the intensity of Ln’s corresponding 2D
feature point in Fm

1 (a bilinear interpolation is performed
1We have tested various methods of producing Imn (see our supplemen-

tary material) and the one described here has the best performance.
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in case of a non-integer pixel location). Both dmn and Imn
are typically available from a sparse feature based visual
SLAM/odometry system.

3.3. Non-linear Optimisation

This step estimates fog parameters β and A, together
with the landmarks’ clear intensity J’s, by minimising a
cost function derived from the observations generated from
the previous step. The problem of interest can be repre-
sented naturally as a graph (see the right of Fig. 2 for an
example), in which vertices represent variables to optimise,
and edges represent observation errors. An edge (i.e. error)
connects vertices (i.e. variables) that contribute to the un-
derlying error term. In such a graph for the problem of our
interest, there are two types of vertices.

1. Vβ,A encodes the fog parameters β and A. We con-
sider β and A to be global in the case of homogeneous
fog and therefore there can be only one such vertex in
the whole graph.

2. VJn encodes Ln’s clear intensity Jn. The number of
occurrences of such vertex is the same as the number
of non-overlapping subsets in DI.

According to the atmospheric scattering model, we can
compute the predicted intensity value of Ln observed by Fm

given dmn , β, A and Jn.

predI
m
n = Jn exp (−βdmn ) +A (1− exp (−βdmn ))

= (Jn −A) exp (−βdmn ) +A
(6)

We define the intensity error ϵmn to be the scalar differ-
ence between the observed intensity Imn and the correspond-
ing predicted intensity predI

m
n .

ϵmn = Imn − predI
m
n

= Imn − ((Jn −A) exp (−βdmn ) +A)
(7)

One can see that each ϵmn can be considered as a func-
tion of β, A and Jn, and therefore adds an edge between
Vβ,A and VJn

to the graph. We denote the set of all edges
in the graph as E, which is composed of a number of non-
overlapping subsets En (Eq. (8)) whose elements are inten-
sity errors (Eq. (9)).

E = {En | n = 1, 2, . . . , N and |Mn| ≥ 4} (8)

En = {ϵmn | ⟨m,n⟩ ∈ Mn} ⊆ E (9)

We define each residual term to be a loss function ℓ :
R → R of ϵmn . The total cost function is a weighted sum of
all residual terms. Our aim is to find the best set of parame-
ters that minimises this total cost:

argmin
β,A,J

∑
n: En∈E

∑
m: ϵmn ∈En

wm
n ℓ (ϵmn ) , subject to

lβ ≤ β ≤ uβ , lA ≤ A ≤ uA, lJn ≤ Jn ≤ uJn , (10)

where wm
n ≥ 0 is the weight associated with ℓ (ϵmn ), J is

a set containing all relevant J’s: J = {Jn | En ∈ E},
and l’s and u’s are the parameter lower and upper bounds
respectively. How l’s and u’s get set is detailed below.

Setting the bounds on the parameters

We set lβ = 0.001 and uβ = 0.2, which are rather conserva-
tive considering the equivalent visibility range is [15, 3000]
meters according to Eq. (15). It is worth mentioning that the
same bounds are used when building the β histogram (see
the middle and the right histograms in Fig. 3) in our mod-
ified version of [15] (see Sec. 4.2) to assure our method is
not advantaged.

Next, for each relevant Jn we first determine if it is lower
or higher than A by computing the slope kn of the line going
through the intensities observed at the maximum and the
minimum distances: kn =

(
Idmax
n − Idmin

n

)
/ (dmax − dmin).

If kn is strongly positive, we set lJn
= 0 and uJn

= Idmin
n ,

and we add Idmax
n to the candidate set of lA. If kn is strongly

negative, we set lJn = Idmin
n and uJn = 255. If neither, we

set lJn
= 0 and uJn

= 255.
Finally, we set lA to be the median value of its candidate

set, and uA = 255. It is found that if uA is set in a similar
way to lA, it will often be underestimated. We think this is
caused by the fact that objects that are brighter than A are
rare in a foggy scene.

Two-stage optimisation

We adopt a two-stage optimisation strategy. In the first
stage, we choose ℓ to be the Huber loss (δ = 5, which is
empirically chosen and fixed across all experiments) in or-
der to mitigate the effect of outlier observations. In the sec-
ond stage, we choose ℓ to be the square loss and perform
optimisation on inlier observations only. Furthermore, for
each observation our system keeps a count of the number of
times it has been identified as an inlier after the first stage
of optimisation. This value cmn , denoted the inlier count of
the nth landmark observed by the mth frame, is used to ap-
propriately weight the corresponding residual term.

Setting the weight of the residuals

We list below the partial derivatives of Eq. (7).

∂ϵmn
∂β

= dmn (Jn −A) exp (−βdmn ) (11)

∂ϵmn
∂A

= exp (−βdmn )− 1 (12)

∂ϵmn
∂Jn

= − exp (−βdmn ) (13)

We argue that the larger the intensity difference between
a landmark’s J and A, the more suitable that landmark is
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for estimating β. As can be seen from Eq. (11), the partial
derivative of ϵmn w.r.t. β is proportional to (Jn −A). This
suggests that when Jn is close to A this term will dimin-
ish, causing difficulties in finding the optimal β. Intuitively,
when J is close to A, the range of the predicted intensity
predI

m
n when dmn ≥ 0 flattens out and therefore ϵmn contains

very little information on the inference of β.
Because β appears in both the partial derivatives of ϵmn

w.r.t. A and Jn (Eq. (12) and Eq. (13)), we expect a more
accurate estimate of β to help find the optimal A and Jn.

In light of this, we set the weight in our first optimisa-
tion stage to be the product of the following two terms: the
absolute difference between the current estimate of Jn (Ĵn)
and the current estimate of A (Â), and the inlier count of the
corresponding observation.

wm
n = |Ĵn − Â| · cmn (14)

It can be seen that the first term is landmark-dependent
while the second term is observation-dependent.

In our second optimisation stage where only inlier obser-
vations are used, we set the weight to be uniform.

Results from our ablation study (Sec. 4.5) show that
compared to naively uniformly weighting all residual terms
in both optimisation stages, our weighting performs better
in estimating both β and A.

Initialisation

To initialise β,A and J we do the following. If there have
been previous estimates, which are obtained from the last
successful run of our fog estimation process, we use these
values to initialise. Otherwise (i.e. if the fog estimation pro-
cess has never successfully run before, or if Jn has never
been estimated before) we use our modified version of [15]
(see Sec. 4.2) to initialise β and A, and use the observed
intensity from the shortest distance to initialise Jn.

4. Experiments
In this section, we introduce the datasets, baseline meth-

ods and setup of experiments before presenting results.

4.1. Datasets

For evaluation, we add simulated fog to three synthetic
datasets: the Virtual KITTI 2 dataset [3] (VKITTI2), the
KITTI-CARLA dataset [10] and the Driving dataset (DRIV-
ING) [17]. They all contain sequences of left and right clear
intensity images as well as the corresponding left and right
groundtruth depth maps. For each clear image, we first
compute a distance map from its groundtruth depth map
then synthesise its foggy image by applying the atmospheric
scattering model (see the top row of Fig. 5 for sample foggy
images). We fix A at 0.7, 0.8 and 0.9 for VKITTI2, KITTI-
CARLA and DRIVING, respectively. For each dataset, six

different visibility levels at Vmet = {30, 40, 50, 60, 70, 80}
meters are tested2. The corresponding groundtruth β values
are calculated according to Eq. (15). Note that β encodes
the fog density and is closely related to the visibility (i.e.
the meteorological optical range [21]) Vmet in meters.

Vmet = − ln (0.05) /β (15)

4.2. Competitive Methods

To our best knowledge, there is very limited existing
work on estimating both A and β. First, we report the re-
sults of Berman et al. [2] which estimates A only. We fur-
ther compare our method with the fog estimation strategy
proposed by Li et al. [15] (estimating both A and β) as well
as our modified version of it which will prove to be a much
stronger baseline compared to the original one. The modifi-
cations we make are twofold. First, as proposed by [24], we
use the median, instead of the maximum [14], of the 0.1%
pixels with the largest dark channel values to estimate A.
Second, we discard β values that are not within the range
[0.001, 0.2] when building its histogram. This is motivated
by the observations, typically at a lower visibility, that a
proportion of β values are negative and that there is a big
cluster of β centred at the value of zero. In many cases
the zero bin has the highest counts and therefore an erro-
neous β estimate would be made. Fig. 3 shows examples
of unbounded (left) and bounded (middle) β histograms at
30 m visibility. As we will show later, this modified version
greatly improves the original one’s performance in terms of
both A and β and therefore we use it as a stronger baseline.

4.3. Setup

For all comparisons, we use stereo ORB-SLAM2 [18] to
facilitate multiple observations of the same landmark from
a range of known distances. These observations are ob-
tained from ORB-SLAM2’s local key frames and local map
points after its Local BA. The fog parameters are updated
after ORB-SLAM2’s local mapping thread. In other words,
it happens only if a new key frame is generated. A nor-
mal frame, in contrast, does not invoke the update. See our
supplementary material for implementation details includ-
ing pseudo code.

Because ORB-SLAM2 is multi-threaded, inherently
there is some randomness in its generation of the local key
frames and the local map points. We therefore run each ex-
periment five times and keep the median result. It is worth
mentioning that although the aforementioned randomness
per run still exists, we evaluate all methods in parallel in
the same run to always ensure a fair comparison between
them. We use the Ceres Solver [1] and choose the Leven-
berg–Marquardt algorithm to solve Eq. (10).

2See our supplementary material for a summary of the data we use for
evaluation.
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Figure 3. β histogram examples generated by Li’s [15] and our modified version of it. Note that the vertical axes have different scales. Left
- Unbounded β estimates at 30 m visibility. The highest bin which occurs at zero would lead to an erroneous β estimate. Middle - Bounded
(within the range [0.001, 0.2]) β estimates at 30 m visibility. The highest bin occurs at 0.097, which is much closer to the groundtruth β
value of 0.100. Right - Bounded (within the range [0.001, 0.2]) β estimates at 80 m visibility. Comparing the right to the middle, we can
see that the total number of β estimates that are used to build the histogram is typically much larger at a higher visibility.

4.4. Results

We report the root-mean-square error (RMSE), the
mean-absolute error (MAE) and the standard deviation
(SD), in both absolute scale and relative scale, of the β and
A estimates.

The top, middle and bottom of Tab. 1 show the quan-
titative results of the averaged β and A error metrics on
VKITTI2, KITTI-CARLA3 and DRIVING, respectively.
Relative values are shown as percentages in parentheses.
The results demonstrate that in most cases our method per-
forms the best, in terms of both estimation accuracy (i.e.
smaller errors) and precision (i.e. a lower standard devia-
tion). The only exception is VKITTI2’s A error metrics (al-
though our β metrics are still the best in this case). A closer
look at VKITTI2’s results shows that our bad estimates of
A stem from countryside scenes with sparse features (e.g.
Scene02), or when the ego-vehicle is surrounded by other
vehicles moving at similar speeds (e.g. Scene18). In either
case the ORB-SLAM2’s performance has been significantly
degraded and therefore produces unreliable distance and/or
intensity information.

Fig. 4 illustrates how β and A estimates vary with frames
at various visibilities on Scene01 in VKITTI2. Each fig-
ure is generated from the run with the median RMSE of β
for Li’s, Li’s modified and ours, and of A for Berman’s.
Groundtruth values are indicated by black dotted lines.

In addition, we use the open source implementation of
our previous work [11] as an example to demonstrate how
the fog parameters estimated by the proposed method can
be used for downstream image defogging and depth estima-
tion tasks. In [11], we use the groundtruth β in the Foggy
Stereo Matching module and then estimate A in the Defog-
ging module. We now replace both values with the ones

3Result of Town04 at 30 m visibility is excluded as the ORB-SLAM2
loses tracking and provides no valid observation.

estimated by the proposed method. Some representative re-
sults are shown in Fig. 5.

4.5. Additional Experiments

Error metrics given the groundtruth A

We test β estimation performance on KITTI-CARLA given
the groundtruth A value. The quantitative results are shown
in the middle block of rows in the middle subtable of Tab. 1.

We observe: a) As expected, all methods perform better
when groundtruth A is given; b) For Li’s and Li’s modi-
fied methods, there is a significant improvement in β’s error
metrics when the groundtruth A is given. This is not surpris-
ing due to its sequential estimation strategy, since an error-
free A will indeed benefit the subsequent β estimation. This
observation adds to the evidence that in their method any er-
ror in A’s estimate can propagate to β’s; c) For our method,
such improvement is much less significant. This may sug-
gest that our method, when jointly optimising β and A with
minimum prior knowledge, is able to find a β value that is
not far from its best possible solution.

Ablation study

We conduct an ablation study on KITTI-CARLA to better
understand how our optimisation setup affects the fog pa-
rameter estimation performance. The following three addi-
tional settings are experimented: 1) Loose bounds: The in-
tensity bounds of the A and all relevant J’s are trivially set
to [0, 255]; 2) One-stage: Only the first stage of our optimi-
sation is preserved, and hence all observations are treated as
inliers; 3) Uniform weight: The weight wm

n is fixed at 1 in
both optimisation stages. The quantitative results are shown
in the bottom block of rows in the middle subtable of Tab. 1.

We observe: a) Although using loose bounds marginally
improves β’s error metrics, A’s error metrics witness a con-
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Dataset Method β A
RMSE (%) MAE (%) SD (%) RMSE (%) MAE (%) SD (%)

VKITTI2

Berman’s N/A N/A N/A 4.6808 (2.62) 3.4868 (1.95) 3.0897 (1.73)
Li’s 0.0444 (68.97) 0.0359 (54.36) 0.0247 (40.96) 5.1517 (2.89) 2.0824 (1.17) 4.7422 (2.66)
Li’s modified 0.0161 (24.20) 0.0102 (14.38) 0.0139 (21.30) 1.8063 (1.01) 0.7991 (0.45) 1.5457 (0.87)
Ours 0.0122 (17.55) 0.0085 (11.89) 0.0094 (13.92) 3.7190 (2.08) 2.3162 (1.30) 3.2532 (1.82)

KITTI-CARLA

Berman’s N/A N/A N/A 12.7556 (6.25) 12.4054 (6.08) 2.8910 (1.42)
Li’s 0.0533 (89.58) 0.0493 (83.14) 0.0191 (32.52) 16.0363 (7.86) 14.9876 (7.35) 5.3108 (2.60)
Li’s modified 0.0179 (29.95) 0.0142 (23.93) 0.0126 (21.05) 10.2972 (5.05) 9.4018 (4.61) 3.7479 (1.84)
Ours 0.0125 (20.96) 0.0103 (17.33) 0.0084 (14.01) 3.0716 (1.51) 1.8521 (0.91) 2.7749 (1.36)

Li’s (GT A) 0.0427 (71.01) 0.0335 (55.51) 0.0301 (51.39) - - -
Li’s modified (GT A) 0.0129 (21.34) 0.0090 (15.04) 0.0116 (19.10) - - -
Ours (GT A) 0.0118 (20.02) 0.0095 (16.21) 0.0085 (14.46) - - -

Ours (loose bounds) 0.0121 (20.33) 0.0099 (16.75) 0.0082 (13.79) 5.4951 (2.69) 2.3398 (1.15) 5.2159 (2.56)
Ours (one-stage) 0.0137 (22.88) 0.0114 (19.22) 0.0087 (14.41) 3.5857 (1.76) 2.2813 (1.12) 3.1537 (1.55)
Ours (uniform weight) 0.0134 (22.66) 0.0114 (19.44) 0.0081 (13.38) 3.5878 (1.76) 2.3342 (1.14) 3.0386 (1.49)

DRIVING

Berman’s N/A N/A N/A 22.8736 (9.97) 14.0364 (6.12) 21.4792 (9.36)
Li’s 0.0461 (74.76) 0.0382 (61.45) 0.0264 (44.07) 14.2847 (6.22) 11.4720 (5.00) 9.0370 (3.94)
Li’s modified 0.0159 (25.04) 0.0111 (17.80) 0.0127 (20.12) 12.7639 (5.56) 9.4596 (4.12) 9.0555 (3.95)
Ours 0.0060 (10.66) 0.0044 (7.69) 0.0043 (7.74) 2.3435 (1.02) 1.6025 (0.70) 2.0229 (0.88)

Table 1. Averaged β and A error metrics on VKITTI2 (top), KITTI-CARLA (middle) and DRIVING (bottom)
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Figure 4. β and A estimates vs. frame evaluated on Scene01 in VKITTI2 at various visibilities (left to right: 30, 50 and 70 m). Berman’s
method of estimating A has many large errors. Although our modified version of Li’s method significantly improves the original one’s
performance in both A and β estimations, both of them still have the defect that an erroneous estimate of A (e.g. around frame 240) would
always lead to an erroneous estimate of β due to the two-step estimation strategy. See our supplementary material for more results.

siderable degradation, which happens particularly when the
ORB-SLAM2 struggles to generate accurate camera poses
and landmark positions; b) If one-stage optimisation is per-
formed or a uniform weight is used, the estimation results
are inferior to those produced by our full method; c) These
three settings still outperform all competitive methods, de-
spite trailing behind our full method.

Error metrics vs. visibility

We investigate how the fog parameter estimation perfor-
mance varies with visibility. Fig. 6 plots the percentage
RMSE of β (top) and of A (bottom) against visibility.

We observe: a) Our method consistently excels in both
β and A estimates for all the visibilities tested; b) Both Li’s

and Li’s modified demonstrate a downward trend in β per-
centage RMSE as the visibility increases. After comparing
the right histogram with the middle one in Fig. 3, we in-
fer that as the visibility grows, the number of β estimates
to build a histogram becomes larger and therefore the per-
formance of the statistics-based estimation method used by
these two baseline methods improves; c) All methods wit-
ness an upward trend in A percentage RMSE as the visibil-
ity increases, which is as expected because the images will
appear to be less fog-obscured as the visibility increases.

5. Conclusion
This paper presents an optimisation-based method that

unifies the estimation of fog parameters in a practical setting
with very few assumptions. As by-products, our method
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Figure 5. Top row from left to right: sample foggy images from VKITTI2 (Vmet = 40 m), KITTI-CARLA (Vmet = 60 m) and DRIVING
(Vmet = 80 m). Bottom two rows: The defogged images and the disparity maps produced by our previous work [11] after feeding the A
and β values estimated by the proposed method to it. See our supplementary material for more results.
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Figure 6. β and A percentage RMSE vs. visibility on DRIVING

also defogs relevant landmarks in a map. Experimental re-
sults show that our estimation method achieves higher ac-
curacy and precision than existing ones, which either rely

on very strong constraints or are prone to error propaga-
tion. Our method can be used to provide a connecting link
from a visual SLAM/odometry system to an image defog-
ging and depth estimation system for overall more compre-
hensive and robust perception in fog. To illustrate this ca-
pability, we have shown representative examples produced
by our previous work that makes use of the fog parameter
estimation method presented here.

The distance and intensity data used by our method are
obtained from a visual SLAM/odometry system. In un-
favourable environments with few features and very lim-
ited visibility, such systems would typically struggle, and
our fog parameter estimation performance would also be
compromised. This could potentially be improved by inte-
grating our method into a visual-inertial system that is more
robust in these situations.

To the best of our knowledge, there is no suitable, exist-
ing dataset having stereo data of consecutive frames under
a variety of fog densities, and with corresponding clear se-
quences of the same route (see our supplementary for de-
tails). Such data is necessary, both for validating estimation
of the fog parameters, and for companion work in defogging
and depth reconstruction. Such data collection is a priority.
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