CARE: Counterfactual-based Algorithmic Recourse for Explainable Pose Correction

Bhat Dittakavi
Indian Institute of Technology Hyderabad
ail9resch11001@iith.ac.in

Bharathi Callepalli
Variance.ai
callepalli@gmail.com

Aleti Vardhan
Manipal Institute of Technology
vardhanaleti2001@gmail.com

Sai Vikas Desai Vineeth N Balasubramanian
Indian Institute of Technology Hyderabad
{cs17mtech11011, vineethnb}@iith.ac.in

Abstract

With increasing popularity of home-based fitness regimens post-pandemic, there has been a growing interest in fitness monitoring solutions. Owing to this, human pose monitoring has gained significant commercial importance in the field of computer vision. Most efforts in the past focused on the task of human pose classification for various applications. In this work, we instead focus on a critical aspect of human pose monitoring that naturally follows from basic pose classification i.e., pose analysis and correction. Specifically, we study human pose correction through the lens of algorithmic recourse. Algorithmic recourse involves a model providing explanations on a how a model arrived at a decision, along with possible actions to drive the model to output a favorable decision. To this end, we develop CARE (Counterfactuals based Algorithmic Recourse for Explainable pose correction), a novel framework that uses counterfactual explanations to provide recourse for incorrect human poses, thereby helping a user correct their pose. Experiments on three diverse datasets, including two fitness datasets and one hand gestures dataset, demonstrate the effectiveness and applicability of CARE.

1. Introduction

Human pose estimation is a fundamental problem in computer vision, with a myriad applications including action recognition, sports, healthcare, human-computer interaction, and surveillance. Many efforts to estimate and classify human pose have been proposed in recent years [2, 7, 25, 31]. However, the related task of pose correction, which plays a vital role in human pose monitoring, has received limited attention in literature. Pose correction typically involves the following steps: (1) human pose estimation, followed by (2) assessing the correctness of the estimated pose w.r.t. an expected pose, and finally (3) offering actionable interventions to rectify any detected errors. A sample illustration is shown in Figure 1. Pose correction has applications in various practical domains, including personal fitness, sports training, and rehabilitation. For instance, an AI-powered fitness coach can utilize pose correction techniques to deliver real-time feedback and guidance during fitness routines like yoga and pilates, thereby assisting users in achieving the correct pose. In the context of sports training, a pose correction system can analyze live or practice footage of athletes, effectively identifying subtle mistakes in their posture or movements, and subsequently providing personalized performance assessments. Similarly, a pose correction system can serve as a valuable tool for individuals undergoing physical rehabilitation to track and analyze the progress while performing rehabilitative exercises.

Some recent works have addressed the problem of human pose monitoring. For instance, Katayama et al. [10] developed a privacy-preserving point cloud extraction method to assess a user’s posture while sitting on a work desk. Kishore et al. [12] devised a voice-based feedback system to provide instructions to fix incorrect yoga poses. In addition, 3D fitness monitoring datasets such as Fit3D [4], 3D-Yoga [15], and EC3D [34] have been released. While RGB-D and motion capture data contain rich information about human movements, obtaining such data needs specialized equipment whose costs are often restrictive. To allow for much wider usage, our pose correction system relies on 2D image data, thus making it more widely deployable in practice on consumer devices such as smartphones.

Among methods geared specifically towards human pose correction, [34] train a Graph Convolutional Network (GCN) to provide corrective feedback, but provide results on only 3 exercise categories. [10, 12] develop methods to
provide pose feedback, but no quantitative analysis of the correction methods is seen. [3, 4] propose statistical methods to correct exercises; [4] however relies on expensive motion capture technology, while we focus on developing a pose correction system that relies on easy-to-obtain 2D image data and evaluate our system on a large number of pose categories. The effort closest to our work is [3] in its pre-processing steps; however, it aims to localize the joint angle error, while our work herein quantifies the joint angle corrections through an action vector and provides actionable inputs to the user.

In this work, we view the human pose correction problem from the lens of algorithmic recourse [9]. We propose a methodology for Counterfactual-based Algorithmic Recourse towards Explainable pose correction (CARE) where we accomplish pose correction by making minimal changes to the incorrect pose to achieve the nearest counterfactual pose (see Figure 1). Algorithmic recourse can be defined as a systematic set of steps to reverse an unfavorable decision by a classification model. We generate counterfactual explanations and choose the nearest counterfactual, based on which the correction steps are generated. In addition, unlike existing pose correction methods, CARE utilizes diverse counterfactual explanations to introduce flexibility in the obtained corrected poses. Our contributions are summarized as follows:

- We propose a novel approach to the human pose correction problem based on algorithmic recourse. To the best of our knowledge, this is the first such formulation of human pose correction.
- We develop CARE, an end-to-end system for explainable pose correction with a wide range of applications including fitness monitoring and healthcare; and extensively evaluate it on three diverse datasets - Yoga-20, Pilates-32, and American Sign Language (ASL).

2. Related Work

In this section, we discuss earlier work from multiple perspectives that could be viewed as connected to our work, viz., pose estimation/classification, as well as pose correction systems.

Pose Estimation and Classification: Pose estimation is a well-studied computer vision task that aims to infer a set of keypoints representing the pose depicted in an image [2, 7, 25, 31]. Building upon pose estimation, pose classification enhances the understanding of the pose by assigning a semantic label or pose category to each instance. While related tasks like human action recognition focus on analyzing videos of human-object interactions [5, 29, 33], pose classification finds versatile applications across various domains. For instance, it plays a crucial role in face recognition [16], surveillance [20, 21], gesture recognition [23, 32], and human-robot interaction [11, 24]. Among the different kinds of pose classification efforts such as head, hand and body pose estimation, our work focuses on the study of full-body poses, with particular emphasis on intricate postures such as in yoga and pilates. There has been a recent increase in efforts on yoga pose classification [6, 8, 13, 14, 19, 30],
highlighting the increasing attention on automatically understanding such poses. However, these aforementioned efforts only perform pose classification, and do not consider pose correction.

Pose Correction: Compared to pose classification research, the study of pose correction has been relatively limited. Some works have addressed pose correction in the context of yoga. Katayama et al. [10] introduced a privacy-preserving framework utilizing point cloud extraction to evaluate a user’s sitting posture at a work desk. Additionally, Kishore et al. [12] proposed a voice-based feedback system that offers instructional cues for correcting yoga poses. To facilitate research in 3D fitness monitoring, 3D datasets such as Fit3D [4], 3D-Yoga [15], and EC3D [34] have been created. Nevertheless, the acquisition of RGB-D and motion capture data requires specialized equipment, limiting accessibility for general users. To overcome this limitation, CARE uses 2D image data, enabling easier deployment through a smartphone camera, thereby promoting wider accessibility and usability.

Existing pose correction studies have certain limitations. Some require specialized sensors [4,34], while others demonstrate efficacy only for a restricted set of poses [1,34]. Additionally, certain approaches provide rudimentary feedback [22], and some lack comprehensive quantitative analysis of their pose correction module [10,12]. In our work, we address these limitations by: 1) devising an explainable pose correction system based on algorithmic recourse [9] to offer clear and interpretable decisions, 2) developing a system that seamlessly operates with easily obtainable 2D image data, and 3) conducting a comprehensive evaluation on diverse datasets to establish the effectiveness and versatility of CARE.

3. Proposed CARE Framework

Our overall framework is mainly comprised of a pose classifier, a counterfactual generator and an algorithmic recourse module. We describe each of these below.

3.1. Background And Preliminaries

Counterfactual Explanations: Counterfactual explanations (CFE) are used to explain a deep neural network’s model prediction using an approach that seeks to find an alternative input or scenario that, if applied to the model, would have resulted in a different prediction or decision. By providing alternative scenarios [28], a CFE can help users and stakeholders understand the decision-making process of complex machine learning models and identify potential biases or limitations in the model’s predictions. It is especially useful in high-stakes applications, such as medical diagnosis or finance, where it is critical to understand why a particular decision was made by a model. A CFE is typically obtained using an optimization formulations that aims to find the minimum perturbation or change to the original input data that would cause the model’s output to change to the desired or alternative outcome, subject to suitable constraints.

\[
x' = \arg \min_{x'} \left(\text{dist}(x, x') + \lambda r(x, x') \right) \\
\text{s.t} \ M_{\text{pose}}(x) \neq M_{\text{pose}}(x')
\]

(1)

Given a factual input \(x \) and a decision \(M_{\text{pose}}(x) \) generated by a model \(M_{\text{pose}}(\cdot) \), the above optimization problem aims to find a counterfactual explanation \(x' \) which can alter the original decision \(M_{\text{pose}}(x) \), with minimal perturbation to \(x \). In the context of classification tasks, the objective function that is minimized may be a combination of a factor of the classification loss and a regularization term \(\lambda \) to ensure that the perturbation is minimal.

Algorithmic Recourse: With growing use of machine learning models in decision making in several critical applications (e.g. medicine, law, finance), there is a need for such decisions to be explainable. In this context, algorithmic recourse [9] goes beyond counterfactual explanations by describing concrete actions that need to be taken to reverse a possibly unfavorable decision made by a machine learning model. Building on counterfactual generation, algorithmic recourse is formulated [26] as follows:

\[
\delta^* \in \arg \min_{\delta} \text{cost}(\delta; x) \text{ s.t } M_{\text{pose}}(x') \neq M_{\text{pose}}(x) , \\
x' = x + \delta , \\
x' \in P, \delta \in F
\]

(2)

Given a factual input \(x \) and a decision \(M_{\text{pose}}(x) \) generated by a model \(M_{\text{pose}}(\cdot) \), the above optimization problem aims to find the smallest action \(\delta^* \) to obtain a counterfactual explanation \(x' \) which can alter the original decision \(M_{\text{pose}}(x) \). A set of domain-specific constraints related to plausibility \(P \) and feasibility \(F \) can be optionally applied [26] to the optimization problem.

In CARE, we propose an explainable pose correction system for 2D image data based on counterfactual explanations and use algorithmic recourse to obtain actionable recommendations that can be taken to correct the pose. In particular, we are not just interested in assessing the goodness of the pose but also recommending actionable interventions to correct that pose.

3.2. Pose Classifier

As stated earlier, while RGB-D and motion capture data are much more robust to view point changes, we focus on 2D image data which is more accessible. To obtain pose keypoints data in our system, we consider a data distribution \(D \) comprising RGB images representing human poses. Our first step involves utilizing a pre-trained pose estimation model \(M_{\text{keypoints}} \) to extract pose keypoints for each image. It is worth noting that the pre-trained model may not be specifically trained on \(D \), which means the obtained keypoints may contain some noise. Nevertheless, our pose
feedback to the user

Figure 2. CARE Framework: Given an incorrectly formed pose, we extract pose features and pass them through the counterfactual generator. A set of CFEs are generated using algorithmic recourse-based constraints. We then find the most optimal counterfactual closest to the incorrect pose and generate a corrective action vector to help the user correct their pose.

correction system is designed to handle such noise. Given an image \(I \) from the distribution \(D \), we extract the keypoint set \(K \) using the pre-trained model:

\[
K := \mathcal{M}_{\text{keypoints}}(I)
\]

where \(K = \{k_i\} \) for \(i = 1, 2, 3, \ldots, N \)

Traditional pose estimation methods provide a set of keypoints for each pose. However, for pose correction, the angles formed between different joints in the human body are crucial. We hence convert the keypoint vector into a list of angles that contribute to the pose. Specifically, we compute the angle formed by keypoints \(k_1, k_2, \) and \(k_3 \) at \(k_2 \) as follows:

\[
\angle k_1k_2k_3 = \cos^{-1} \left(\frac{k_2k_1 \cdot k_2k_3}{\|k_2k_1\|\|k_2k_3\|} \right)
\]

where \(k_2k_1 \) represents a vector connecting the keypoints \(k_1 \) and \(k_2 \). By applying the aforementioned approach, we map each image \(I \) in the dataset to its corresponding pose vector (or angle vector). This process allows us to generate a derived data distribution \(D_A \) consisting of angle vectors derived from the original data distribution \(D \). The distribution \(D_A \) consisting of pose angle vectors is now used to train a fully connected neural network model \(\mathcal{M}_{\text{pose}} \) as a pose classifier. This network is designed to classify each vector into one of \(C \) pose categories. In summary, given an image of a person performing a pose, we generate pose keypoints using a pre-trained pose estimator, extract pose angle vectors, and classify the pose into one of \(C \) categories.

In order to study a pose correction system, we require a dataset of poses that have been performed incorrectly. For a given pose class \(c_i \), an incorrect pose is one in which at least one of the angles is erroneously executed while attempting to perform the pose \(c_i \). While it is possible to automatically generate such a dataset by randomly perturbing the angle vectors from \(D_A \), such random perturbations often lack realism due to the constraints of human body flexibility. To generate more realistic “erroneous poses” for each pose class, we impose additional constraints (e.g. the new joint angle should maintain a certain angle range for a given joint) on the perturbations of pose angle vectors from each class in the training data. This approach allows us to create an incorrect pose dataset \(D_A \) that is closer to the real world. Each vector in this dataset corresponds to a negative class \(\tilde{c}_i \) (any class other than \(c_i \)). For instance, a perturbed pose vector that deviates from the correct execution of the Bow Pose in a Yoga dataset will be assigned to the negative class “not Bow Pose”.

3.3. Counterfactual Generation and Algorithmic Recourse

Given an input feature \(x \) and its corresponding output \(y \) from a machine learning model \(\mathcal{M}_{\text{pose}} \), a counterfactual explanation, \(x' \) is a perturbation of \(x \) to generate a different or desired output \(y \) by the same model or algorithm \(\mathcal{M}_{\text{pose}} \):

\[
x' = \arg \min_{x'} (H_{\text{loss}}(\mathcal{M}_{\text{pose}}(x'), y) + |x - x'|)
\]

where \(H_{\text{loss}} \) is the hinge loss. We use the counterfactual as closest to the input instance for feasibility.
However, algorithmic recourse not only considers feasibility, but also actionability for the user to achieve the desired outcome. Actionability is accomplished through the generation of counterfactuals by perturbing only the mutable features of the input instance. For all counterfactuals generated, the overall loss function is defined as:

$$C(x) = \arg \min_{x_1', \ldots, x_k'} \frac{1}{k} \sum_{i=1}^{k} H_{\text{loss}} \left(\mathcal{M}_{\text{pose}} \left(x'_i \right), y \right) + \frac{\lambda_1}{k} \sum_{i=1}^{k} \text{dist} \left(x'_i, x \right) - \lambda_2 \text{dpp}_{\text{div}} \left(x'_i, \ldots, x_k' \right)$$

(3)

where the first term is the hinge loss that pushes $\mathcal{M}_{\text{pose}}(x')$ towards y, the second term maintains the proximity between x with k being the number of counterfactuals and x'_i the counterfactual, and the third term maximizes the diversity of counterfactuals and is implemented following [18] as det(S), represented as dpp$_{\text{div}}$ in (Eqn 3), where S is a kernel matrix with $S_{ij} = \frac{1}{1 + \text{dist}(x'_i, x'_j)}$. λ_1 is the proximity weight and λ_2 is the diversity weight. We subsequently follow the algorithmic recourse formulation (Eqn 2) to obtain an actionable pose correction by considering the nearest counterfactual. An optimal pose correction ensures change in a minimal (sparse) set of features (joint angles in our pose correction framework) to accomplish the desired pose class. In the above mentioned optimization formulation (Eqn 3), the first term ensures the output class is the desired class, y, different from the current predicted class, y'. The second term which is the proximity term ensures minimal changes in the joint angles to achieve the desired class, y optimally. In case of pose correction, the third term (Diversity loss), helps achieve the right variant of the class pose even though the output pose belongs to the desired class y. This is also captured in our experimental results in Figure 5.

3.4. Overall Integrated Pipeline

We now describe our overall integrated pipeline, as also illustrated in Figure 2. Assuming we have a pre-trained pose estimator/classifier, when a new user pose image enters the system and is classified as incorrect, we provide the incorrect pose angle vector data to the counterfactual generator. Immutable features, if any, are also provided to the counterfactual generator. Our formulation in Eqn 3 helps generate only the actionable counterfactuals by leveraging the diversity factor in the loss function. Out of all the generated counterfactuals, we pick the closest one to the incorrect pose. To encourage sparsity in a generated counterfactual, we follow [18] in conducting a post-hoc operation where we restore the value of continuous features back to their values in x greedily until the predicted class changes. This ensures that the subject can reach the desired pose with the least effort. With all these components, the optimal counterfactual satisfies the recourse properties of proximity, sparsity and actionability. We then generate the action vector by taking the difference between the incorrect pose and the optimal counterfactual. This action vector is provided to the user to correct the pose optimally. If the user fails to correct his/her incorrect pose, another set of counterfactuals are generated and the loop continues.

4. Experiments and Results

Datasets: We validate the extensibility of our proposed framework by showing the results on 3 datasets - Yoga-20, Pilates-32 and American Sign Language Dataset. We select the 20 most diverse classes from the Yoga-82 dataset [27], which includes rotated versions of certain poses with identical joint angular values. This dataset contains approximately 29,000 images from 82 pose classes. We focus on single-view poses and choose poses with 2D angles to ensure robustness. The training set for Yoga-20 consists of 2,665 images. The Pilates-32 dataset comprises publicly available images of individuals performing 32 Pilates exercises targeting core muscles. It contains 2,225 training images. We use the American Sign Language (ASL) dataset to evaluate our proposed framework across multiple domains, initially intended for hand gesture recognition. This dataset consists of 28 classes representing each letter of the English alphabet, along with “Space” and “Delete” buttons on a keyboard. The training dataset comprises 48,566 images. More details of these datasets, including sample images, are provided in the Appendix.

Evaluation Metrics: We employ the standard top-1 accuracy metric to assess our pose classifier’s effectiveness. For evaluating our pose correction system, we consider the Percentage of Corrected Poses (PCP) metric, computed as:

$$\text{PCP} = \frac{100}{T} \sum_{i=1}^{T} \left[\text{Error} \leq \beta \right]$$

where T refers to the size of the test set and $[]$ denotes the Iverson bracket notation. β denotes threshold used to compute the percentage of correct poses. Examples of β values can be seen in the column headings in Table 1. We utilize two other measures of error: (i) Mean Absolute Difference (MAD), where we first obtain the mean absolute difference between the corrected pose vector and the ground truth pose vector, i.e.

$$\text{MAD} = \frac{1}{N} \sum_{i=1}^{N} \left| p_{\text{corrected}} - p_{\text{gt}} \right|$$

where N denotes the length of the pose vector; and (ii) Weighted Pose Correction Error (Weighted PCE), which we introduce in this work. Given an incorrect pose vector p_{inc}, the corrected pose vector $p_{\text{corrected}}$ (obtained from our pose correction system) and the ground truth pose vector p_{gt}, we calculate the weighted PCE as follows. Given a pose vector of N joint angles $[a_1, a_2, ..., a_N]$, we compute the incorrect pose p_{inc} and the ground truth pose p_{gt} to divide these angles into two disjoint sets: A_C, a set of angles which are already correct in the incorrect pose, and A_I, a set of angles which are incorrect in the incorrect pose. Then,
\[WPCE = \alpha \sum_{a_i \in A_I} \Delta a_i + (1 - \alpha) \sum_{a_c \in A_C} \Delta a_c \]

where \(\alpha \) is a weight close to 0, \(\Delta a_i \) and \(\Delta a_c \) refer to the absolute difference in the angle values between the corrected pose and ground truth pose for incorrect and correct angles respectively. More specifically, a correct angle in a pose and ground truth pose for incorrect and correct absolute difference in the angle values between the corrected pose class as the corrected pose; (iii) \textit{Decision Tree Regression}: We use a traditional learning model based on decision trees, which takes an incorrect pose vector as input and generates the corrected pose vector as output; and (iv) \textit{NN Regression}: A 4-layer neural network that takes an incorrect pose vector as input and generates the corrected pose vector as output.

\textbf{Hyperparameters:} For all datasets, we use the Mediapipe \cite{mediapipe} pre-trained pose estimation model. To train pose classifiers, we train a shallow, fully connected neural network for each dataset (details in Table 2). We use Adam optimizer with a learning rate of 0.001. We define 8 joint angles per vector for Yoga-20 and Pilates-32 datasets to obtain the pose vectors. For ASL, we define a pose vector of 19 joint angles. For obtaining counterfactuals, we follow \cite{counterfactuals} with default values of 0.5 and 1.0 for proximity and diversity weights respectively. We compute weighted pose correction error by setting \(\alpha = \frac{1}{N} \) where \(N \) is the number of joints.

\textbf{Results:} We begin with a discussion of the pose classifier’s performance, since it is an essential component of our

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Metric</th>
<th>Method</th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoga-20</td>
<td>MAD</td>
<td>Centroid</td>
<td>0.00+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Tree</td>
<td>0.02+-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN Baseline</td>
<td>0.03+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARE</td>
<td>0.91+-0.00</td>
</tr>
<tr>
<td></td>
<td>Weighted PCE</td>
<td>Centroid</td>
<td>0.03+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Tree</td>
<td>0.03+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN Baseline</td>
<td>0.04+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARE</td>
<td>0.97+-0.00</td>
</tr>
<tr>
<td>ASL</td>
<td>MAD</td>
<td>Centroid</td>
<td>0.00+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Tree</td>
<td>0.04+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN Baseline</td>
<td>0.05+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARE</td>
<td>0.97+-0.00</td>
</tr>
<tr>
<td>Pilates</td>
<td>MAD</td>
<td>Centroid</td>
<td>0.00+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Tree</td>
<td>0.03+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN Baseline</td>
<td>0.04+-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CARE</td>
<td>0.97+-0.00</td>
</tr>
</tbody>
</table>

Table 1. \textbf{Main Results:} We show experimental results of CARE on 3 datasets - Yoga-20, Pilates-32 and ASL dataset. We report the percentage of corrected poses (PCP, scaled to range 0-1) based on two evaluation metrics - (i) \textit{Mean Absolute Difference} and (ii) \textit{Weighted Pose Correction Error}.

Table 2. \textbf{Pose Classification Performance:} Table showing Top-1 accuracy for each dataset.
pose correction pipeline. Table 2 presents these details; the pose classifier achieves high accuracy, surpassing 90% on all three datasets, which is considered a suitably high range in this field. We subsequently show the evaluation our pose correction system in Table 1, which shows the PCP measure using MAD and Weighted PCE. The mean and standard deviation of the evaluation metrics are reported on three runs. Our pose correction framework consistently outperforms the baselines, even at lower thresholds by a considerable margin indicating that the corrected poses highly incline with the ground truth poses. Additionally, it is observed that the Weighted PCE scores are generally higher than the MAD scores for CARE, especially on the Yoga dataset. This could be due to our framework’s focus on correcting incorrect joint angles while preserving correctly aligned angles. Overall, our experiments demonstrate promising results for our framework across all three datasets.

5. Discussions and Ablation Studies

Varying \(\alpha \) in Weighted PCE: As seen in the earlier section, the weighted pose correction error metric uses a hyperparameter \(\alpha \) which decides the extent of penalization for modifying correct and incorrect angles. Table 3 shows the results of our studies with varying \(\alpha \) values. It can be seen that the value of \(\alpha \) has a negligible effect on Weighted PCE at higher thresholds. However, at lower thresholds such as 1 degree, Percentage of Correct Poses (PCP) decreases as \(\alpha \) increases. This clearly demonstrates that a lower \(\alpha \) helps in penalizing the adjustment of already correct angles, because an ideal pose correction system does not modify the already correct joint angles, but rather focuses on correcting the incorrectly formed angles.

Qualitative Results: Figure 3 illustrates pose correction using CARE for Half-Moon and Low Lunge Yoga poses on the Yoga dataset respectively. The action vector is sparse with changes only in right hip (rh) and right knee (rk) values for Half-Moon pose and at lh for Low-Lunge pose. More qualitative results, including ones on the ASL dataset, are provided in the Appendix.

Varying Range of Perturbations in Generation of Augmented Dataset: To see the impact of varying perturbations of incorrect poses in the augmented dataset, we performed a study with different perturbation ranges on all the three datasets. Figure 4 shows the results of our study. We do not include the Centroid and the Medoid baselines in these results, as the corrected poses for these baselines are heuristically determined and don’t depend on the perturbations of the incorrect poses. We assess the regression-based baselines and compare them against the proposed CARE method. Expectedly, we see MAD dropping as we increase the range of perturbations for all experiments. However, we see CARE outperforming all baselines across these perturbation ranges unanimously. The baseline regression models perform well on a fixed set of perturbations that they are trained on. CARE provides a flexible framework that allows this improved performance.

Multi-variant/Diverse Counterfactuals of Incorrect Poses: Our counterfactual generation step (Eqn 3) allows the generation of a diverse set of counterfactuals for a given
Figure 4. Study of varying range of perturbations while generating the augmented dataset. CARE outperforms the baselines across all these experiments.

Figure 5. Multi-Variant Explanation: (Top) Two variants of the Low Lunge pose (Bottom) Tree pose with one incorrect pose and the joint angle figure indicating two possible desired variants involving the left and right joints. Joints - e: elbow (blue), s: shoulder (red), h: hip (green) and k: knee (yellow).

<table>
<thead>
<tr>
<th>Variant</th>
<th>ls</th>
<th>lh</th>
<th>lk</th>
<th>le</th>
<th>rs</th>
<th>rh</th>
<th>rk</th>
<th>re</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Variant</td>
<td>171</td>
<td>73</td>
<td>111</td>
<td>138</td>
<td>150</td>
<td>115</td>
<td>88</td>
<td>108</td>
</tr>
<tr>
<td>Output Variant</td>
<td>171</td>
<td>73</td>
<td>83</td>
<td>138</td>
<td>150</td>
<td>115</td>
<td>88</td>
<td>108</td>
</tr>
</tbody>
</table>

Table 4. Multi-Variant Explanation: Counterfactual for the desired variant of the Low-Lunge pose with changed values of joint angles at left knee (lk)

pose. Consider the “Low-Lunge pose” in the Yoga-20 dataset shown in Figure 5. This pose has two variants: Low-Lunge Pose Variant-1 (left) and Low-Lunge Pose Variant-2 (right). CARE leverages the diversity component to output diverse counterfactuals from which we arrive at the optimal (nearest) one from the desired variant. To study this further, we considered a setting where a desired pose is achieved, but we need a different desired variant. CARE CFEs help in making optimal corrections to the current pose variant to achieve the desired pose variant as shown in the bottom two images of Figure 5. Table 4 shows the actionable counterfactual recommended for Tree Pose Variant-2, involving the left knee.

6. Conclusions

In this work, we present CARE: Counterfactual based Algorithmic Recourse for Explainable pose correction, a novel approach that addresses the task of pose correction. While existing works in fitness monitoring have primarily focused on pose classification, we shift our attention to the critical problem of correcting poses. Our CARE system leverages the concept of algorithmic recourse, offering corrective actions when the machine learning model produces unfavorable responses. Comprising an off-the-shelf pose estimator, a pose classifier, and a counterfactual generator, CARE demonstrates a comprehensive solution for pose correction. By extracting pose keypoints from 2D image datasets using the pose estimator, we derive pose angle vectors through post-processing techniques. These vectors serve as the training input for the pose classifier. To rectify incorrect poses, we employ counterfactuals, selecting the closest instance to the incorrect pose as the corrected pose. The element-wise difference between the corrected and incorrect poses yields a sparse vector that represents the necessary corrective action. To evaluate the efficacy of CARE, we conduct experiments on Yoga, Pilates and ASL gesture recognition datasets. The results clearly demonstrate that CARE outperforms baselines across all three datasets. In addition, we introduce a new metric, Weighted Pose Correction Error (Weighted PCE), to assess the quality of corrected poses. This metric provides a comprehensive evaluation of the corrective actions performed by CARE. Avenues for future research include: (i) Developing an automated method for generating a large number of incorrect poses based on human flexibility constraints, and (ii) Improving the robustness of the pose classifier to generate more accurate and effective counterfactuals.

Acknowledgements. This work was partly supported by the Microsoft Academic Partnership Grant and the Department of Science and Technology, India through the DST ICPS Data Science Cluster program. We thank Divyagni Bavikadi and Soumi Chakraborty for their contributions to the Pilates dataset compilation. We thank the anonymous reviewers for their valuable feedback that improved the presentation of this paper.
References

[10] Hikaru Katayama, Hamada Rizk, and Hirozumi Yamaguchi. You work we care: Sitting posture assessment based on point cloud data. 02 2022. 1, 3

[23] Rubin Bose S. and Sathish Kumar. Hand gesture recognition using faster r-cnn inception v2 model. pages 1–6, 07 2019. 2

4911

on Computer Vision and Pattern Recognition (CVPR), June 2019. 1, 2

[34] Ziyi Zhao, Sena Kiciroglu, Hugues Vinzant, Yuan Cheng, Isinsu Katircioglu, Mathieu Salzmann, and Pascal Fua. 3d pose based feedback for physical exercises. pages 17. 1316–1332. Springer, 2022. 1, 3