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Abstract

With increasing popularity of home-based fitness regi-
men post-pandemic, there has been a growing interest in
fitness monitoring solutions. Owing to this, human pose
monitoring has gained significant commercial importance
in the field of computer vision. Most efforts in the past
focused on the task of human pose classification for vari-
ous applications. In this work, we instead focus on a criti-
cal aspect of human pose monitoring that naturally follows
from basic pose classification i.e., pose analysis and correc-
tion. Specifically, we study human pose correction through
the lens of algorithmic recourse. Algorithmic recourse in-
volves a model providing explanations on a how a model
arrived at a decision, along with possible actions to drive
the model to output a favorable decision. To this end, we de-
velop CARE (Counterfactuals based Algorithmic Recourse
for Explainable pose correction), a novel framework that
uses counterfactual explanations to provide recourse for in-
correct human poses, thereby helping a user correct their
pose. Experiments on three diverse datasets, including two
fitness datasets and one hand gestures dataset, demonstrate
the effectiveness and applicability of CARE.

1. Introduction

Human pose estimation is a fundamental problem in
computer vision, with a myriad applications including ac-
tion recognition, sports, healthcare, human-computer in-
teraction, and surveillance. Many efforts to estimate and
classify human pose have been proposed in recent years
[2,7,25,31]. However, the related task of pose correc-
tion, which plays a vital role in human pose monitoring,
has received limited attention in literature. Pose correction
typically involves the following steps: (1) human pose es-
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timation, followed by (2) assessing the correctness of the
estimated pose w.r.t. an expected pose, and finally (3) offer-
ing actionable interventions to rectify any detected errors.
A sample illustration is shown in Figure 1. Pose correc-
tion has applications in various practical domains, includ-
ing personal fitness, sports training, and rehabilitation. For
instance, an Al-powered fitness coach can utilize pose cor-
rection techniques to deliver real-time feedback and guid-
ance during fitness routines like yoga and pilates, thereby
assisting users in achieving the correct pose. In the con-
text of sports training, a pose correction system can ana-
lyze live or practice footage of athletes, effectively identi-
fying subtle mistakes in their posture or movements, and
subsequently providing personalized performance assess-
ments. Similarly, a pose correction system can serve as a
valuable tool for individuals undergoing physical rehabili-
tation to track and analyze the progress while performing
rehabilitative exercises.

Some recent works have addressed the problem of hu-
man pose monitoring. For instance, Katayama et al. [10] de-
veloped a privacy-preserving point cloud extraction method
to assess a user’s posture while sitting on a work desk.
Kishore et al. [12] devised a voice-based feedback system
to provide instructions to fix incorrect yoga poses. In ad-
dition, 3D fitness monitoring datasets such as Fit3D [4],
3D-Yoga [15], and EC3D [34] have been released. While
RGB-D and motion capture data contain rich information
about human movements, obtaining such data needs spe-
cialized equipment whose costs are often restrictive. To al-
low for much wider usage, our pose correction system relies
on 2D image data, thus making it more widely deployable
in practice on consumer devices such as smartphones.

Among methods geared specifically towards human
pose correction, [34] train a Graph Convolutional Network
(GCN) to provide corrective feedback, but provide results
on only 3 exercise categories. [10, 12] develop methods to
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Figure 1. Illustration of Human Pose Correction: Figure shows an expected yoga pose (left); an incorrectly performed user pose, which
is incorrect at the left shoulder (Is), right shoulder (rs) and left elbow (le) (imiddle); and the final correctly performed user pose (right). The
values below these poses denote joint angles in degrees. CARE identifies the incorrect joint angles (Is = 90°, le = 175°, rs = 90° in red)
and provides a sparse action vector (actions -52°, -13°, 81 © in green) to obtain the corrected pose. Note that although the joint re is not in
its right position in the middle figure, fixing rs automatically fixes re, which motivates the need for sparsity in the proposed action vector.

provide pose feedback, but no quantitative analysis of the
correction methods is seen. [3,4] propose statistical meth-
ods to correct exercises; [4] however relies on expensive
motion capture technology, while we focus on developing
a pose correction system that relies on easy-to-obtain 2D
image data and evaluate our system on a large number of
pose categories. The effort closest to our work is [3] in its
pre-processing steps; however, it aims to localize the joint
angle error, while our work herein quantifies the joint angle
corrections through an action vector and provides action-
able inputs to the user.

In this work, we view the human pose correction prob-
lem from the lens of algorithmic recourse [9]. We propose
a methodology for Counterfactual-based Algorithmic Re-
course towards Explainable pose correction (CARE) where
we accomplish pose correction by making minimal changes
to the incorrect pose to achieve the nearest counterfactual
pose (see Figure 1). Algorithmic recourse can be defined
as a systematic set of steps to reverse an unfavorable deci-
sion by a classification model. We generate counterfactual
explanations and choose the nearest counterfactual, based
on which the correction steps are generated. In addition,
unlike existing pose correction methods, CARE utilizes di-
verse counterfactual explanations to introduce flexibility in
the obtained corrected poses. Our contributions are summa-

rized as follows:
* We propose a novel approach to the human pose correc-

tion problem based on algorithmic recourse. To the best
of our knowledge, this is the first such formulation of hu-
man pose correction.

* We develop CARE, an end-to-end system for explainable
pose correction with a wide range of applications includ-
ing fitness monitoring and healthcare; and extensively

evaluate it on three diverse datasets - Yoga-20, Pilates-32,
and American Sign Language (ASL).

* As part of our experimental studies, we augment existing
datasets with incorrect poses for each class, thus helping
provide test sets for evaluating pose correction systems.
Our augmented datasets will be made publicly available.

* We introduce a novel evaluation metric — Weighted Pose
Correction Error (WPCE), to judge the quality of a cor-
rected pose obtained from such a pose correction system.

2. Related Work

In this section, we discuss earlier work from multiple
perspectives that could be viewed as connected to our work,
viz., pose estimation/classification, as well as pose correc-
tion systems.

Pose Estimation and Classification: Pose estimation is a
well-studied computer vision task that aims to infer a set
of keypoints representing the pose depicted in an image
[2,7,25,31]. Building upon pose estimation, pose classifi-
cation enhances the understanding of the pose by assigning
a semantic label or pose category to each instance. While
related tasks like human action recognition focus on ana-
lyzing videos of human-object interactions [5,29, 33], pose
classification finds versatile applications across various do-
mains. For instance, it plays a crucial role in face recogni-
tion [16], surveillance [20,21], gesture recognition [23,32],
and human-robot interaction [11,24]. Among the different
kinds of pose classification efforts such as head, hand and
body pose estimation, our work focuses on the study of full-
body poses, with particular emphasis on intricate postures
such as in yoga and pilates. There has been a recent increase
in efforts on yoga pose classification [6, 8, 13, 14, 19, 30],
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highlighting the increasing attention on automatically un-
derstanding such poses. However, these aforementioned ef-
forts only perform pose classification, and do not consider
pose correction.

Pose Correction: Compared to pose classification research,
the study of pose correction has been relatively limited.
Some works have addressed pose correction in the con-
text of yoga. Katayama et al. [10] introduced a privacy-
preserving framework utilizing point cloud extraction to
evaluate a user’s sitting posture at a work desk. Addition-
ally, Kishore et al. [12] proposed a voice-based feedback
system that offers instructional cues for correcting yoga
poses. To facilitate research in 3D fitness monitoring, 3D
datasets such as Fit3D [4], 3D-Yoga [15], and EC3D [34]
have been created. Nevertheless, the acquisition of RGB-
D and motion capture data requires specialized equipment,
limiting accessibility for general users. To overcome this
limitation, CARE uses 2D image data, enabling easier de-
ployment through a smartphone camera, thereby promoting
wider accessibility and usability.

Existing pose correction studies have certain limita-
tions. Some require specialized sensors [4,34], while others
demonstrate efficacy only for a restricted set of poses [ 1,34].
Additionally, certain approaches provide rudimentary feed-
back [22], and some lack comprehensive quantitative anal-
ysis of their pose correction module [10, 12]. In our work,
we address these limitations by: 1) devising an explainable
pose correction system based on algorithmic recourse [9]
to offer clear and interpretable decisions, 2) developing a
system that seamlessly operates with easily obtainable 2D
image data, and 3) conducting a comprehensive evaluation
on diverse datasets to establish the effectiveness and versa-
tility of CARE.

3. Proposed CARE Framework

Our overall framework is mainly comprised of a pose
classifier, a counterfactual generator and an algorithmic re-
course module. We describe each of these below.

3.1. Background And Preliminaries

Counterfactual Explanations: Counterfactual explana-
tions (CFE) are used to explain a deep neural network’s
model prediction using an approach that seeks to find an
alternative input or scenario that, if applied to the model,
would have resulted in a different prediction or decision. By
providing alternative scenarios [28], a CFE can help users
and stakeholders understand the decision-making process of
complex machine learning models and identify potential bi-
ases or limitations in the model’s predictions. It is espe-
cially useful in high-stakes applications, such as medical
diagnosis or finance, where it is critical to understand why
a particular decision was made by a model. A CFE is typi-
cally obtained using an optimization formulations that aims
to find the minimum perturbation or change to the original

input data that would cause the model’s output to change to
the desired or alternative outcome, subject to suitable con-
straints.

x' = arg min,,, (dist(x,x") + Ar(x,x")) )
S.t Mpose(x) 7é Mpose(xl)

Given a factual input x and a decision M. (x) gener-

ated by a model M .. (.), the above optimization problem
aims to find a counterfactual explanation x’ which can al-
ter the original decision M,,s¢ (%), with minimal perturba-
tion to x. In the context of classification tasks, the objective
function that is minimized may be a combination of a fac-
tor of the classification loss and a regularization term A to
ensure that the perturbation is minimal.
Algorithmic Recourse: With growing use of machine
learning models in decision making in several critical ap-
plications (e.g. medicine, law, finance), there is a need for
such decisions to be explainable. In this context, algorith-
mic recourse [9] goes beyond counterfactual explanations
by describing concrete actions that need to be taken to re-
verse a possibly unfavorable decision made by a machine
learning model. Building on counterfactual generation, al-
gorithmic recourse is formulated [26] as follows:

§* € argmin cost(d; x) s.t. Mpose(X') # Mpose(%),
5

x' =x+90,

/
x 673,66]-"(2)

Given a factual input x and a decision M,,,s.(x) gen-
erated by a model M,,,s.(.), the above optimization prob-
lem aims to find the smallest action §* to obtain a coun-
terfactual explanation x’ which can alter the original deci-
sion Myese(x). A set of domain-specific constraints re-
lated to plausibility P and feasibility F can be optionally
applied [26] to the optimization problem.

In CARE, we propose an explainable pose correction
system for 2D image data based on counterfactual expla-
nations and use algorithmic recourse to obtain actionable
recommendations that can be taken to correct the pose. In
particular, we are not just interested in assessing the good-
ness of the pose but also recommending actionable inter-
ventions to correct that pose.

3.2. Pose Classifier

As stated earlier, while RGB-D and motion capture data
are much more robust to view point changes, we focus on
2D image data which is more accessible. To obtain pose
keypoints data in our system, we consider a data distribu-
tion D comprising RGB images representing human poses.
Our first step involves utilizing a pre-trained pose estima-
tion model M cypoints to extract pose keypoints for each
image. It is worth noting that the pre-trained model may
not be specifically trained on D, which means the obtained
keypoints may contain some noise. Nevertheless, our pose
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Figure 2. CARE Framework: Given an incorrectly formed pose, we extract pose features and pass them through the counterfactual
generator. A set of CFEs are generated using algorithmic recourse-based constraints. We then find the most optimal counterfactual closest
to the incorrect pose and generate a corrective action vector to help the user correct their pose.

correction system is designed to handle such noise. Given
an image I from the distribution D, we extract the keypoint
set K using the pre-trained model:

K= Mk,eypoim‘,s(l)
where K = {k;} fori=1,2,3,..,N

Traditional pose estimation methods provoide a set of
keypoints for each pose. However, for pose correction, the
angles formed between different joints in the human body
are crucial. We hence convert the keypoint vector into a list
of angles that contribute to the pose. Specifically, we com-
pute the angle formed by keypoints k1, ko, and k3 at ko as
follows:

ZLkikoks = cos™! ( Faky kaks )

|2k ||[[ 23|

where k;k; represents a vector connecting the keypoints k;
and k;. By applying the aforementioned approach, we map
each image I in the dataset to its corresponding pose vec-
tor (or angle vector). This process allows us to generate a
derived data distribution D 4 consisting of angle vectors de-
rived from the original data distribution D. The distribution
D 4 consisting of pose angle vectors is now used to train
a fully connected neural network model M. as a pose
classifier. This network is designed to classify each vector
into one of C' pose categories. In summary, given an image
of a person performing a pose, we generate pose keypoints
using a pre-trained pose estimator, extract pose angle vec-
tors, and classify the pose into one of C' categories.

In order to study a pose correction system, we require a
dataset of poses that have been performed incorrectly. For a
given pose class c¢;, an incorrect pose is one in which at least
one of the angles is erroneously executed while attempting
to perform the pose c¢;. While it is possible to automati-
cally generate such a dataset by randomly perturbing the
angle vectors from D4, such random perturbations often
lack realism due to the constraints of human body flexibil-
ity. To generate more realistic ‘erroneous poses’ for each
pose class, we impose additional constraints (e.g. the new
joint angle should maintain a certain angle range for a given
joint) on the perturbations of pose angle vectors from each
class in the training data. This approach allows us to create
an incorrect pose dataset B; that is closer to the real world.
Each vector in this dataset corresponds to a negative class
¢; (any class other than ¢;). For instance, a perturbed pose
vector that deviates from the correct execution of the Bow
Pose in a Yoga dataset will be assigned to the negative class
“not Bow Pose”.

3.3. Counterfactual Generation and Algorithmic
Recourse

Given an input feature x and its corresponding output
y from a machine learning model M 5., a counterfactual
explanation, x’ is a perturbation of x to generate a different
or desired output y by the same model or algorithm M.

2’ = arg min,, (Hioss(Mpose(X'),y) + |x — X|)

where Hjog is the hinge loss. We use the counterfactual is
closest to the input instance for feasibility.
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However, algorithmic recourse not only considers feasi-
bility, but also actionability for the user to achieve the de-
sired outcome. Actionability is accomplished through the
generation of counterfactuals by perturbing only the muta-
ble features of the input instance. For all counterfactuals
generated, the overall loss function is defined as:

k
() =argmin £ > Fis (Myose (x1') 9)
x1/. %/ i—1

X

k
A . '
+ ?1 ; dist (xi",x) — Aadpp-div (x1',..., %)

3)
where the first term is the hinge loss that pushes M,ose(x)
towards y, the second term maintains the proximity between
x with k being the number of counterfactuals and z/ the
counterfactual, and the third term maximizes the diversity
of counterfactuals and is implemented following [18] as
det(S), represented as dpp_div in (Eqn 3), where S is a ker-

nel matrix with S;; = . A is the proxim-

1+ diSt(Xi/, Xj/)
ity weight and Ao is the diversity weight. We subsequently
follow the algorithmic recourse formulation (Eqn 2) to ob-
tain an actionable pose correction by considering the nearest
counterfactual. An optimal pose correction ensures change
in a minimal (sparse) set of features (joint angles in our pose
correction framework) to accomplish the desired pose class.
In the above mentioned optimization formulation (Eqn 3),
the first term ensures the output class is the desired class,
y, different from the current predicted class, y'. The second
term which is the proximity term ensures minimal changes
in the joint angles to achieve the desired class, y optimally.
In case of pose correction, the third term (Diversity loss),
helps achieve the right variant of the class pose even though
the output pose belongs to the desired class y. This is also
captured in our experimental results in Figure 5.

3.4. Overall Integrated Pipeline

We now describe our overall integrated pipeline, as also
illustrated in Figure 2. Assuming we have a pre-trained
pose estimator/classifier, when a new user pose image en-
ters the system and is classified as incorrect, we provide the
incorrect pose angle vector data to the counterfactual gen-
erator. Immutable features, if any, are also provided to the
counterfactual generator. Our formulation in Eqn 3 helps
generate only the actionable counterfactuals by leveraging
the diversity factor in the loss function. Out of all the gener-
ated counterfactuals, we pick the closest one to the incorrect
pose. To encourage sparsity in a generated counterfactual,
we follow [ | 8] in conducting a post-hoc operation where we
restore the value of continuous features back to their values
in x greedily until the predicted class changes. This ensures
that the subject can reach the desired pose with the least ef-
fort. With all these components, the optimal counterfactual
satisfies the recourse properties of proximity, sparsity and

actionability. We then generate the action vector by taking
the difference between the incorrect pose and the optimal
counterfactual. This action vector is provided to the user to
correct the pose optimally. If the user fails to correct his/her
incorrect pose, another set of counterfactuals are generated
and the loop continues.

4. Experiments and Results

Datasets: We validate the extensibility of our proposed
framework by showing the results on 3 datasets - Yoga-20,
Pilates-32 and American Sign Language Dataset. We select
the 20 most diverse classes from the Yoga-82 dataset [27],
which includes rotated versions of certain poses with iden-
tical joint angular values. This dataset contains approxi-
mately 29,000 images from 82 pose classes. We focus on
single-view poses and choose poses with 2D angles to en-
sure robustness. The training set for Yoga-20 consists of
2,665 images. The Pilates-32 dataset comprises publicly
available images of individuals performing 32 Pilates exer-
cises targeting core muscles. It contains 2,225 training im-
ages. We use the American Sign Language (ASL) dataset to
evaluate our proposed framework across multiple domains,
initially intended for hand gesture recognition. This dataset
consists of 28 classes representing each letter of the English
alphabet, along with ”Space” and "Delete” buttons on a key-
board. The training dataset comprises 48,566 images. More
details of these datasets, including sample images, are pro-
vided in the Appendix.

Evaluation Metrics: We employ the standard top-1 ac-
curacy metric to assess our pose classifier’s effectiveness.
For evaluating our pose correction system, we consider the
Percentage of Corrected Poses (PCP) metric, computed as:
PCP =102% . | r[Emor < 3]. Here, T refers to the
size of the test set and [.] denotes the Iverson bracket no-
tation. [ denotes threshold used to compute the percent-
age of correct poses. Examples of S values can be seen
in the column headings in Table 1. We utilize two other
measures of error: (i) Mean Absolute Difference (MAD),
where we first obtain the mean absolute difference between
the corrected pose vector and the ground truth pose vector,

i.e. MAD Error = w where [N denotes the
length of the pose vector; and (ii) Weighted Pose Correc-
tion Error (Weighted PCE), which we introduce in this
work. Given an incorrect pose vector p;,., the corrected
pose Vector Peorrected (Obtained from our pose correction
system) and the ground truth pose vector pg, we calculate
the weighted PCE as follows. Given a pose vector of N
joint angles [a1, as, .., an], we compare the incorrect pose
Dinc and the ground truth pose py; to divide these angles
into two disjoint sets: A¢, a set of angles which are already
correct in the incorrect pose, and Aj, a set of angles which
are incorrect in the incorrect pose. Then,
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Thresholds

Dataset | Metric Method i 3 3 7 5 5 7 3 3 0
Medoid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.03+-0.0 | 0.05+-0.0 | 0.09+-0.0 | 0.12+-0.0 | 0.15+-0.0
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.02+-0.0 | 0.04+-0.0 | 0.07+-0.0 | 0.1+-0.0 0.13+-0.0 | 0.18+-0.0
MAD Decision Tree | 0.05+-0.0 | 0.06+-0.0 | 0.08+-0.0 | 0.15+-0.0 | 0.25+-0.0 | 0.37+-0.0 | 0.48+-0.01 | 0.59+-0.01 | 0.67+-0.01 | 0.75+-0.02
ANN Baseline | 0.0+-0.0 0.05+-0.01 | 0.28+-0.0 | 0.6+-0.03 | 0.8+-0.01 0.89+-0.01 | 0.93+-0.01 | 0.95+-0.01 | 0.96+-0.0 | 0.98+-0.0
Youa-20 CARE 0.17+-0.01 | 0.46+-0.01 | 0.77+-0.03 | 0.9+-0.01 | 0.95+-0.01 | 0.97+-0.01 | 0.98+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 0.99+-0.0
© Mediod 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.04+-0.0 | 0.08+-0.01 | 0.11+-0.01 | 0.16+-0.0 | 0.2+-0.01 0.25+-0.01
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.03+-0.0 | 0.06+-0.0 | 0.1+-0.0 0.13+-0.0 | 0.19+-0.01 | 0.25+-0.0 | 0.31+-0.01
Wegihted PCE | Decision Tree | 0.05+-0.0 | 0.07+-0.0 | 0.14+-0.0 | 0.27+-0.01 | 0.41+-0.01 | 0.56+-0.01 | 0.67+-0.01 | 0.76+-0.01 | 0.82+-0.01 | 0.87+-0.01
ANN Baseline | 0.01+-0.0 | 0.24+-0.02 | 0.68+-0.01 | 0.87+-0.0 | 0.93+-0.01 | 0.95+-0.0 | 0.97+-0.0 | 0.98+-0.0 | 0.99+-0.0 | 1.0+-0.0
CARE 0.64+-0.01 | 0.87+-0.02 | 0.95+-0.01 | 0.97+-0.01 | 0.98+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 1.0+-0.0
Metric Thresholds
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Mediod 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.03+-0.0 | 0.05+-0.0 | 0.09+-0.0 | 0.12+-0.0 | 0.15+-0.0
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.02+-0.0 | 0.04+-0.0 | 0.07+-0.0 | 0.1+-0.0 0.13+-0.0 | 0.18+-0.0
MAD Decision Tree | 0.05+-0.0 | 0.06+-0.0 | 0.08+-0.0 | 0.15+-0.0 | 0.25+-0.0 | 0.37+-0.0 | 0.48+-0.01 | 0.59+-0.01 | 0.67+-0.01 | 0.75+-0.02
ASL ANN Baseline | 0.0+-0.0 0.05+-0.01 | 0.28+-0.0 | 0.6+-0.03 | 0.8+-0.01 | 0.89+-0.01 | 0.93+-0.01 | 0.95+-0.01 | 0.96+-0.0 | 0.98+-0.0
CARE 0.17+-0.01 | 0.46+-0.01 | 0.77+-0.03 | 0.9+-0.01 | 0.95+-0.01 | 0.97+-0.01 | 0.98+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 0.99+-0.0
Mediod 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.02+-0.01 | 0.05+-0.0 | 0.1+-0.01 0.18+-0.0 | 0.27+-0.01 | 0.36+-0.0
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.04+-0.0 | 0.1+-0.0 0.17+-0.0 | 0.24+-0.0 | 0.33+-0.0 | 0.41+-0.0
Weighted PCE | Decision Tree | 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.08+-0.01 | 0.23+-0.0 | 0.41+-0.01 | 0.55+-0.01 | 0.64+-0.01 | 0.74+-0.0 | 0.8+-0.0
ANN Baseline | 0.0+-0.0 0.03+-0.01 | 0.58+-0.02 | 0.85+-0.01 | 0.93+-0.0 | 0.97+-0.0 | 0.98+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 1.0+-0.0
CARE 0.97+-0.0 | 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0
Metric Thresholds
1 2 3 4 5 6 7 8 9 10
Medoid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.01+-0.0 | 0.03+-0.0 | 0.04+-0.0 | 0.06+-0.0
MAD Decision Tree | 0.21+-0.01 | 0.21+-0.01 | 0.22+-0.01 | 0.25+-0.01 | 0.27+-0.01 | 0.31+-0.01 | 0.36+-0.01 | 0.45+-0.01 | 0.54+-0.01 | 0.61+-0.01
Pilates ANN Baseline | 0.04+-0.01 | 0.43+-0.03 | 0.8+-0.01 | 0.97+-0.01 | 0.99+-0.0 | 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0
CARE 0.21+-0.02 | 0.55+-0.01 | 0.79+-0.0 | 0.89+-0.01 | 0.93+-0.01 | 0.95+-0.01 | 0.96+-0.01 | 0.97+-0.01 | 0.98+-0.0 | 0.98+-0.0
Medoid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.02+-0.0 | 0.03+-0.01
Centroid 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.0+-0.0 0.01+-0.0 | 0.03+-0.0 | 0.05+-0.0 | 0.07+-0.0 | 0.09+-0.0 | 0.12+-0.01
Weighted PCE | Decision Tree | 0.21+-0.01 | 0.22+-0.01 | 0.24+-0.01 | 0.27+-0.01 | 0.33+-0.0 | 0.41+-0.01 | 0.53+-0.01 | 0.63+-0.01 | 0.71+-0.0 | 0.78+-0.01
ANN Baseline | 0.32+-0.0 | 0.94+-0.0 | 0.99+-0.0 | 0.99+-0.0 | 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0 1.0+-0.0
CARE 0.67+-0.02 | 0.87+-0.0 | 0.92+-0.02 | 0.95+-0.02 | 0.96+-0.01 | 0.97+-0.01 | 0.98+-0.0 | 0.98+-0.0 | 0.99+-0.0 | 0.99+-0.0

Table 1. Main Results: We show experimental results of CARE on 3 datasets - Yoga-20, Pilates-32 and ASL dataset. We report the
percentage of corrected poses (PCP, scaled to range 0-1) based on two evaluation metrics - 1) Mean Absolute Difference and 2) Weighted

Pose Correction Error.

WPCE =« Z Aa; + (1 —a) Z Aa,

a; €A1 a.€Ac

where « is a weight close to 0, Aa; and Aa, refer to the ab-
solute difference in the angle values between the corrected
pose and ground truth pose for incorrect and correct an-
gles respectively. More specifically, a correct angle in a
pose matches exactly with the corresponding angle in the
ground truth pose. Here, we calculate the sum of absolute
differences between angles from the corrected pose and the
ground truth pose for both sets A; and A¢ and weight them
with o and 1 — « respectively. Considering o = 0, this er-
ror penalizes any instance where the pose correction system
changes an already correct pose angle.

Baselines: While existing works in this domain utilize 3D
data or specialized sensors for pose correction, due to the
lack of available baselines to compare our work on the same
setting, we introduce baseline methods to compare with our
proposed framework. We compare our approach (CARE)
with the following baselines: (i) Centroid of Class Data:
For an incorrect pose, we obtain the mean pose vector (from
the training set) of its intended class as the corrected pose;
(i1) Mediod of Class Data: For an incorrect pose, we obtain
the median pose vector (from the training set) of its intended
class as the corrected pose; (iii) Decision Tree Regression:
We use a traditional learning model based on decision trees,

Dataset | Architecture No. of Top-1
Classes | Accuracy

Yoga-20 | [256, 128, 64,32] | 20 93.7

ASL [256, 128, 64] 28 97.7

Pilates [512, 256, 128] 32 94.8

Table 2. Pose Classification Performance: Table showing Top-1
accuracy for each dataset.

which takes an incorrect pose vector as input and generates
the corrected pose vector as output; and (iv) NN Regression:
A 4-layer neural network that takes an incorrect pose vector
as input and generates the corrected pose vector as output.

Hyperparameters: For all datasets, we use the Mediapipe
[17] pre-trained pose estimation model. To train pose classi-
fiers, we train a shallow, fully connected neural network for
each dataset (details in Table 2). We use Adam optimizer
with a learning rate of 0.001. We define 8 joint angles per
vector for Yoga-20 and Pilates-32 datasets to obtain the pose
vectors. For ASL, we define a pose vector of 19 joint angles.
For obtaining counterfactuals, we follow [18] with default
values of 0.5 and 1.0 for proximity and diversity weights re-
spectively. We compute weighted pose correction error by
setting o to % where NNV is the number of joints.

Results: We begin with a discussion of the pose classi-
fier’s performance, since it is an essential component of our
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Thresholds
1 2 3 4 5
0.1 | 0.552 | 0.806 | 0.874 | 0.922 | 0.954
0.2 | 0412 | 0.766 | 0.862 | 0.922 | 0.954
Yoga-20 | 0.3 | 0.326 0.72 0.862 | 0.926 | 0.954
0.4 | 0272 | 0.622 0.84 0.922 0.96
0.5 | 0.238 0.54 0.786 0.91 0.964
Thresholds
0.25 0.5 0.75 1 1.25
0.1 | 0.864 | 0.984 | 0.996 | 0.996 | 0.998
ASL 0.2 0.79 0.982 | 0.996 | 0.996 | 0.998
0.3 0.67 0.978 | 0.996 | 0.998 | 0.998
0.4 | 0518 0.97 0.996 | 0.998 | 0.998
0.5 | 0456 | 0.888 | 0.994 | 0.998 | 0.998
Thresholds
1 2 3 4 5
0.1 0.64 0.85 0.904 0.94 0.962
Pilates 0.2 | 0.61 0.858 | 0.918 | 0.952 | 0.972
0.3 | 0.612 0.86 0.928 0.96 0.972
04 | 0.55 0.868 | 0.936 | 0.966 | 0.976
0.5 | 0.504 | 0.874 | 0.946 | 0.974 | 0.982

Dataset @

a

(o7

Table 3. Ablation Study on oc: PCP metric for various thresh-
olds of Weighted Pose Correction Error. We experiment with 4
different « values for each dataset.

pose correction pipeline. Table 2 presents these details; the
pose classifier achieves high accuracy, surpassing 90% on
all three datasets, which is considered a suitably high range
in this field. We subsequently show the evaluation our pose
correction system in Table 1, which shows the PCP measure
using MAD and Weighted PCE. The mean and standard de-
viation of the evaluation metrics are reported on three runs.
Our pose correction framework consistently outperforms
the baselines, even at lower thresholds by a considerable
margin indicating that the corrected poses highly incline
with the ground truth poses. Additionally, it is observed
that the Weighted PCE scores are generally higher than the
MAD scores for CARE, especially on the Yoga dataset.
This could be due to our framework’s focus on correcting
incorrect joint angles while preserving correctly aligned an-
gles. Overall, our experiments demonstrate promising re-
sults for our framework across all three datasets.

5. Discussions and Ablation Studies

Varying « in Weighted PCE: As seen in the earlier sec-
tion, the weighted pose correction error metric uses a hy-
perparameter o which decides the extent of penalization for
modifying correct and incorrect angles. Table 3 shows the
results of our studies with varying « values. It can be seen
that the value of « has a negligible effect on Weighted PCE
at higher thresholds. However, at lower thresholds such as
1 degree, Percentage of Correct Poses (PCP) decreases as
« increases. This clearly demonstrates that a lower « helps
in penalizing the adjustment of already correct angles, be-
cause an ideal pose correction system does not modify the
already correct joint angles, but rather focuses on correcting

Half-Moon Incorrect Half-Moon Half-Moon CFE

Low Lunge

v h e

Incorrect Low-Lunge Low Lunge-CFE

4 £ 4

Figure 3. Pose correction using CARE on Half-Moon Yoga
(HM) and Low-Lunge Yoga poses: In both rows, the correctly
formed (first image), incorrectly formed (second image) and CFE
optimized CARE (third image) for HM (top) and LL (bottom)
Yoga poses. HM pose is achieved by bringing down the right
lower limb from 84 degrees to form 119 degrees at the right hip
joint (rh) and opening the right knee (rk) to 142 degrees. This is
the optimum Half-Moon pose using the nearest CFE. With the ex-
isting joint angle values, the right hip joint and the right knee joint
are the two key joints that need to be changed for the target pose
change. To achieve LL, CARE recommends pushing the left lower
limb to the ground by making smaller angle at the left hip (lh), i.e..
at the angle formed at lh, between, Is,lh and lk.

the incorrectly formed angles.

Qualitative Results: Figure 3 illustrates pose correction
using CARE for Half-Moon and Low Lunge Yoga poses
on the Yoga dataset respectively. The action vector is sparse
with changes only in right hip (rh) and right knee (rk) values
for Half-Moon pose and at 1h for Low-Lunge pose. More
qualitative results, including ones on the ASL dataset, are
provided in the Appendix.

Varying Range of Perturbations in Generation of Aug-
mented Dataset: To see the impact of varying perturba-
tions of incorrect poses in the augmented dataset, we per-
formed a study with different perturbation ranges on all the
three datasets. Figure 4 shows the results of our study. We
do not include the Centroid and the Medoid baselines in
these results, as the corrected poses for these baselines are
heuristically determined and don’t depend on the perturba-
tions of the incorrect poses. We assess the regression-based
baselines and compare them against the proposed CARE
method. Expectedly, we see MAD dropping as we increase
the range of perturbations for all experiments. However, we
see CARE outperforming all baselines across these pertur-
bation ranges unanimously. The baseline regression models
perform well on a fixed set of perturbations that they are
trained on. CARE provides a flexible framework that al-
lows this improved performance.

Multi-variant/Diverse Counterfactuals of Incorrect
Poses: Our counterfactual generation step (Eqn 3) allows
the generation of a diverse set of counterfactuals for a given
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PILATES

B Decision Tree [l ANN CARE

10-30 30-50 50-70 70-90 10-30

Pertubation Range

ASL

M Decision Tree [ ANN

30-50

Pertubation Range

Yoga-20

CARE B Decision Tree [l ANN CARE

50-70 70-90 10-30 30-50 50-70 70-90

Pertubation Range

Figure 4. Study of varying range of perturbations while generating the augmented dataset. CARE outperforms the baselines across all

these experiments.

Low-Lunge VI - | —~_  Low-Lunge V2

right left

_._

&~ 9 .

Tree Pose Variant-1 ~ Incorrect Tree Pose  Tree Pose Variant-2

a
‘l‘a ¥

|

\ l‘

=\ \ '

Figure 5. Multi-Variant Explanation: (Top) Two variants of the
Low Lunge pose (Bottom) Tree pose with one incorrect pose and
the joint angle figure indicating two possible desired variants in-
volving the left and right joints. joints - e:elbow (blue), s:shoulder
(red), h:hip (green) and k:knee (yellow).

Variant | Is Ih | Ik le rs rh rk | re
Input 00123 | 1 | 138 | 150 | 115 | 88 | 108
Variant

Output |21 25 1 o5 | 138 | 150 | 115 | 88 | 108
Variant

Table 4. Multi-Variant Explanation: Counterfactual for the de-
sired variant of the Low-Lunge pose with changed values of joint
angles at left knee (1k)

pose. Consider the “Low-Lunge pose” in the Yoga-20
dataset shown in Figure 5. This pose has two variants:
Low-Lunge Pose Variant-1 (left) and Low-Lunge Pose
Variant-2 (right). CARE leverages the diversity component
to output diverse counterfactuals from which we arrive
at the optimal (nearest) one from the desired variant. To
study this further, we considered a setting where a desired
pose is achieved, but we need a different desired variant.
CARE CFEs help in making optimal corrections to the
current pose variant to achieve the desired pose variant as
shown in the bottom two images of Figure 5. Table 4 shows
the actionable counterfactual recommended for Tree Pose
Variant-2, involving the left knee.

6. Conclusions

In this work, we present CARE: Counterfactual based

Algorithmic Recourse for Explainable pose correction, a
novel approach that addresses the task of pose correction.
While existing works in fitness monitoring have primar-
ily focused on pose classification, we shift our attention to
the critical problem of correcting poses. Our CARE sys-
tem leverages the concept of algorithmic recourse, offering
corrective actions when the machine learning model pro-
duces unfavorable responses. Comprising an off-the-shelf
pose estimator, a pose classifier, and a counterfactual gen-
erator, CARE demonstrates a comprehensive solution for
pose correction. By extracting pose keypoints from 2D im-
age datasets using the pose estimator, we derive pose angle
vectors through post-processing techniques. These vectors
serve as the training input for the pose classifier. To rectify
incorrect poses, we employ counterfactuals, selecting the
closest instance to the incorrect pose as the corrected pose.
The element-wise difference between the corrected and in-
correct poses yields a sparse vector that represents the nec-
essary corrective action. To evaluate the efficacy of CARE,
we conduct experiments on Yoga, Pilates and ASL gesture
recognition datasets. The results clearly demonstrate that
CARE outperforms baselines across all three datasets. In
addition, we introduce a new metric, Weighted Pose Correc-
tion Error (Weighted PCE), to assess the quality of corrected
poses. This metric provides a comprehensive evaluation of
the corrective actions performed by CARE. Avenues for fu-
ture research include: (i) Developing an automated method
for generating a large number of incorrect poses based on
human flexibility constraints, and (ii) Improving the robust-
ness of the pose classifier to generate more accurate and
effective counterfactuals.
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