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Abstract

Understanding dark scenes based on multi-modal image
data is challenging, as both the visible and auxiliary modal-
ities provide limited semantic information for the task. Pre-
vious methods focus on fusing the two modalities but ne-
glect the correlations among semantic classes when mini-
mizing losses to align pixels with labels, resulting in inaccu-
rate class predictions. To address these issues, we introduce
a supervised multi-modal contrastive learning approach to
increase the semantic discriminability of the learned multi-
modal feature spaces by jointly performing cross-modal and
intra-modal contrast under the supervision of the class cor-
relations. The cross-modal contrast encourages same-class
embeddings from across the two modalities to be closer and
pushes different-class ones apart. The intra-modal con-
trast forces same-class or different-class embeddings within
each modality to be together or apart. We validate our ap-
proach on a variety of tasks that cover diverse light con-
ditions and image modalities. Experiments show that our
approach can effectively enhance dark scene understand-
ing based on multi-modal images with limited semantics by
shaping semantic-discriminative feature spaces. Compar-
isons with previous methods demonstrate our state-of-the-
art performance. Code and pretrained models are available
at https://github.com/palmdong/SMMCL.

1. Introduction
A robust scene understanding capability in dark environ-

ments, including low-light indoor and nighttime outdoor en-
vironments, is important to automated work systems such as
indoor robots and automotive vehicles [13, 44]. However,
semantic segmentation on dark scenes, especially based on
observation images from visible RGB modality, is not triv-
ial due to the poor visibility of spatial content in images
caused by adverse light conditions [12, 15].

Combining images from multiple modalities that can
provide complementary spatial information for a scene,
often visible RGB modality and an auxiliary depth or

(a) RGB (b) Depth

(c) Ground Truth (d) CEN [55] (e) ToFusion [53] (f) Ours

Figure 1. Low-light indoor scene segmentation from RGB-depth
data. Compared to state-of-the-art methods, our model with super-
vised multi-modal contrastive learning achieves higher accuracy.

thermal modality, has been proved beneficial to semantic
segmentation tasks [23, 41]. And numerous multi-modal
image semantic segmentation methods have been devel-
oped [4, 10, 49, 53, 55, 69, 75].

However, in the task of dark scene segmentation, the
visible and auxiliary modalities both provide limited se-
mantic information. To be specific: The visible modal-
ity reflects contextual semantic cues in RGB color space,
but available cues are usually limited due to its dark na-
ture [15]. The auxiliary modality is robust to adverse lights
and can provide rich geometry cues for dark environments,
but is lacking in contextual semantics [4, 10]. These cause
low discrimination between different semantic classes, as
shown in Fig. 1. Previous multi-modal image segmentation
methods [4, 10, 53, 55, 66, 69] focus on developing fusion
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techniques to combine the two modalities, then minimizing
cross-entropy losses to align pixels with corresponding la-
bels without considering the correlations (similarities and
differences) among semantic classes. As a result, they tend
to predict inaccurate class information for objects in dark-
ness (Fig. 1). Overall, multi-modal dark scene understand-
ing remains an open problem.

In this paper, we address the issues by increasing the
semantic discriminability of the learned feature spaces via
contrastive learning. Specifically, we introduce a super-
vised multi-modal contrastive learning approach (Fig. 2)
to boost the learning on the visible and auxiliary modali-
ties and encourage them to be semantic-discriminative, by
jointly performing cross-modal and intra-modal contrast
under the supervision of the class correlations. The cross-
modal contrast encourages same-class embeddings from
across the two modalities to be closer and simultaneously
pushes different-class ones apart. Within each modality,
the intra-modal contrast pulls together embeddings from the
same class and forces apart those from different classes. By
regularizing the embeddings with considering the class sim-
ilarities and differences, the encoder feature spaces learned
from the two modalities can show higher semantic discrim-
inability. With the adoption of our approach, our segmen-
tation model achieves much higher accuracy when under-
standing dark scenes based on multi-modal images with
limited semantics (Fig. 1).

Contributions: (1) We tackle dark scene understand-
ing from a new perspective by contrasting multi-modal im-
ages with limited semantics. (2) We introduce the first su-
pervised multi-modal contrastive learning approach for im-
age segmentation, and show it can effectively enhance dark
scene understanding by shaping semantic-discriminative
feature spaces. (3) We validate our approach on low-light,
nighttime, and normal-light conditions, indoor and outdoor
scenes, and RGB, depth, and thermal modalities, demon-
strating its effectiveness, generalizability, and applicabil-
ity. (4) We compare our model and approach with state-of-
the-art methods on different tasks, showing our superiority
quantitatively and qualitatively.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation is the task of understanding
scenes by assigning each pixel in an image to a specific
class. Since FCN [34] was proposed, numerous CNN-based
semantic segmentation methods have been developed. Rep-
resentative work includes the DeepLab series [5–7], multi-
scale networks [43, 50, 70], boundary or context-aware
networks [3, 16, 62, 64, 73, 77], and attention-based net-
works [17, 27, 71, 74]. Most recently, Vision Transform-
ers [11,21,30,42,58,63] have shown great potential and out-

performed CNN-based methods. However, these advances
are made for normal-light scenarios. In practical applica-
tions, there is a need for a robust scene understanding capa-
bility in dark environments.

2.2. Dark Scene Semantic Segmentation

Existing dark scene semantic segmentation methods are
mainly developed based on visible RGB data, and can be di-
vided into unsupervised domain adaptation methods and su-
pervised methods. Unsupervised domain adaptation meth-
ods [14, 19, 20, 39, 40, 56] tackle unlabeled dark scenes by
transferring knowledge from labeled normal-light scenes
that share similar spatial content. The problems with such
methods are that they require paired dark-normal training
data, which is hard to collect in practice, and their unsuper-
vised working piepline causes limited performance [15,28].
Supervised methods [15, 32, 46, 59, 67, 68] learn the task
from labeled dark scene data directly, and so avoid the need
for additional normal-light data. However, they still show
unsatisfactory performance on regions of poor visibility be-
cause reliable contextual cues in the visible modality is lim-
ited [15,66]. Therefore, recent methods [28,37,66,69] com-
bine auxiliary modalities that can provide robust geometry
cues for even dark environments.

2.3. Multi-Modal Image Semantic Segmentation

Multi-modal image data, e.g., RGB-depth and RGB-
thermal, has been proven beneficial to semantic segmenta-
tion due to the capability of providing complementary spa-
tial information for scenes. Numerous methods with ad-
vanced fusion techniques, such as token fusion [53], chan-
nel exchanging [54,55], feature interaction modules [10,61,
66, 69, 75], and novel convolutions [4, 8, 51, 60], have been
developed and show promising performance, especially for
normal-light scenes. On dark scenes, however, they still
suffer inaccurate class predictions because: (1) The visi-
ble and auxiliary modalities both provide limited seman-
tic information, which causes low discrimination between
different classes. (2) They neglect the correlations among
classes when minimizing losses to align pixels with labels.
To address the issues, we introduce a supervised multi-
modal contrastive learning approach to increase the seman-
tic discriminability of the learned feature spaces of the two
modalities, by regularizing their embeddings under the su-
pervision of the class correlations. We demonstrate that our
approach enables a higher accuracy in understanding dark
scenes and also generalizes well to normal-light scenes.

2.4. Contrastive Learning

The idea of self-supervised contrastive learning [9, 24,
25, 57] is to pull an anchor closer to a positive sam-
ple in embedding space and further from many negative
samples, without knowing their labels. Supervised con-
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Figure 2. An illustration of our supervised multi-modal contrastive learning approach. During training, embeddings from the visible and
auxiliary modalities are cast to a shared space, where cross-modal and intra-modal contrast are jointly performed under the supervision of
the class correlations. Same shape means the embeddings are from the same semantic class and are positive to each other. Colored, black,
and grey mean the embeddings carry semantic cues, are not observable, and lack contextual semantics, respectively.

trastive learning [29] leverages label information to align
embeddings and directly consider positive samples from
the same class and negative classes from different classes.
The use of a supervised paradigm enables better gener-
alization in general image classification and segmentation
tasks [2, 26, 29, 38, 52, 72].

In the field of multi-modal learning, various self-
supervised contrastive techniques [1,18,33,36,65,78] have
been presented. We introduce a supervised multi-modal
learning approach to tackle dark scene understanding. Un-
like those self-supervised contrastive techniques [18,33,36],
which need to generate positive and/or negative samples via
complicated augmentation, our supervised paradigm effec-
tively aligns multi-modal embeddings by leveraging avail-
able class labels. This allows to directly and fully exploit the
class correlations and the correspondence between cross-
modal contextual and geometry cues. We demonstrate the
effectiveness and superiority of our approach with compre-
hensive ablations and comparisons.

3. Method

We first give an overview of our model, then detail our
supervised multi-modal contrastive learning approach.

3.1. Model Overview

Our model is illustrated in Fig. 3. Given a dark scene
image Ivis ∈ RH×W×3 in visible modality and its counter-
part Iaux ∈ RH×W from an auxiliary modality, we use two
encoders to encode them and extract multi-modal features
Fm
vis ∈ Rh×w×c and Fm

aux ∈ Rh×w×c, where m = 1, 2,
3, 4 corresponds to the stage in the encoders. Intermediate
modules are developed to further process the features.

In each module, as illustrated in Fig. 4, we learn a shared
spatial coefficient matrix Sm ∈ Rh×w and a shared chan-
nel coefficient vector cm ∈ Rc from the input feature pair

230116, fig3, model
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Figure 3. An illustration of our segmentation model. Final features
from the encoders are mapped to representations by the projectors.
The representations are further utilized to generate embeddings in
our supervised multi-modal contrastive learning approach.

Fm
vis and Fm

aux to model the dependency between the visible
and auxiliary modalities at spatial and channel dimensions.
Then, to facilitate the information interaction between the
two modalities, Fm

vis and Fm
aux are updated as:

Fm
vis

′ = Fm
vis + Sm ∗ Fm

aux + cm ⊛ Fm
aux, (1)

Fm
aux

′ = Fm
aux + Sm ∗ Fm

vis + cm ⊛ Fm
vis, (2)

where ∗ and ⊛ denote spatial and channel-wise multiplica-
tion, respectively. Fm

vis
′ ∈ Rh×w×c and Fm

aux
′ ∈ Rh×w×c

are then fed to the next stage in the encoders. Addition-
ally, a fusion feature Fm

fus ∈ Rh×w×c is produced by fusing
Fm
vis

′ and Fm
aux

′ via a 1× 1 convolution.
The decoder predicts a segmentation mask M ∈ RH×W

based on fusion features from the four modules. During
training, the prediction of M is supervised by a ground-truth
label L ∈ RH×W via a cross-entropy loss Lce(M,L).

Two projectors, following the encoders, map final fea-
tures F4

vis and F4
aux to representations Rvis ∈ Rh×w×d and
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Raux ∈ Rh×w×d, respectively, which are utilized to gener-
ate embeddings in our supervised multi-modal contrastive
learning approach. Detailed structure settings of the inter-
mediate modules and the projectors are provided in Sec. 4.1.

3.2. Supervised Multi-Modal Contrastive Learning

Multi-modal dark scene understanding is challenging be-
cause the visible and auxiliary modalities both provide lim-
ited semantics. We address this issue by introducing a su-
pervised multi-modal contrastive learning approach (Fig. 2)
to encourage the encoder feature spaces learned from the
two modalities to be semantic-discriminative.

Embedding Generation. To a set of visible-auxiliary
representation pairs {Rb

vis,Rb
aux ∈ Rh×w×d}Bb=1 learned

from a training batch B of input image pairs and a set of cor-
responding labels {L̃b ∈ Rh×w}Bb=1 generated by down-
scaling the ground-truth labels, we sample a visible embed-
ding set V = {vi ∈ Rd : vi → L̃vi} and an auxiliary embed-
ding set A = {aj ∈ Rd : aj → L̃aj} from the representa-
tions. Taking visible embedding vi as an example, i denotes
that it is sampled at the i-th spatial position in a visible rep-
resentation, and L̃vi is its class label, which is obtained at
the i-th position from the corresponding label and is utilized
to measure its class correlation with other embeddings. In
both modalities, we randomly sample n embeddings per in-
stance from each class present in the batch, and set n as the
number of pixels from the class with the least occurrences,
following the protocol in [38]. This setting maintains a bal-
ance for embeddings from each present class. Then, V and
A are cast to a shared space to perform contrast under the
supervision of the class correlations: Embeddings with the
same label (or different labels) are same-class (or different-
class) and are aligned as positive (or negative) samples.

Cross-Modal Contrast. The cross-modal contrast is to
shape the visible and auxiliary feature spaces by consider-
ing the cross-modal context-geometry correspondence. To
this end, we encourage embeddings from one modality to be
closer to the same-class embeddings from the other modal-
ity and push apart different-class ones from across the two
modalities by minimizing a cross-modal contrastive loss:

Lcm(V,A) =
1

| V |
∑
vi∈V

1

| Pvi |
∑

a+∈Pvi

LNCE(vi, a+), (3)

where

LNCE(vi, a+) =

− log
exp(vi · a+/τ)

exp(vi · a+/τ) +
∑

a−∈Nvi
exp(vi · a−/τ)

(4)

is the InfoNCE loss [47]. The symbol · denotes the dot
product. τ is a temperature hyperparameter. Pvi = {aj ∈
A : j ̸= i, L̃aj = L̃vi} and Nvi = {aj ∈ A : j ̸= i, L̃aj ̸=

230111, fig4, module -train 17 24 83 
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Figure 4. The spatial and channel coefficient learning in our in-
termediate modules. Fm

vis and Fm
aux are concatenated along the

channel dimension. sm is learned by passing the concatenation to
a three-layer MLP and a sigmoid function. cm is learned by first
taking global max pooling and average pooling to the concatena-
tion and then passing to a three-layer MLP and sigmoid.

L̃vi} are respectively the sets of same-class and different-
class auxiliary embeddings, i.e., positive and negative sam-
ples, for visible embedding vi. Note that, since the posi-
tive and negative relation among the embeddings is bidirec-
tional, the cross-modal contrast has only one loss term.

Intra-Modal Contrast. The intra-modal contrast shapes
the encoder feature spaces of the two modalities by regular-
izing embeddings within each modality separately. Within
the visible modality, same-class or different-class embed-
dings are pulled closer or pushed apart by minimizing an
intra-modal contrastive loss:

Lvis(V) =
1

| V |
∑
vi∈V

1

| P ′
vi |

∑
v+∈P′

vi

LNCE(vi, v+), (5)

where

LNCE(vi, v+) =

− log
exp(vi · v+/τ)

exp(vi · v+/τ) +
∑

v−∈N ′
vi
exp(vi · v−/τ)

.
(6)

P ′
vi = {vp ∈ V | p ̸= i, L̃vp = L̃vi} and N ′

vi = {vp ∈
V | p ̸= i, L̃vp ̸= L̃vi} are respectively the intra-modal
sets of positive and negative samples for vi. The contrastive
loss for the auxiliary modality, i.e., Laux(A), is similar
to Eq. (5). For aj ∈ A, the positive and negative sam-
ple sets are P ′

aj = {aq ∈ A | q ̸= j, L̃aq = L̃aj} and

N ′
aj = {aq ∈ A | q ̸= j, L̃aq ̸= L̃aj}, respectively.
Combining the cross-modal contrastive loss and the

intra-modal contrastive losses, our full training objective is:

L = Lce + λcmLcm + λvisLvis + λauxLaux. (7)

Experiments in Sec. 4 show that our approach can ef-
fectively enhance dark scene understanding by shaping
semantic-discriminative feature spaces.
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(a) RGB (b) Depth (c) Ground Truth (d) TokenFusion [53] (e) CMX [66] (f) Ours

Figure 5. Low-light indoor scene segmentation from RGB-depth data. Visual comparisons between Base and Ours are provided in Sec. 4.5
and the supplementary material.

4. Experiments

4.1. Implementation Details

Network Structure. We employ three different back-
bones, including ResNet-101, SegFomrer-B2 [58], and
SegNext-B [21], to build our segmentation network. The
channel setting to the four encoder stages is [c1, c2, c3, c4] =
[64, 128, 320, 512]. Taking the first of the four intermediate
modules as an example, the input and output channel set-
ting of the MLP layers for spatial and channel coefficient
learning is listed in Tab. 1, and the input and output chan-
nels of the 1× 1 convolution used for feature fusion are set
as [2c1, c1]. The two projectors each consist of a two-layer
MLP and a linear mapping with d = 256, where the input
and output channels of the MLP layers are equal to c4.

Layer1 Layer2 Layer3
Spatial [2c1, 2c1] [2c1, 2c1] [2c1, 1]

Channel [4c1, 4c1] [4c1, 4c1] [4c1, c1]

Table 1. Channel setting, [in, out], of the MLP layers for spatial
and channel coefficient learning in the first intermediate module.

Contrastive Losses. The weights λcm, λvis, and λaux

in Eq. (7) are set as 0.2 in experiments for low-light indoor
scene segmentation, and are set as 0.05 in experiments for
nighttime outdoor scene and normal-light scene segmenta-
tion. The temperature τ in Lcm, Lvis, and Laux is set as 0.1
in all experiments. Ablations on λcm, λvis, λaux, and τ are
provided in the supplementary material.

Training and Evaluation. We implement our model
with PyTorch on four Tesla V100 GPUs. During training,
we minimize the objective in Eq. (7). The encoders are ini-
tialized with the ImageNet-1K pretrained weights. We em-

Method Backbone mIoU (%)
SA-Gate† [10] ResNet-101 61.79

ShapeConv†§ [4] ResNeXt-101 63.26
CEN† [55] ResNet-101 62.15

TokenFusion† [53] SegFormer-B2 64.75
CMX† [66] SegFormer-B2 66.52

Base (w/o SMMCL)
ResNet-101 62.73

SegFormer-B2 65.69
SegNeXt-B 66.02

Ours (w SMMCL)
ResNet-101 64.40

SegFormer-B2 67.77
SegNeXt-B 68.76

Table 2. Low-light indoor scene segmentation from RGB-depth
data. Single-scale results are reported by default. †Our implemen-
tation. §Multi-scale results. The best result is shown in bold.

ploy AdamW [35] optimizer. The initial learning rate is
6e−5 and decays following the poly policy. We use basic
augmentation techniques, including random horizontal flip-
ping and random scaling from 0.5 to 1.75. The batch size is
16. We adopt the above training setting in all experiments.
In low-light, nighttime, and normal-light scene segmenta-
tion tasks, we train our model for 500, 300, and 600 epochs,
respectively. During evaluation, we use mean Intersection
over Union (mIoU) as the metric. We do not use any tricks,
e.g., multi-scale inference, when evaluating our model.

4.2. Validation on Low-Light Indoor Scenes

Dataset and Comparison Methods. We conduct
the task of understanding low-light indoor scenes from
RGB-depth data on the LLRGBD-synthetic dataset [67].
LLRGBD-synthetic is a large-scale synthetic dataset with
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(a) RGB (b) Thermal (c) Ground Truth (d) TokenFusion [53] (e) CMX [66] (f) Ours

Figure 6. Nighttime outdoor scene segmentation from RGB-thermal data.

13 semantic classes. To lower data redundancy, we ran-
domly sample 1418 scenes from its training set for training,
and sample 479 scenes from its validation set for evalua-
tion. We compare our model with five state-of-the-art multi-
modal image segmentation methods: CMX [66], TokenFu-
sion [53], CEN [55], ShapeConv [4], and SA-Gate [10].

Results. Quantitative comparison results are reported
in Tab. 2. As can be observed, in low-light indoor scenes,
our model trained with the proposed supervised multi-
modal contrastive learning approach achieves segmenta-
tion accuracy of 68.76%/67.77%/64.40%, and results in
a 2.74%/2.08%/1.67% improvement over the baseline1.
Besides, in comparison with the five state-of-the-art meth-
ods, our model achieves the highest accuracy, and outper-
forms them by a large margin. Figure 5 shows segmenta-
tion masks predicted by CMX, TokenFusion, and our best
model. Due to a lack of consideration for the class cor-
relations, CMX and TokenFusion tend to predict incorrect
class information in the scenes, where the poor visibility
in the RGB modality and the lack of contextual seman-
tics of the depth modality cause low class discrimination.
By contrast, our model can segment the scenes with much
higher accuracy. This is because our supervised multi-
modal contrastive learning approach fully considers the cor-
relations among semantic classes, and can effectively en-
hance multi-modal dark scene understanding by shaping
semantic-discriminative feature spaces. We provide com-
prehensive ablation supports in Sec. 4.5.

4.3. Validation on Nighttime Outdoor Scenes

Dataset and Comparison Methods. We further vali-
date our method on real-world nighttime outdoor scenes us-
ing RGB-thermal data from the MFNet dataset [23]. MFNet

1The baseline, i.e., Base (w/o SMMCL), employs the same network
structure in Fig. 3, but is trained with only a cross-entropy loss.

Method Backbone mIoU (%)
RTFNet [45] ResNet-152 54.8
GMNet [76] ResNet-50 57.7

ABMDRNet [69] ResNet-50 55.5
LASNet [31] ResNet-152 58.7

TokenFusion† [53] SegFormer-B2 58.7
CMX [66] SegFormer-B2 57.8

Base (w/o SMMCL)
ResNet-101 57.2

SegFormer-B2 57.9
SegNeXt-B 58.4

Ours (w SMMCL)
ResNet-101 58.9

SegFormer-B2 59.8
SegNeXt-B 60.0

Table 3. Nighttime outdoor scene segmentation on RGB-thermal
data. Single-scale results are reported. †Our implementation. The
best result is shown in bold.

provides 1569 outdoor scenes covering daytime and night-
time, with 9 semantic classes. We train our model with all
784 scenes in the training set and evaluate it on the 188
nighttime scenes in the test set. We compare our model with
TokenFusion [53] and five state-of-the-art RGB-thermal
segmentation methods: CMX [66], ABMDRNet [69], LAS-
Net [31], GMNet [76], and RTFNet [45].

Results. Table 3 reports the quantitative comparison
results. In nighttime outdoor scenes, our model with
supervised multi-modal contrastive learning achieves the
highest accuracy of 60.0%/59.8%/58.9%, and gains a
1.6%/1.9%/1.7% improvement over the baseline. More-
over, our best model outperforms the second best method,
TokenFusion, by 1.3%. Figure 6 qualitatively compares our
best model with TokenFusion and CMX. As shown, they
fail to segment the car in the first scene and the riding man
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(a) RGB (b) HHA (c) Ground Truth (d) TokenFusion [53] (e) CMX [66] (f) Ours

Figure 7. Normal-light scene segmentation from RGB-depth data. Depth images are encoded to HHA maps [22] in this task.

in the second scene, since the RGB and thermal modali-
ties provide limited semantic cues for the two objects. In
contrast, our model predicts more accurate segmentation
masks for these two difficult cases. This is due to our su-
pervised multi-modal contrastive learning approach enables
our model to better understand scenes from multi-modal im-
ages with limited semantics. We present more qualitative
comparisons in the supplementary material.

4.4. Generalizability on Normal-Light Scenes

Dataset and Comparison Methods. We validate
the generalization capability of our approach on real-
world normal-light scenes using RGB-depth data from the
NYUDv2 dataset [41]. NYUDv2 dataset provides 1449
indoor scenes with 40 semantic classes, in which 795
scenes are for training and 654 scenes are for evalua-
tion. We compare our model with five state-of-the-art
RGB-depth segmentation methods: CMX [66], TokenFu-
sion [53], CEN [55], ShapeConv [4], and SA-Gate [10].

Results. Quantitative comparisons are shown in Tab. 4.
Our approach brings a 1.1%/1.4%/0.9% improvement over
the baseline. Besides, our best model outperforms the sec-
ond best method, TokenFusion (SegFormer-B3), by 1.0%.
Figure 7 qualitatively compares our best model with Token-
Fusion (SegFormer-B3) and CMX. Our model shows supe-
rior generalizability in normal-light scenes. While the other
two methods fail to predict correct class information for
the dark areas in the first scene and the door and wallpaper
in the second scene, our model achieves predictions closer
to the ground truth. This is because our approach enables
our model to capture the classes similarities and differences
more accurately and understand scenes from multi-modal
images more effectively. We demonstrate this point via vi-
sual comparisons between Base and Ours in Sec. 4.5.

Method Backbone mIoU (%)
SA-Gate§ [10] ResNet-101 52.4

ShapeConv§ [4] ResNeXt-101 51.3
CEN [55] ResNet-101 51.1

TokenFusion [53] SegFormer-B2 53.3
TokenFusion [53] SegFormer-B3 54.8

CMX [66] SegFormer-B2 54.1

Base (w/o SMMCL)
ResNet-101 52.5

SegFormer-B2 53.7
SegNeXt-B 54.7

Ours (w SMMCL)
ResNet-101 53.4

SegFormer-B2 55.1
SegNeXt-B 55.8

Table 4. Normal-light scene segmentation from RGB-depth data.
Single-scale results are reported by default. §Multi-scale results.
The best result is shown in bold.

Model1 Model2 Model3 Model4
Cross-Modal ✗ ✓ ✗ ✓
Intra-Modal ✗ ✗ ✓ ✓
mIoU (%) 66.02 68.62 68.52 68.76

Table 5. Effectiveness study of our supervised multi-modal con-
trastive learning approach on low-light indoor scenes.

4.5. Ablation Study

We thoroughly analyze our supervised multi-modal con-
trastive learning approach in this section2. Other ablations
are provided in the supplementary material.

Basic Ablations. Table 5 studies the effectiveness of
our approach on low-light indoor scenes. In a comparison

2We conduct ablations using our model with the SegNeXt-B backbone.
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(a) Visible (Base) (b) Auxiliary (Base)

(c) Visible (Ours) (d) Auxiliary (Ours)

Figure 8. TSNE visualization [48] for final encoder features from
Base (w/o SMMCL) and Ours (w SMMCL) on a low-light scene in
LLRGBD-synthetic. Each color corresponds to a semantic class.

of Model1, i.e., Base (w/o SMMCL), which is trained with
only a cross-entropy loss, and Model2, which is trained by
adding the cross-modal contrastive loss, Model2 yields a
2.6% improvement and accuracy of 68.62%. By adding
the intra-modal contrastive losses, Model3 produces accu-
racy of 68.52%. Further, by jointly introducing cross-modal
and intra-modal contrast, Model4, i.e., Ours (w SMMCL),
achieves the best accuracy, 68.76%.

TSNE Visualization. Figure 8 visualizes the final en-
coder features, i.e., F4

vis and F4
aux, learned by Base (w/o

SMMCL) and Ours (w SMMCL). As shown in subfigures (a-
b), features learned by Base (w/o SMMCL) show low seman-
tic discriminability, with points from different classes being
in a mixed distribution. By contrast, in features learned by
Ours (w SMMCL), i.e., subfigures (c-d), points belonging to
the same class are closer and form clearer clusters. This
demonstrates that our approach effectively encourages the
feature spaces learned from multi-modal images with lim-
ited semantics to show higher semantic discriminability.

Visual Comparisons of Base and Ours. As a more
intuitive validation, we compare Base (w/o SMMCL) and
Ours (w SMMCL) in Fig. 9. Thanks to our multi-modal
contrastive learning approach, our model can predict differ-
ent semantic classes more accurately and understand dark
scenes from multi-modal images more effectively.

Comparisons with Other Approaches. Since our ap-
proach is the first supervised multi-modal contrastive learn-
ing approach for image segmentation, we comprehensively
compare it with an unsupervised multi-modal approach [36]
and a supervised single-modal approach [26]. Unlike these
methods which need to generate samples via augmentation
or consider only single-modal region features, we leverage
class labels to effectively align pixel embeddings across dif-
ferent modalities. Table 6 shows that our approach signif-

(a) Visible (b) Auxiliary (c) GT (d) Base (e) Ours

Figure 9. Visual comparisons of Base (w/o SMMCL) and Ours (w
SMMCL) on low-light, nighttime, and normal-light scenes.

Method S MM Low Night Normal
mIoU (%)

Base - - 66.02 58.44 54.70
Base + [36] ✗ ✓ 66.54 58.93 55.10
Base + [26] ✓ ✗ 68.02 59.48 55.46

Base + SMMCL ✓ ✓ 68.76 60.00 55.77

Table 6. Comparisons with other contrastive learning approaches.
Base is the baseline, Base (w/o SMMCL). S denotes supervised.
MM denotes multi-modal.

icantly outperforms them on various tasks. This demon-
strates again our effectiveness, and justifies the superiority
of our supervised paradigm and the benefit of fully consid-
ering the cross-modal context-geometry correspondence.

Broader Significance. In our tasks, the adoption of our
approach can help overcome a learning bias problem caused
by “invalid” auxiliary modality. We provide additional dis-
cussions in the supplementary material.

5. Conclusions

We tackle dark scene understanding by contrasting visi-
ble and auxiliary images with limited semantic information.
We propose a supervised multi-modal contrastive learning
approach to boost the learning on the two modalities and
encourage them to be semantic-discriminative in the fea-
ture space. We demonstrate the effectiveness, generaliz-
ability, and applicability of our approach on low-light in-
door scenes, nighttime outdoor scenes, normal-light scenes,
and different image modalities. We believe our work will
contribute to dark scene semantic segmentation, which is a
challenging but important task in life, and can inspire fur-
ther progress in multi-modal scene understanding.
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