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Figure 1. Diversified augmentation generation by joint conditioning on density map and semantically similar prompt.

Abstract

With the availability of powerful text-to-image diffusion
models, recent works have explored the use of synthetic data
to improve image classification performances. These works
show that it can effectively augment or even replace real
data. In this work, we investigate how synthetic data can
benefit few-shot class-agnostic counting. This requires to
generate images that correspond to a given input number of
objects. However, text-to-image models struggle to grasp the
notion of count. We propose to rely on a double conditioning
of Stable Diffusion with both a prompt and a density map in
order to augment a training dataset for few-shot counting.
Due to the small dataset size, the fine-tuned model tends to
generate images close to the training images. We propose to
enhance the diversity of synthesized images by exchanging
captions between images thus creating unseen configurations
of object types and spatial layout. Our experiments show that
our diversified generation strategy significantly improves the
counting accuracy of two recent and performing few-shot
counting models on FSC147 and CARPK.

1. Introduction

Counting objects is a task with applications in many do-
mains e.g. manufacturing, medicine, monitoring, that involve

different types of objects. While earlier works focused on
learning specialized networks [2, 7, 14, 16], Few-Shot object
Counting (FSC) [31] was recently introduced to train models
that can count any object, including from categories outside
the training data. Methods tackling FSC rely on exemplar
objects annotated with bounding boxes (cf. Fig. 2), in an
extract-then-match manner [21]. The features of the exem-
plars and query image are compared using e.g. correlation
maps [31, 41] or attention [6, 9]. Matched features are then
transformed into a density map indicating at each location in
the image the density of the objects of interest. The density
map is then summed to obtain the predicted count.

The reference dataset for FSC, namely FSC147 [31], con-
tains a limited amount of data (3659 train images) thus
bounding the performances of counting networks [30]. Ex-
panding such a dataset is costly as the annotation process re-
quires pinpointing the center of each object present in a query
image, with a potentially high number of occurrences. To
overcome the small dataset size, Ranjan et al. [30] augment
FSC147 using a GAN to diversify the image styles. Diffu-
sion models have now surpassed GANs owing to their train-
ing stability and lower sensitivity to mode collapse. These
models produce more effective and diverse augmentations
[12, 37, 39]. Recent works mostly aim at augmenting classi-
fication datasets e.g. ImageNet [8], where augmentations are
generated by prompting the models with the image labels.
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Figure 2. Left: FSC147 image with BLIP2 caption (above) and
exemplar boxes (in red). Right: Ground-truth density map.

This fails to produce satisfying images for counting datasets
as text-to-image models struggle to generate the correct num-
ber of objects [26]. Some works tackle improving compo-
sitionality in vision-language models [19, 25, 27] but are
limited to small numbers of objects. Other works add more
control to pre-trained text-to-image models [15, 23, 42].

To tackle few-shot counting, we propose to synthesize
unseen data with Stable Diffusion conditioned by both a tex-
tual prompt and a density map. We thus build an augmented
FSC dataset that is used to train a deep counting network.
The double conditioning, implemented with ControlNet [42],
allows us to generate novel synthetic images with a precise
control, preserving the ground truth for the counting task.
It deals well with large numbers of objects, while current
methods fail in such cases [19, 27]. To increase the diversity
of the augmented training set, we swap image descriptions
between the n available training samples, leading to n(n−1)

2
novel couples, each being the source of several possible syn-
thetic images. However, we show that some combinations
do not make sense and lead to poor quality samples. There-
fore, we only select plausible pairs, resulting in improved
augmentation quality. We evaluate our approach on two
class-agnostic counting networks, namely SAFECount [41]
and CounTR [6]. We show that it significantly improves the
performances on the benchmark dataset FSC147 [28] and
allow for a better generalization on the CARPK dataset [14].

2. Related work
Learning with Generated Data Improvements in im-
age synthesis using generative models have sparked great
interest in generating fake images to train deep neural net-
works. GANs were the first popular models to synthesize
data for image classification [1, 5, 17], crowd counting [40]
and image segmentation [43]. Nowadays, diffusion models
such as DDPM [13] or Latent Diffusion [32] seem to out-
perform GANs, demonstrating more stable training, better
coverage of the training distribution and higher image qual-
ity. The availability of powerful text-conditioned diffusion
models [24, 29, 32, 33] has led to many works exploring
how to leverage synthetic data for computer vision, e.g. im-

age classification in low-data regime [12], zero/few-shot
learning [37, 39], ImageNet classification [3, 4, 34] and
self-supervised learning [38]. These works focus on how
to reduce domain gap [12], improve the prompts using e.g.
text-to-sentence model [12] or WordNet [34] and increase
diversity by optimizing the guidance scale [3, 34, 37]. This
body of literature consistently demonstrates how generated
data allow deep networks to learn more robust representa-
tions and improve generalization for image classification.
We focus more specifically on few-shot class-agnostic ob-
ject counting. Compared to image classification, this task
involves small datasets and local spatial understanding, as
objects can be small and follow complex layouts. The gen-
erated data needs a level of compositionality that current
generative models, including diffusion models, struggle to
achieve. To bring the power of synthetic data to counting,
we propose to condition diffusion models not only on text
prompts but also on counting density maps to generate im-
ages with the correct number of objects in the desired spatial
configuration. We exploit this double control to generate
diversified unseen data by prompting the model with novel
combinations of the controls.

Few-shot Object Counting The goal of few-shot class-
agnostic object counting is to count how many instances of
objects of any arbitrary category there are in a given image,
by leveraging only a few exemplars of the category of in-
terest. This was initially formulated as matching exemplars
and image patch features [21]. FSC147 [31] was later put
forward as the main dataset for this task, with an open set
train and test split to evaluate generalization to unseen ob-
ject categories. Its authors introduced FamNet, a deep net
trained to infer density maps from feature similarities. In
the same lineage, BMNet [36] refines the similarity map by
learning the similarity metric jointly with the counting net-
work. In SAFECount [41], the similarities are used to fuse
exemplars features into the query image features. The den-
sity map is then predicted from the enhanced features. Other
works e.g. CounTR [6] and LOCA [9] focus on improving
the feature representations using a Transformer backbone
as the visual encoder and injecting information about the
exemplars’ shape in the network [9]. The closest comparison
to our work is the Vicinal Couting Network from Rajan et
al. [30]. It augments FSC147 with generated data by train-
ing a conditional GAN jointly with the counting network,
producing augmentations that preserve the image content
while modifying its visual appearance. While outperformed
by later models, it introduced the idea that well-chosen aug-
mentations can significantly boost counting accuracy. In this
work, we leverage large pre-trained text-to-image diffusion
models to produce diverse augmentations that not only alter
the appearance, but are also able to change the content, to
synthesize augmentations with a variety of object semantics.
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Figure 3. Overview of our approach. We condition a pre-trained
diffusion model on both text prompts and density maps and perform
swaps with similar captions. The density and original exemplars
boxes are used as ground-truth for the generated augmentation.

3. Latent diffusion
Rombach et al. [32] introduced Latent Diffusion Mod-

els (LDMs) that are diffusion models applied in the latent
space of generative models such as VQGAN [10]. These
models operate in a compressed latent space thus reducing
training and inference time. For more controlled generation,
LDMs can be conditioned with e.g. text, images or seman-
tic maps. Stable Diffusion is a popular open-source LDM,
trained on the large-scale LAION-2B dataset [35] and en-
abling high-quality text-to-image generation. Prompt-based
control heavily relies on the capabilities of the underlying
text encoder, typically CLIP [28] that is known to poorly
integrate compositional concepts such as counting [25].
ControlNet Recent works have added ancillary control
signals to LDMs. Such a popular approach is Control-
Net [42], which extends available pre-trained diffusion mod-
els by creating a trainable copy of the original network with
an additional control input such as a semantic, edge or depth
map. This trainable copy is linked to a locked copy to pre-
serve the capacities of the original model. The training
objective is an LDM objective similar to [32]:

L = ||ϵt − ϵθ(zt, t, ct, cf )||2 (1)

where ϵt ∼ N (0, 1), ϵθ(, ) is a model of the diffusion noise,
zt is the latent representation of xt, ct the text prompt and
cf the task-specific control.

4. Semantic Generative Augmentations
4.1. Few-Shot Counting

The goal of few-shot class-agnostic counting is to learn
to count objects regardless of their category. To achieve
this, the query image x ∈ RH×W×3 is annotated with n ∈
{0, 1, 2, 3...} exemplar boxes of coordinates b ∈ R4. The
counting network takes as input both the query image and

the set of n boxes. It predicts a density map d ∈ RH×W of
same size as the image. As shown in Fig. 2, this ground-truth
density map has zero values where there are no objects, and a
Gaussian kernel of fixed variance at the center of every object.
The final count is obtained by summing across all positions
of the density map. The model is typically trained with an
L2 loss between the predicted and ground-truth densities. To
evaluate class-agnostic models, object categories from the
test set are disjoint from those in the validation and train sets.
This open set evaluation allows us to measure the network’s
ability to count objects from unseen categories.

4.2. Text-and-Density Guided Augmentations

To synthesize new images that can effectively augment
a few-shot counting dataset, we need to have control over
the number of objects and how they are laid out. Indeed,
we need to ensure that we know the density maps of the
synthetic samples so that they can be used to train the model.
In addition, being able to control object type and spatial con-
figuration also constitutes a lever to diversify the dataset by
generating new combinations of categories and densities. As
few-shot counting datasets are generally limited in size, we
take advantage of available pre-trained diffusion models to
synthesize diversified augmentations of the training samples,
reducing overfitting and improving generalization. However,
large pre-trained generative models such as Stable Diffusion
are usually conditioned through textual prompts.

To finetune these models, we first have to pair textual
captions to the training images. We obtain diverse and de-
scriptive captions using an off-the-shelf captioning model,
e.g. BLIP2 [20]. This produces richer captions than plain
object categories such as “a photo of {class}“. However,
two shortcomings remain. First, generated captions may not
contain any information about the number or arrangement
of the objects. Second, text-conditioned LDMs poorly re-
spect prompts regarding compositional constraints. Even
adding this information in the caption does not guarantee
that generated images would follow them. This is especially
problematic as the correctness of the layout is a prerequi-
site to generate images for which we know the ground-truth.
Therefore, we further condition the generative model directly
on the density maps as an additional input, using the Con-
trolNet fine-tuning strategy. To summarize, our generative
model is now conditioned on a text prompt, obtained by an
automated captioning of the training image, and its ground
truth density map to enforce the spatial layout of the ob-
jects. This allows us to synthesize new samples that augment
the original image, while keeping the ground truth intact,
making the augmentation amenable to supervised learning.

4.3. Diversity-Enhanced Augmentations

To formalize the augmentation process, let Dtrain =
{xi, bi, di}Ni=1 be an annotated counting dataset, with xi
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Real image

Synthetic augmentations

Figure 4. Qualitative results for the Baseline vs. Diverse augmentations. At the bottom of each diverse sample we show the caption used to
generate the image. Our strategy allows to diversify the type of objects and/or the background.

an image, bi the exemplar bounding boxes for each image,
and di its ground-truth density map. Let C = {ci}Ni=1 be
the set of corresponding captions. For each image xi, we
aim at generating M augmentations using our text-density

conditional generative model g(di, ci).
Baseline We sample augmentations from the LDM by
taking advantage of the non-deterministic reverse diffusion
process and the expressiveness of the pre-trained model. For
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an image xi we produce M augmentations x̃(j)
i that share

its caption and density map:

x̃
(j)
i = g(di, ci), j = 1, ...,M (2)

These augmentations preserve both the number and layout
of objects – because of the density conditioning – and the
semantics e.g. object category and type of background – be-
cause of the text prompt. This already augments the number
of samples available for training.
Diverse We can however go further and diversify the aug-
mentations by altering either the text description or the spa-
tial organisation of the objects. To do so, we take advantage
of dual conditioning on both densities and captions. We
mix the two sets to create new combinations (density map,
caption), producing augmentations that are semantically and
geometrically more diverse than the original dataset. Yet,
this mixing of the conditionings should be done carefully,
to avoid low quality augmentations. Indeed, not all com-
binations make sense, e.g. “a herd of cows” and “a pearl
necklace” exhibit very different spatial layouts. To prompt
the generative model with realistic (density, text) pairs, we
rely on caption similarity to find new associations between
images that share some semantics, e.g. “cows” and “bisons”.

We swap captions at random between pairs of compati-
ble images. Two images are said to be compatible if their
captions are more similar than some threshold tc, i.e.:

sim(ci, ck) =
Ψ(ci)

⊤Ψ(ck)

||Ψ(ci)||2||Ψ(ck)||2
> tc

where Ψ is a suitable text encoder. We then sample new im-
ages using the initial density map, but replacing the original
caption with the caption ck ∈ C from a compatible training
observation chosen at random:

x̃
(j)
i = g(di, ck), j = 1, ...,M (3)

This process results in more diverse augmentations compared
to the baseline and alters more the images than traditional
augmentations (color jitter, crops, etc.), as shown in Fig. 4.
Synthetic and Diverse Balance We follow the training
strategy from Trabucco et al. [39], where the synthetic aug-
mentations are used as a regular data augmentation with a
probability p0 when training the counting model. As a way
to balance baseline and diversified augmentations, we set
a probability pc that defines the fraction of the M augmen-
tations that use a swapped caption instead of the original
one. Typically, pc = 0.5 means that 50% of the generated
augmentations employ the original (caption, density) pair
and that the remaining 50% use new (caption, density) com-
binations. For each augmentation, we keep the density used
to condition the image generation and the original exemplar
boxes as ground truth to train the model.1

1Note that if the caption changes the object category, bounding boxes

5. Experiments

5.1. Datasets and metrics

FSC147 FSC147 [31] is a 3-shot counting dataset with
147 object categories. It is the de facto standard of class-
agnostic counting benchmarking. 89 categories are used
for the training set, 29 are included in the validation set the
remaining 29 constitute the test set. Note that the categories
from the three sets are completely disjoint. In total, the
dataset contains 6135 images, from which 3659 are used for
training. The number of objects in the images varies from
7 to 3731 with an average of 56. Every image is annotated
with 3 exemplar bounding boxes and an object density map.
CARPK CARPK [14] is a class-specific dataset for count-
ing cars in parking lots based on overhead imagery. The
dataset contains 1448 images from a UAV in 4 parking lots:
3 for training and the last one for testing. There are 5 ex-
emplar objects in total that are randomly extracted from the
training set and employed during both training and testing.
Following [6, 41], we evaluate on CARPK the generalization
ability of our class-agnostic models on a new dataset.
Metrics We follow the standard evaluation of the counting
accuracy through the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE).

5.2. Implementation details

Augmentation We train ControlNet on the training im-
ages and density maps from FSC147. Text prompts are
obtained by captioning the images with BLIP2 [20]. The
underlying pre-trained diffusion model is Stable Diffusion
v1.5 trained on LAION 2B. We use the default settings and
train for 350 epochs. After training, we employ a guidance
scale of 2.0 and 20 denoising steps to generate an image. For
each augmentation strategy, we generate M = 10 augmen-
tations per training sample unless specified otherwise. We
swap the original caption with another one with a probability
pc = 0.5. Compatible captions to swap with are obtained by
extracting caption features with the BLIP2 text encoder and
filtering the captions with a similarity higher than tc = 0.7.
Counting networks We demonstrate the effectiveness of
our augmentation strategies on two state-of-the-art counting
networks: SAFECount [41] and CounTR [6]. SAFECount
is a CNN while CounTR is Transformer-based. In CounTR,
training is done in two phases. First, the network is pre-
trained using a self-supervised masked auto-encoder [11],
then it is fine-tuned in a supervised fashion with the usual
L2 loss on the densities. For CounTR, we employ the pre-
trained model released by the authors and only retrain the
fine-tuning phase. We use the hyperparameters reported in
the original papers to train both networks, except training

for the exemplars might not be accurate anymore (e.g. “pens” are narrow
and elongated, while “erasers” are closer to squares, see Sec. 6.
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(a) SAFECount [41]

Val Test

MAE RMSE MAE RMSE

Traditional Augmentation∗,† 13.95 51.73 13.73 91.85

+ Real Guidance [12] 14.94 53.09 13.48 80.69
+ Baseline Generation (Ours) 13.30 49.38 13.22 92.47
+ Diverse Generation (Ours) 12.59 44.95 12.74 89.90

Traditional Augmentation (reported) 15.28 47.5 14.25 85.54

(b) CounTR [6]

Val Test

MAE RMSE MAE RMSE

14.25 50.15 13.13 88.21

15.37 49.47 13.37 96.44
12.60 43.53 11.83 87.97
12.31 41.65 11.32 77.50

13.13 49.83 11.95 91.23

Table 1. Quantitative results on FSC147. (*) Traditional augmentations include color jitter, random cropping. (†) [41] and [6] are reproduced,
details are provided in the supplementary material.

is 100 epochs longer to account for the higher number of
training images. During training, we replace an image xi

with one of its augmentations x̃
(j)
i with probability p0 =

0.5. This balances the ratio of real vs. synthetic data in a
single batch. We also employ traditional data augmentation
strategies e.g. flips, color jitter, random cropping, that are
applied to every image, both real and synthetic, as done in
the original models. Both networks are trained and evaluated
in the 3-shot setting. All results are averages over two runs.

5.3. Few-Shot Counting on FSC147

Comparison with Traditional Augmentation We report
in Tab. 1 the improvement in counting accuracy on FSC417
with our augmentation strategies when training SAFECount
and CounTR. Consistent with the literature on synthetic data
augmentation, baseline augmentations improve the results
for both networks: MAE decreases by respectively 5% and
10% for SAFECount and CounTR on the val set. Nonethe-
less, diversifying the augmentations allows us to reduce the
MAE even further, by 10% and 11% on the same val set and
by 7% (SAFECount) and 13% (CountTR) on the test set.
We attribute this to ControlNet overfitting the training data
due to the small dataset size. The low guidance employed to
generate the images (2.0) aims at promoting diversity [34]
but, as shown in Fig. 4 (Baseline Gen.), the generated images
remain close to the original image in terms of visual appear-
ance of the objects and background. However, ControlNet
generalizes to different captions. In Fig. 4 (Diverse Gen.),
we observe that swapping captions allows us to create more
diverse data, altering the size and texture of objects and their
background. Such features cannot be altered with traditional
data augmentation.When mixing baseline and diverse aug-
mentations, the performances for both networks improve
significantly with respect to the model without synthetic
augmentation, or with naive augmentations only.
Comparison with Real Guidance We compare our ap-
proach with Real Guidance, an augmentation strategy for
image classification by He et al. [12]. Augmentations are

Figure 5. Qualitative comparison with Real Guidance [12]. Our
augmentations preserve the layout while creating more diverse
backgrounds. Ground-truth density maps overlap with the gener-
ated images (last 2 columns).

generated by prompting a pre-trained text-to-image diffu-
sion model with the image classes. To reduce the domain
gap, the synthetic images are generated from the real images
with added noise as proposed in SDEdit [22]. Tab. 1 shows
that our augmentation strategy outperforms Real Guidance2.
Starting from the real image with added noise is generally
insufficient to preserve the number of objects and their po-
sitions (Fig. 5, 2ndcol.). It shows that the density map con-
ditioning ensures the preservation of object positions and
number without requiring to start from the real image, which
can limit the diversity of the generated images.

5.4. Ablation Study

We study here the influence of the hyperparameters of our
approach: impact of the caption similarity threshold, tc, in-
fluence of introducing diversified augmentations by varying

2Except on test RSME with SAFECount, where Real Guidance performs
better, due to two outlier test images with more than 2500 objects that
dominate the average error (see supplementary material).
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Figure 6. Caption swap at random (top) vs. similarity-based swap
(bottom, tc = 0.7). Random swapping results in a mismatch
between the layout and the semantics.

the pc parameter, the effect of the number of augmentations
M , and of the ratio of synthetic samples during training, p0.
All ablations are conducted on SAFECount trained for 200
epochs to reduce training time.
Caption Similarity Threshold We swap captions based
on caption similarity to form novel but plausible (density,
text) combinations. As shown in Fig. 6, associating a com-
pletely unrelated caption to a given density map results in
generated images that do not correspond to the input density
map or are of poor quality, as it is harder for the model to
generalize. In Fig. 7a we evaluate different similarity thresh-
olds to the naive approach where all captions can be swapped
freely at random (tc = 0.0). The performances are improved
compared to random swaps with all thresholds between 0.5
and 0.9. However, there is a quality-diversity tradeoff shown
in Fig. 7b. Setting the threshold too high (tc = 0.8, 0.9)
swap captions between images of objects belonging to the
same category, thus limiting diversity. With a lower thresh-
old, e.g. tc = 0.7, new captions can also belong to objects
from different similar categories, e.g. swapping “bread rolls”
and “macarons”.
Rate of Diverse Samples In Fig. 8, we vary the rate
of diverse augmentations among M = 10 augmentations.
We compare with SAFECount trained solely with baseline
non-diverse augmentations. More diverse samples overall
increase the counting accuracy. We further find that adding
70% of diverse samples gives better performances than 50%.
This suggests that the diverse augmentations are more bene-
ficial than the baseline ones. The augmentations using the
original captions yet remain useful to the model as we ob-
serve a slight increase in MAE when more than 90% of the
augmentations are obtained on new combinations.
Number of Augmentations In Fig. 9, we vary the number
of augmentations generated for each image. With a single
augmentation, the performances already improve. For low
values of M = 1, 3, 5, the performances are comparable,
then a stronger increase is observed for M = 10. With twice
as many augmentations (M = 20), performances degrade on
the validation set. This might be due to an insufficient con-

(a) Validation and test MAE on FSC147 w.r.t. tc (SAFECount).

(b) Distribution of object categories in the set of captions to swap from w.r.t
tc for a sample of category “bread rolls”. Lower thresholds result in more
diverse augmentations, while objects still belong to similar classes.

Figure 7. Impact of caption similarity threshold tc on SAFECount.

Figure 8. Impact of the percentage of diverse augmentations pc on
SAFECount. MAE is reported for the val and test sets of FSC147.

vergence, as the model is trained with many more different
data points but for the same number of iterations.
Rate of Synthetic Samples Fig. 10 shows the counting
accuracy w.r.t. ratio p0 of synthetic samples vs. real samples
in a batch. We observe that equally balancing the synthetic
and real data gives the best performances, which is consistent
with what has been observed in previous works generating
synthetic data for image classification [4, 12].

5.5. Generalization on CARPK

CARPK [14] was introduced to train networks that can
count cars in aerial views of parking lots. It is also used
to evaluate the ability of class-agnostic models to count in
a class-specific setting. Given a model trained on FSC147
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Figure 9. Impact of the number of augmentations M on SAFE-
Count (val. and test MAE on FSC147).

Figure 10. Impact of the synthetic data ratio p0 on SAFECount
(val. and test MAE on FSC147).

Aug. MAE RMSE

Pre-trained on FSC147 Trad. 17.65 23.83
Div. 16.49 19.05

Fine-tuned on CARPK Trad. 5.44 6.94
Div. 4.87 6.17

SAFECount [41] (WACV’23) Trad. 5.33 7.04
CounTR [6] (BMVC’22) Trad. 5.75 7.45
BMNet+ [36] (CVPR’22) Trad. 5.76 7.83

Table 2. Counting performance on CARPK with SAFECount.

(without the examples of the “car” category), the model is
first evaluated without any fine-tuning, then with fine-tuning
on CARPK. We evaluate our model trained on FSC147 with
diverse augmentations in the same setting. Tab. 2 reports
improved counting performances in both the pre-trained
and fine-tuned settings in comparison to the models trained
without synthetic augmentations. In the fine-tuning setting,
we reach state-of-the-art counting accuracy (4.87 MAE/6.17
RMSE) on CARPK amongst class-agnostic models.

6. Limitation

Our synthetic data needs a ground truth and exemplars to
train the counting network. Conditioning on densities makes
it possible to reuse both the original density and the exemplar

Figure 11. Limitation: our diverse generation strategy can change
the size and shape of generated objects, leading to exemplar boxes
(in red) that do not fit perfectly.

bounding boxes. However, changing the caption can affect
the object category, and in turn its shape. In some rare cases,
exemplar boxes do not fit the generated objects anymore,
as illustrated in Fig. 11. We explored to what extent refin-
ing these boxes could improve our model. We segmented
objects using SAM in zero-shot [18] prompted with object
centers. Preliminary results showed no improvement with
box refinement, possibly due to inaccurate segmentation.

7. Conclusion
We show that synthetic data generated by diffusion mod-

els improve deep models for few-shot counting. We adapt
a pretrained text-to-image model with a density map con-
ditioning and we propose a diversification strategy that ex-
ploits caption similarities to generate unseen but plausible
data that mixes the semantics and the geometry of different
training images. We show that selecting compatible images
improves synthetic image quality with beneficial effects on
model performance. We demonstrate that learning with our
diverse synthetic data leads to improved counting accuracy
on FSC147 and state of the art generalization on CARPK.
This strategy could be adapted to other tasks requiring fine-
grained compositionality, such as object detection and se-
mantic segmentation. Our diversification scheme could be
further extended by swapping both the captions and the den-
sity controls, by introducing a suitable similarity metric that
operates on the density maps.
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