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Abstract—Collaborative inference has been a promising so-
lution to enable resource-constrained edge devices to perform
inference using state-of-the-art deep neural networks (DNNs). In
collaborative inference, the edge device first feeds the input to
a partial DNN locally and then uploads the intermediate result
to the cloud to complete the inference. However, recent research
indicates model inversion attacks (MIAs) can reconstruct input
data from intermediate results, posing serious privacy concerns
for collaborative inference. Existing perturbation and cryptogra-
phy techniques are inefficient and unreliable in defending against
MIAs while performing accurate inference. This paper provides a
viable solution, named PATROL, which develops privacy-oriented
pruning to balance privacy, efficiency, and utility of collaborative
inference. PATROL takes advantage of the fact that later layers in
a DNN can extract more task-specific features. Given limited local
resources for collaborative inference, PATROL intends to deploy
more layers at the edge based on pruning techniques to enforce
task-specific features for inference and reduce task-irrelevant but
sensitive features for privacy preservation. To achieve privacy-
oriented pruning, PATROL introduces two key components:
Lipschitz regularization and adversarial reconstruction training,
which increase the reconstruction errors by reducing the stability
of MIAs and enhance the target inference model by adversarial
training, respectively. On a real-world collaborative inference
task, vehicle re-identification, we demonstrate the superior per-
formance of PATROL in terms of against MIAs.

I. INTRODUCTION
Collaborative inference has become a promising solution

for using computationally intensive and memory-expensive
state-of-the-art deep neural networks (DNNs) on resource-
constrained edge devices. [1], [2], [3]. In collaborative in-
ference, a large-size DNN is divided into two partitions and
deployed at the edge and the cloud. The input data observed
at the edge is fed to the first DNN partition locally; the
intermediate output is then sent to the cloud and processed
remotely by the second DNN partition. The cloud eventually
returns the inference result to edge devices. Collaborative
inference can potentially serve a wide range of applications,
offering great advantages over the conventional edge or cloud-
only inference [4].

Nevertheless, recent research on model inversion attacks
(MIAs) has identified privacy risks during collaborative in-
ference [5], [6], [7], [8], [9]. MIAs aim to reconstruct the
confidential information of input data from intermediate results
during inference [10], [11]. Due to the unknown communica-
tion environments or the untrusted cloud server, MIAs can

(a) (b) (c) (d)
Fig. 1: Model inversion attacks (MIAs) under collaborative
inference. (a) shows the original input image captured by a
surveillance camera. (b) and (c) show reconstructed images by
MIAs when two and four ResNet blocks are deployed at the
edge, respectively. (d) shows the reconstructed image by MIA
under PATROL protection, where four pruned ResNet blocks
are deployed at the edge. The four pruned ResNet blocks have
a comparable number of parameters to the two original ResNet
blocks. Real facial information is replaced to preserve privacy.

observe intermediate outputs during collaborative inference
and reconstruct raw inputs [12], [13], raising serious privacy
concerns. Two mainstream defenses have been investigated
against MIAs for privacy-preserving collaborative inference.
First, perturbation techniques are used to modify intermediate
outputs, such as by injecting noises to raw inputs, using
adversarial training to add perturbations, or by randomly
dropping out intermediate results [6], [7], [14], [5]. Despite
the computational efficiency, perturbation-based approaches
sacrifice inference performance, such as accuracy, to a large
extent for sufficient privacy guarantees. Second, cryptographic
techniques (e.g., secure multi-party computation [15], [16]
and homomorphic encryption [17], [18]) are used to encrypt
intermediate outputs before sharing. The cloud server will
process the encrypted intermediate output without decryption.
Although cryptographic techniques provide a strong privacy
guarantee, they introduce significant delay and computational
costs, such as a 14,000× slowdown [19], rendering them
ineffective for inference at resource-constrained edge devices,
especially for the time-critical tasks.

To address these limitations of existing defenses, in this
paper, we propose a viable solution by developing privacy-
oriented pruning, named PATROL, to trade off privacy, effi-
ciency, and utility of collaborative inference. PATROL lever-
ages the fact that the latter layer can extract more task-specific
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features from the input data than the previous layer of a
DNN. When the entire DNN is deployed at the edge, the
intermediate output becomes the inference result, potentially
restricting MIAs’ success. We illustrate this idea using the
vehicle re-identification task as an example, where surveillance
cameras upload intermediate results of captured images after
local processing, based on which the cloud server identifies
the same vehicle within these images. MIAs intend to re-
construct the task-irrelevant but sensitive information, i.e., the
driver’s identity. We empirically evaluate MIA performance in
Figure 1, where the overall inference uses a ResNet-18 [20]
with four ResNet blocks, followed by fully-connected layers.
When two ResNet blocks are deployed at the edge, the driver’s
identity can be revealed through intermediate results, as shown
in (b). In comparison, it is difficult to infer the driver’s
identity when four ResNet blocks are deployed at the edge,
as shown in (c). Motivated by these observations, PATROL
intends to deploy more layers at the edge to enforce task-
specific intermediate features for inference while reducing
task-irrelevant but sensitive features for privacy preservation.
However, given limited resource budgets at the edge, a critical
question is how to store more layers cost-effectively while
maintaining collaborative inference accuracy.

Neural network pruning has been well-recognized to de-
termine the sub-network of a DNN to speed up inference
without significantly sacrificing prediction performance [21],
[22], [23]. However, existing research mainly focuses on
balancing the accuracy and efficiency of pruned models,
where redundant model parameters in terms of accuracy are
pruned rather than privacy-sensitive ones. Moreover, recent
research indicates pruned models potentially have more serious
privacy risks [24]. Therefore, to carefully determine privacy-
oriented pruning, PATROL introduces two key components:
Lipschitz regularization and adversarial reconstruction train-
ing. Enlighten by the effectiveness of Lipschitz regularization
to improve the stability of DNNs [25], [26], [27], PATROL
enforces a Lipschitz constraint in an opposite manner during
pruning. When selecting a pruned network structure, the Lips-
chitz constraint increases the reconstruction error by reducing
the stability of MIAs. Besides, PATROL employs the adver-
sarial reconstruction training to alternatively train the surro-
gate attacker and defender in a game fashion, which further
strengthens the target model against strong MIAs. We illustrate
the reconstructed image of the vehicle re-identification task
protected by PATROL in Figure 1(c). Using a comparable
number of edge-side parameters as in (b), PATROL realizes
the driver’s identity protection in (d), which is as effective
as deploying the entire model at the edge in (c). The major
contributions of this paper are summarized below.

• We develop PATROL to defend against MIAs under
collaborative inference based on privacy-oriented prun-
ing. PATROL trades off privacy, efficiency, and utility
of collaborative inference, allowing resource-constrained
edge devices using state-of-the-art DNNs for privacy-
preserving inference.

• We introduce two key components to PATROL, the Lip-
schitz regularization and adversarial reconstruction train-
ing, which enable privacy-oriented pruning by enforcing
task-specific features at intermediate outputs for accurate
inference while reducing task-irrelevant but sensitive fea-
tures for privacy preservation.

• We evaluate PATROL on a real-world collaborative in-
ference task, vehicle re-identification. PATROL can com-
press the edge DNN partition by 66.7% with only 3.1%
prediction accuracy loss on VeriWild datasets and com-
press edge DNN partition by around 92% with 12.7%
prediction accuracy loss on Veri datasets. Meanwhile,
PATROL successfully reduces the MIAs performance by
11.9%, and 10.9% in terms of two attack metrics, PSNR
and SSIM, on the VeriWild dataset. Also, it decreases
MIAs PSNR and SSIM performance by 21.5% and 20.1%
on the VERI dataset. The results on both datasets demon-
strate superior performance compared to the baseline
defenses.

II. RELATED WORK

A. Model Inversion Attacks
Model inversion attacks (MIAs) reconstruct confidential

information of the raw input from a target model’s outputs
or intermediate results during the inference phase [10], [11].
MIAs were originally proposed to recover confidential in-
formation from training data [28], but recent research has
shown that they also pose a threat to raw input data during
inference. For example, Yang et al. [29] proposed an inversion
network for input reconstruction, where the adversary feeds the
target model’s output into the inversion network and trains the
inversion network to predict raw input data.

Recently, MIAs have received attention under collaborative
inference between the edge and the cloud platforms. Oh et
al. [5] and He et al. [6] conducted MIAs by reconstructing
the input data from the intermediate results transferred from
edge to cloud. Salem et al. [30] and Pasquini et al. [8] recently
reconstructed the input data by developing an autoencoder and
a generative adversarial network (GAN), respectively. Recent
research has revealed the significant threat posed by MIAs to
collaborative inference.

B. MIA Defenses under Collaborative Inference
To provide privacy-preserving collaborative inference, de-

fenses against MIAs can be broadly categorized into
cryptographic-based and perturbation-based approaches. Cryp-
tographic technologies, such as homomorphic encryption (HE)
and secure multi-party computation (SMC), have been widely
used to protect inference data privacy [31], [18]. Although of-
fering strong privacy guarantees, cryptography-based defenses
impose significant computational and communication over-
heads [32], making them infeasible for resource-constrained
edge devices.

Perturbation-based approaches have been another widely
used MIA defense under collaborative inference. For example,
Mireshghallah et al. [19] proposed to add noise to the features

4717



that do not contribute to the final inference result. He [6] and
Oh [5] randomly drop part of outputs and skip connection
in the neural network. However, these methods significantly
reduce the prediction performance. Another common way
adding perturbation to defend against MIAs is the adversarial
training method [33], [34], [35], [36], [37], [38], [7], [14],
[39]. It tries to make the target model’s outputs show less
information about the inputs, which increases the difficulties
for the adversary in reconstructing the user’s inputs and
maintaining the performance of the target model. However,
these methods often rely on large perturbations to achieve
satisfactory protection against MIAs, which can significantly
reduce prediction performance. To address the limitations of
existing defenses, this paper aims to develop a more efficient
approach to protect collaborative inference privacy against
MIAs while maintaining high accuracy.

C. Neural Network Pruning
Neural network pruning aims to compress a DNN model

and increase inference efficiency by removing redundant pa-
rameters [22], [40]. Pruning techniques effectively address
the challenges of resource constraints on edge devices and
improve inference speed. Han et al. [22] proposed to remove
the model parameters with large magnitudes to increase model
efficiency. Recent research has introduced the use of masks to
provide a soft pruning approach to model parameters. Yang
et al. [41] developed a method that adds a mask for each
neuron or filter to prune according to the importance of the
parameter. Li et al. [42] proposed to add a binary mask to
prune the weights whose masks are 0 while training. Lin et
al. [40] trained a soft mask to identify the importance of
specific structures (e.g., blocks, branches, or channels) in a
neural network and prune the less important structures based
on their soft mask values. Inspired by Lin’s work, we design
a privacy-oriented pruning method to prune privacy-sensitive
convolution channels or blocks.

III. METHODOLOGY
This section introduces the methodology of PATROL. We

first present the threat model and then introduce the design
of privacy-oriented pruning with two key components in
PATROL. Figure 2 illustrates original collaborative inference
under MIAs in (a) and the proposed privacy-preserving col-
laborative inference protected by PATROL in (b).

A. Threat Model

We consider a collaborative inference system between the
edge and the cloud. The adversary aims to reconstruct the raw
input from the intermediate output of the edge-side model as
shown in Figure 2. We assume the adversary has no access
to the cloud and edge side model parameters (i.e., black-
box MIA), but the adversary has prior knowledge about the
dimension of the raw input, the architecture of the cloud and
edge side models, and the training dataset.

Our design focuses on a practical collaborative inference
scenario where edge devices have limited computing, commu-
nication, and storage resources. Thus, it is infeasible for the

edge inference cloud inference

intermediate 
outputinput prediction

model inversion attack

intermediate 
outputedge model

…
…
…

cloud model

(a) Original collaborative inference.

edge inference cloud inference

intermediate 
outputinput predictioncloud model

model inversion attack

intermediate 
output

…
…
…

pruned
edge model

privacy-oriented pruning

(b) Privacy-preserving collaborative inference via PATROL.
Fig. 2: Model inversion attacks against (a) original collabora-
tive inference and (b) privacy-preserving collaborative infer-
ence protected by PATROL.

edge to store and process the entire DNN in its local memory
or encrypt the inference data and upload it to the cloud in real
time.

B. Privacy-Oriented Pruning

1) Design Overview: PATROL aims to protect the col-
laborative inference system against MIAs while preserving
inference utility and efficiency. Our idea comes from the fact
that the latter layer can extract more task-specific features from
the input data than the previous layer of a DNN and reduce
the task-irrelevant but sensitive features. To accommodate
more neural network layers on the edge side for privacy
preservation, we introduce a privacy-oriented neural network
pruning that reduces the neural network size on the edge
while maintaining the utility and efficiency of the edge model.
We adopt structured pruning [43] in this paper, which can
remove specific structures (e.g., channels or blocks) from a
target model. Compared with unstructured pruning, structured
pruning enables the hardware acceleration of edge devices
for sparse matrix computation and accelerates the inference
process.

Define the well-trained DNN for collaborative inference
by f = fc ◦ fe, named as the target model. The cloud-side
partition is defined by fc with parameters θc, and the edge-
side partition is defined by fe with parameters θe. θ = {θe, θc}
is trained on a training dataset D. To remove structures, such
as channels or blocks, from the target model f , we introduce
a trainable soft mask m in PATROL training to scale the
output of structures. In channel-wise pruning, m is applied to
each channel’s output. In block-wise pruning, m is applied to
the residual mapping of each residual block. A small value
in the well-trained soft mask m indicates that the output
of its corresponding structure has little contribution to the
final prediction. Removing these structures will not affect the
prediction performance. Therefore, we formulate the following
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optimization problem to train soft mask m and target model f
with parameters θ:

min
m
L(θ,m) + λ∥m∥1 + λ2∥m∥2, (1)

where L(θ,m) denotes the prediction loss (e.g., the cross-
entropy loss in the classification tasks), ∥m∥1 and ∥m∥2 denote
two sparsity regularizers, and λ1 and λ2 denote the hyper-
parameters to balance the prediction loss and the sparsity
regularizers. We introduce ℓ1 sparsity regularizer (∥m∥1) to
reduce the number of structures in the target model and
achieve a high sparsity ratio. We also introduce ℓ2 sparsity
regularizer (∥m∥2) to control the magnitude of soft mask m.
Therefore, incorporating ℓ2 sparsity regularizer can reduce the
regularization error caused by the ℓ1 regularizer to compromise
between the high sparsity ratio and the prediction accuracy. To
achieve a high convergence rate and a high sparsity, we adopt a
fast iterative shrinkage-thresholding (FISTA) algorithm [44] to
update the soft mask m. Once the soft mask m and target model
f have been trained, PATROL prunes the channels or blocks
of the target model if their corresponding soft mask values are
smaller than a threshold τ. In other words, the structures with
little contribution to the model prediction are removed.

Existing pruning techniques have primarily focused on
improving accuracy and efficiency rather than addressing
privacy concerns. To protect data privacy using pruning, we
further incorporate Lipschitz regularization and adversarial
reconstruction training into the pruning process (detailed in
Section III-B3 and III-B2). Lipschitz regularization aims to
increase their reconstruction errors by reducing the stability of
MIAs. Adversarial reconstruction training generates a surro-
gate attacker during the training process to mislead the attacker
in a game theoretic formulation.

2) Lipschitz Regularization: We introduce Lipschitz regu-
larization in pruning to reduce the stability of model inversion
attacks and increase their reconstruction errors. The idea of
Lipschitz regularization is to restrict the changes of model
output given a small input change, so that the output of DNN
models will be stable given perturbations in the input [25],
[26], [27]. We leverage Lipschitz regularization in an inverse
fashion. We aim to make the model inversion attack unstable
and increase the reconstruction errors by enforcing Lipschitz
constraints.

Given a function f , the Lipschitz constant k of f is defined
as the smallest constant in the Lipschitz condition:

k = sup
x1,x2

∥ f (x1) − f (x2)∥
∥x1 − x2∥

. (2)

Given a certain distance between outputs, the lower bound of
the distance between inputs can be derived using Lipschitz
constant k:

∥x1 − x2∥ ≥
1
k
∥ f (x1) − f (x2)∥. (3)

The increase of 1
k will lead to a large difference in the

reconstructed data, given a small difference in the output.
Thus, we can defend against model inversion attacks by
maximizing 1/k or minimizing the Lipschitz constant k.

Algorithm 1: PATROL
Input : Training dataset D, cloud-side model fc with

parameters θc, edge-side model fe with
parameters θe, entire DNN model f = fc ◦ fe
with parameters θ = {θc, θe}, total number of
layers N, soft mask m for pruning, max
training epoch T , pruning threshold τ,
surrogate inversion model fadv with
parameters θadv.

Output: Pruned model fp.
1 Initialize the soft mask m from a Normal distribution

m ∼ N(0, 1)
2 Initialize the cloud-side, edge-side and surrogate

inversion models fc, fe, fadv

3 for epoch t = 1, . . . ,T do
4 if t % 10 = 0 then
5 % Train surrogate inversion model
6 for batch sample (x, y) ∈ D do
7 Reconstruct the raw input data:

xadv = fadv( fe(x, θe), θadv)
8 Update θadv to minimize Ladv in Eq. 8
9 end

10 end
11 for batch sample (x, y) ∈ D do
12 % Perform adversarial reconstruction training
13 Reconstruct the raw input data:

xadv = fadv( fe(x, θe), θadv)
14 Update parameters θ to minimize the prediction

loss L and maximize the adversarial loss Ladv

in Eq. 9:
15 minθ L(θ,m) − βLadv(θe, θadv)

16 % Perform Lipschitz regularization
17 for block i = 1, . . . ,N do
18 Sample δ ∼ N(0, 1)
19 Calculate Lipschitz constraint k of the i-th

block defined in Eq. 4 and 5
20 end
21 Update parameters θ to minimize the prediction

loss L and Lipschitz loss Llip in Eq. 6:
22 minθ L(θ,m) +Llip(θe)

23 % Train the soft mask m
24 Update mask m to minimize the prediction loss

L and the size of m using Eq. 1:
25 minθ,m L(θ,m) + λ1∥m∥1 + λ2∥m∥2
26 end
27 end
28 % Perform privacy-oriented pruning
29 Derive pruned model fp by removing the channels or

blocks if the corresponding mask mi ≤ τ
30 Return Pruned model fp with parameter θ.
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Since calculating the Lipschitz constant k is an intractable
problem [25], we introduce the block-wise local Lipschitz
constant ki to approximate the Lipschitz constant. Given an
edge model fe with N blocks, we denote fi as the i-th block
of the model. f = fN ◦ fN−1◦, · · · f1, (i = 1, 2, · · · ,N). For i ≥ 2,
we define block-wise local Lipschitz constraint ki of the i-th
block as:

ki = sup
x

∥ fi fi−1... f1(x + δ) − fi fi−1... f1(x)∥1
∥ fi−1... f1(x + δ) − fi−1... f1(x)∥1

, (4)

where δ denotes a random noise sampled from a Gaussian
distribution. For i = 1, we define block-wise local Lipschitz
constraint k1 of the first block as:

k1 = sup
x

∥ f1(x + δ) − f1(x)∥1
∥δ∥1

. (5)

We calculate the Lipschitz loss using the block-wise local
Lipschitz constraint as follows:

Llip(θe) =
N∑

i=1

αiki, (6)

where αi is the hyper-parameter to balance the constraints. By
minimizing the Lipschitz loss, we increase the accumulated
errors of model inversion attacks over blocks. We include the
Lipschitz loss as a regularization term in the loss function and
train the model parameters θ to minimize the prediction loss
and the Lipschitz loss:

minθ L(θ,m) +Llip(θe). (7)
3) Adversarial Reconstruction Training: We leverage ad-

versarial reconstruction training to mislead the model inversion
attacker and protect input data privacy. Specifically, we first
generate a surrogate inversion model fadv with parameters θadv.
Given an input sample x, the surrogate inversion model fadv

aims to extract the raw input data from the intermediate output
fe(x, θe). The parameters θadv are trained to minimize the
adversarial loss Ladv, which measures the difference between
the reconstructed data fadv( fe(x, θe) and raw input sample x.
The adversarial loss Ladv can be calculated as:

Ladv(θe, θadv) = ∥x − fadv( fe(x, θe), θadv)∥2. (8)

By integrating the surrogate inversion model, the target
model f is trained to mislead the model inversion attackers
while maintaining the prediction performance. To achieve
this, we maximize the adversarial loss while minimizing the
prediction loss by solving the optimization problem:

min
θ
L(θ,m) − βLadv(θe, θadv). (9)

We aim to identify the strongest attack given a target model
and incorporate the strongest attack into the minimization
problem, which can be formulated as a bi-level optimization
problem:

min
θ

max
θadv
L(θ,m) − βLadv(θe, θadv), (10)

where the inner maximization problem is to find the strongest
attack for the target model, and the outer minimization prob-
lem is to train a model to mislead the strongest attack. Since
it is computationally intensive to solve a bi-level optimization

Dataset Prediction Acc. Drop PSNR Drop SSIM Drop Attack Acc. Drop

VERIWild Small 2.0% 11.9% 11.7% 15.8%
VERIWild Medium 2.2% 12.0% 11.7% 25.7%

VERIWild Large 3.1% 11.9% 10.9% 28.0%
VERI 12.7% 21.5% 20.1% 14.5%

TABLE I: The defense performance of PATROL on the small,
medium, and large VERIWild datasets and VERI dataset. We
run five different hyper-parameter settings in PATROL and
report the average values of Re-identification accuracy drop
(Prediction Acc. Drop), PSNR drop, SSIM drop, and attack
accuracy drop from the original target model without defenses.

problem, in this paper, we train the target model parameters θ
and the surrogate inversion model parameters θadv iteratively,
following the common practice in adversarial reconstruction
training.

IV. EVALUATION
In this section, we experimentally evaluate the proposed

PATROL on a real-world collaborative inference task, vehi-
cle re-identification, and compare PATROL with the existing
defenses against MIAs under collaborative inference.

A. Experimental Settings

Vehicle Re-identification Dataset. We consider a real-world
collaborative inference task, vehicle re-identification, for eval-
uation. The vehicle re-identification task requires collaboration
between multiple edge devices (e.g., surveillance cameras) and
a cloud server. Each edge device processes the captured image
and uploads the intermediate results to the cloud server. The
cloud server identifies if two images capture the same vehicle.
Our experiments are conducted on two real-world vehicle re-
identification datasets, VERIWild [45] and VERI [46], [47].
VERIWild is the most recent and largest dataset for vehicle
re-identification, capturing 416,314 images of 40,671 vehicles’
identities from a large CCTV system with 174 cameras during
one month. The VERI dataset contains 49,357 images of 776
vehicles from 20 cameras, including 37778 for training and
11579 for testing. We evaluate PATROL on three test datasets
with different sizes in VERIWild: small, medium, and large
and the VERI testing dataset.
Vehicle Re-identification Model. We deploy ResNet-18 [20]
as the backbone model for the collaborative vehicle re-
identification task and train the model using the open-source
framework, Fastreid1 [48]. Due to resource constraints, it is
infeasible to deploy the entire ResNet-18 model on edge.
In our work, we consider resource-constrained edge devices,
where only the first one or two ResNet blocks can be deployed
on edge.
Inversion Model and Surrogate Inversion Model. We imple-
ment a black-box inversion model following [6]. The inversion
model is designed to invert the neural network layers of the
target network. For instance, given a target neural network with
three 3× 3 convolution layers at the edge side, we deploy the
inversion model with three 3 × 3 deconvolution layers. This
design ensures that the inversion model aligns with the target
neural network.

1fastreid, https://github.com/JDAI-CV/fast-reid
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Furthermore, we introduce a surrogate inversion model in
adversarial regularization training. Different from the inversion
model, the surrogate inversion model uses the output of the
last convolution layer of the target network as its input. We
design the surrogate inversion model to invert all the neural
network layers in the target network.
Evaluation Metrics. We consider the three types of evaluation
metrics. 1) Prediction Accuracy: We report the target model’s
top-1 accuracy on the test dataset to measure the model utility.
2) PSNR and SSIM: We use the similarity between the original
and reconstructed images to measure the privacy risks. Two
commonly used similarity metrics, PSNR and SSIM [49], are
reported in the paper. The higher PSNR/SSIM indicates a
higher reconstruction quality or worse defense performance. 3)
L2 norm distance: We select the average l2 distance between
the input images and reconstruction images as an auxiliary
metric. A lower L2 norm distance proves a higher privacy
risk. 4) Attack accuracy: We deploy a ResNet-50 model pre-
trained on the ImageNet-1K dataset to predict the class of
the reconstructed images. We select 13 categories related to
vehicles in ImageNet-1K as target labels. If a reconstruction
image has been categorized into the target labels, it means the
attacker launched a successful attack. The accuracy for this
classification model is called the attack accuracy.
Existing Defenses. Since our design focuses on resource-
constrained edge devices, we compare PATROL with three
perturbation-based MIA defenses: (1) noise defense, where
the intermediate output is perturbed by Gaussian noise [6], (2)
dropout defense, where we randomly drop out the intermediate
output [6], and (3) skip defense, where we randomly skip
connections between convolution layers [5], (4) Adversarial
Privacy-Preserving [7] (denoted by APP), which selects a
reconstructed network and a discriminator to guarantee the
reconstruction quality and use the reconstruction images for
the adversarial training to force the output of the target network
show less information about the input.

B. Experimental Results

Effectiveness of PATROL. We evaluate the performance of
PATROL on three test datasets and compare it with the original
model without defenses. We assume that edge devices can
only deploy 2 residual blocks (memory footprint 2.9MB) in
the original model without defenses for the VERIWild dataset
and can deploy 1 residual block (memory footprint 0.6MB) in
the original model without defenses for the VERI dataset. By
using PATROL with a high pruning ratio that removes around
66.7% parameters for the VERIWild dataset and around 92%
parameters for the VERI dataset, 4 residual blocks (4.8MB
memory cost for VERIWild and 0.5MB memory cost for
VERI dataset) can be deployed on edge (the impact of
different pruning ratios will be discussed in Section IV-C).
To present the effectiveness of PATROL, we measure the
prediction accuracy drop, PSNR drop, SSIM drop, and attack
accuracy drop from the original model. As shown in Table I,
PATROL significantly degrades the MIA attack performance
in terms of PSNR, SSIM, and attack accuracy, while incurring
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(a) The reconstructed images results on VERIWild Small dataset.
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(b) The reconstructed images results on VERIWild Medium dataset.
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(c) The reconstructed images results on VERIWild Large dataset.
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(d) The reconstructed images results on VERI dataset.

Fig. 3: The PSNR and SSIM of reconstructed images on the
VERIWild Small, Medium, Large dataset and VERI dataset.
Low PSNR or SSIM indicates the low similarity between the
reconstructed and original images, i.e., good protection perfor-
mance. PATROL outperforms the existing defenses, providing
a better tradeoff between privacy and utility.

Fig. 4: PATROL performance. (a) shows the original images
captured by the surveillance cameras. (b) shows the recon-
structed images from the output of two ResNet blocks with-
out defenses. Confidential information (e.g., vehicle brand,
driver identity, vehicle interiors) is exposed in the images.
(c) shows the reconstructed images from the output of four
ResNet blocks that are protected by PATROL. The confidential
information becomes invisible after PATROL. Real facial
information is replaced to preserve privacy.

an affordable prediction accuracy drop. More importantly,
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PATROL effectively preserves confidential information, such
as the driver’s identity, in collaborative inference models, as
shown in Figure 4.
Comparison with Existing Defenses. We compare PATROL
with five existing defenses and the original model without
defenses (baseline). Figure 3 reports the model performance
(prediction accuracy) and privacy risks (PSNR and SSIM), i.e.,
the ineffectiveness of defenses. The blue dashed line indicates
the performance of the original model without any defenses.

As shown in Figure 3, the proposed PATROL achieves
the lowest privacy risks compared with the noise, dropout,
and skip connection defenses on two datasets. Under the
same prediction accuracy, the PSNR and SSIM metrics for
PATROL drop at least 11% and 10% than these three de-
fenses on VERIWild datasets and drop at least 2% and 1%
on VERI dataset. Under the same privacy level, PATROL
prediction accuracy is higher at least 10% than the three
defense methods on the VERIWild dataset and at least 3%
on the VERI dataset. Compared with the adversarial training
defense methods APP [7], the PATROL achieves a similar
defense performance with higher prediction accuracy (around
4%) on the VERIWild and VERI dataset, which demonstrates
PATROL capability to achieve a better trade-off for the model
accuracy and privacy than the APP.

Although noise defense and dropout defense achieve a
slightly better prediction accuracy when we apply little noise
or a small dropout ratio, their privacy protection becomes
ineffective (high PSNR and SSIM values). As we add more
noise or set a high dropout ratio, their defense performance
can be the same as or better than PATROL, but the prediction
accuracy of the target model drops dramatically. The skip
defense is ineffective in protecting the model’s privacy, al-
though it improves the model’s efficiency when we skip more
neurons in the network. The APP method performs better
than noise, dropout and skip defenses on VERIWild datasets.
But on the VERI dataset, the App’s advantage is not obvious
compared with dropout and noise defense. The APP method
achieves better prediction accuracy but less privacy-preserving
when using a small trade-off parameter for adversarial training.
When we apply a large trade-off parameter for the adversarial
training, the APP method can keep the privacy but receives a
low model accuracy.

In summary, noise defense and dropout defense methods fail
to strike a balance between prediction accuracy and privacy
protection performance. The APP method has a similar trade-
off as PATROL, but our method takes advantage of the APP
methods in two datasets. In contrast, PATROL achieves both
high model prediction accuracy and effective privacy protec-
tion. Moreover, the pruning employed by PATROL reduces the
model size and maintains the efficiency of the edge model.

C. Ablation Study

This section presents ablation studies to show the effective-
ness of the proposed designs in PATROL.
Effectiveness of Lipschitz Regularization and Adversarial
Reconstruction Training. Lipschitz regularization and ad-

Defenses Prediction Acc. Drop PSNR Drop SSIM Drop

Pruning-only 5.4% 8.3% 7.1%
Pruning with Adv 5.0% 10.3% 10.9%
Pruning with Lip 5.7% 9.5% 9.5%

PATROL 3.2% 11.9% 10.9%

TABLE II: Effectiveness of PATROL components. Both ad-
versarial reconstruction training (Adv) and Lipschitz Regular-
ization (Lip) reduce the attack performance compared to the
pruning-only approach.

Defenses # of blocks
on edge PSNR Drop SSIM Drop

No defense 1 0% 0%
PATROL w/o pruning 1 0% 0%

PATROL w/ low pruning ratio 2 4.6% 8.9%
PATROL w/ high pruning ratio 3 10.2% 15.6%

TABLE III: PATROL Performance on small devices. Only one
residual block can be deployed on the edge device without
pruning (no defense and PATROL without pruning). PATROL
with a low pruning ratio can deploy two residual blocks on
the edge device, while PATROL with a high pruning ratio can
deploy three residual blocks.

Defenses # of blocks
on edge PSNR Drop SSIM Drop

No defense 2 0% 0%
PATROL w/o pruning 2 1.8% 7.1%

PATROL w/ low pruning ratio 3 5.1% 9.5%
PATROL w/ high pruning ratio 4 11.2% 11.9%

TABLE IV: PATROL Performance on large devices. Only two
residual blocks can be deployed on the edge device without
pruning. PATROL with a low pruning ratio can deploy three
residual blocks on the edge device, while PATROL with a high
pruning ratio can deploy four residual blocks.

versarial reconstruction training are two key components to
enable privacy-oriented pruning. We investigate the effective-
ness of Lipschitz regularization and adversarial reconstruction
training. We consider three different defense approaches for
the ablation study. First, only structured pruning is used for
defense (pruning-only). Second, we integrate the structure
pruning with adversarial reconstruction training (pruning with
Adv). Third, we integrate the structure pruning with Lipschitz
regularization (pruning with Lip). We compare the perfor-
mance of these three defense approaches with PATROL on
VERIWild dataset. As shown in Table II, all the defense
methods can degrade the attacker’s performance. Both Lip-
schitz regularization and adversarial reconstruction training
can reduce the privacy risks (large PSNR and SSIM drop)
compared with the pruning-only defense. By integrating both
Lipschitz regularization and adversarial reconstruction train-
ing, the privacy-oriented pruning in PATROL achieves the best
performance in both prediction accuracy (smallest accuracy
drop, 3.2%) and privacy protection (largest PSNR and SSIM
drop, 11.9% and 10.9%).
Effectiveness of Pruning. We investigate the effectiveness of
the pruning ratio in defense. We consider both low and high
pruning ratios and investigate two scenarios by taking edge
device capabilities into account. In the small edge device sce-
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nario, only one residual block in ResNet-18 can be deployed
on the edge, due to the limited memory. After privacy-oriented
pruning, two or three blocks can be deployed on the edge,
based on the low/high pruning ratio. In the large edge device
scenario, two residual blocks can be deployed on the edge
side. After privacy-oriented pruning, three or four blocks can
be deployed on the edge, based on the low/high pruning ratio.
The testing dataset is VERIWild.

Table III and Table IV illustrate the results in the two
scenarios, where four settings are considered: 1) no defense,
2) PATROL without pruning, which only uses Lipschitz regu-
larization and Adversarial reconstruction training, 3) PATROL
with low pruning ratio, and 4) PATROL with high pruning
ratio. We observe that the proposed pruning method achieves
lower PSNR and SSIM values, providing much better privacy
protection than the model without pruning, i.e., no defense and
PATROL without pruning. As the high pruning ratio makes
more layers to be deployed on the device, PATROL with a
high pruning ratio can achieve better performance than that
with a low pruning ratio.

55 65 75 85 95
Preiction Acc. (%)
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Fig. 5: The MSE (L2 norm) between reconstruction images
and input images for PATROL and the Baseline methods on
the VERI dataset.

The L2 norm metric comparison between PATROL and
Baseline methods. In this section, we consider using the Mean
Square Error for the reconstruction image and the input image
as an auxiliary metric to present the privacy-preserving for
every defense method. In this experiment, we only use the
VERI dataset as the testing dataset. The results are shown in
Figure 5.

The results show the same trend for each defense method
as the PSNR and SSIM metrics in figure 3d. The difference is
that PATROL performance is far beyond any other methods,
which can be additional proof of the effectiveness of PATROL.

Defense Attack PSNR SSIM

No defense Black-box 17.18 0.43
White-box 20.48 0.53

PATROL Black-box 14.85 0.37
White-box 14.39 0.30

TABLE V: Attack performance under black-box and white-
box attacks with and without PATROL defense.

Defense against White-Box Model Inversion Attacks. The
aforementioned evaluation mainly considers black-box attacks
due to their popularity, while the proposed PATROL can
effectively defend against white-box attacks. We consider a
white-box attacker who knows the target model’s structure and

Defenses PSNR Drop SSIM Drop Prediction Acc. Drop

No defense 3.0% 19.7% 22.8%
APP [7] 9.1% 33.8% 23.5%
PATROL 6.2% 24.6% 18.3%

TABLE VI: The privacy metric and Re-identification predic-
tion accuracy drop (Prediction Acc. Drop) when we change
the input size image form 256× 256 to 128× 128. We use the
Adversarial privacy-preserving method (APP) as a comparison
method.

parameters and can generate the user’s input by observing the
intermediate value difference. Table V compares the black-
box attacks and white-box attacks, where white-box attackers
know the models’ parameters (e.g., via reverse engineering).
We observe that without defense, the white-box attack achieves
higher attack performance (higher PSNR and SSIM) compared
to the black-box attack. However, by deploying PATROL, the
attack performance of the white-box attacks is comparable or
even lower than that of the black-box attacks. This is mainly
because the Lipschitz regularization used in PATROL is attack-
agnostic, which does not specifically target any particular
attacks, which indicates that PATROL is effective against
various types of attacks, including both white-box and black-
box attacks.
The impact of image size to the defense. We try to figure
out whether the input image size of vehicle identification in-
fluences the defense against MIAs. We use PATROL, APP, and
no defense model as the testing method, choosing 256 × 256
(default settings for all experiments) and 128×128 as two input
sizes for this experiment. Table VI presents the evaluation
metrics changes when the input size changes from 256 × 256
to 128× 128 for no defense, APP and PATROL methods. The
results prove that the input size can influence the performance
of the defense. The SSIM metrics have been more impacted by
it since its metric value dropped more than the PSNR metric.
But considering the prediction accuracy drop after changing
the input size, the performance downgrade is caused by the
downgrade of the target model performance (The no defense
model prediction accuracy drops the same as the defense
methods). Therefore, the input size has less impact on the
defense against MIAs.

V. CONCLUSION

This paper proposed a privacy-oriented pruning for collab-
orative inference, named PATROL, to defend against model
inversion attacks. PATROL specially selects the sub-network
of a DNN to push more layers to the edge without largely
degrading prediction accuracy and efficiency. To remove the
privacy-sensitive parameters, we introduced Lipschitz regular-
ization and adversarial reconstruction training in PATROL.
Defense performance of PATROL is evaluated on vehicle
re-identification tasks. Experimental results show that the
proposed PATROL can successfully protect collaborative in-
ference against MIAs.
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