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Abstract

Object-centric representation learning offers the poten-
tial to overcome limitations of image-level representations
by explicitly parsing image scenes into their constituent
components. While image-level representations typically
lack robustness to natural image corruptions, the robust-
ness of object-centric methods remains largely untested. To
address this gap, we present the RobustCLEVR benchmark
dataset and evaluation framework. Our framework takes
a novel approach to evaluating robustness by enabling the
specification of causal dependencies in the image gener-
ation process grounded in expert knowledge and capable
of producing a wide range of image corruptions unattain-
able in existing robustness evaluations. Using our frame-
work, we define several causal models of the image corrup-
tion process which explicitly encode assumptions about the
causal relationships and distributions of each corruption
type. We generate dataset variants for each causal model
on which we evaluate state-of-the-art object-centric meth-
ods. Overall, we find that object-centric methods are not
inherently robust to image corruptions. Our causal evalua-
tion approach exposes model sensitivities not observed us-
ing conventional evaluation processes, yielding greater in-
sight into robustness differences across algorithms. Lastly,
while conventional robustness evaluations view corruptions
as out-of-distribution, we use our causal framework to show
that even training on in-distribution image corruptions does
not guarantee increased model robustness. This work pro-
vides a step towards more concrete and substantiated un-
derstanding of model performance and deterioration under
complex corruption processes of the real-world.1

1. Introduction
Common deep neural network (DNN) architectures have

been shown to lack robustness to naturally-induced image-
level degradation [12, 20, 46, 48]. In safety-critical scenar-

1Data and code will be released upon publication

Figure 1. (Top) Object-centric methods explicitly parse scenes into
constituent objects. (Bottom) The corruption generating process
involves with many causal factors with complex dependencies.

ios, any reduction in model performance due to naturally-
occurring corruptions poses a threat to system deployment.
While many proposed solutions exist for increasing the ro-
bustness of image-level representations [4,7,9,21,33,41,49,
51], a measurable performance gap remains [14, 48].

Recent advances in object-centric (OC) representation
learning signal a paradigm shift towards methods that ex-
plicitly parse visual scenes as a precursor to downstream
tasks. These methods offer the potential to analyze com-
plex scene geometries, support causal reasoning, and re-
duce the reliance of deep learning models on spurious im-
age features and textures. Recent works have examined the
use of OC representations for downstream tasks [11] and
action recognition [50] showing positive benefits of such
representations over more traditional image-level features.
One hypothesis is that OC methods inherently learn scene-
parsing mechanisms which are tied to stable features of the
scene/objects and robust to naturally-induced image corrup-
tions. However, quantitative proof of these desirable prop-
erties has not yet been obtained. We test this hypothesis by
conducting the first analysis of the robustness of OC repre-
sentation learning to non-adversarial, naturally-induced im-
age corruptions.
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Figure 2. RobustCLEVR image corruptions rendered independently from left-to-right: (Top) Blur, cloud, defocus, displacement blur,
(Bottom) Gamma, glare, lens distortion, noise. Rightmost column is the clean image and ground truth mask.

1.1. Background

Robustness evaluation: Robustness to common corrup-
tions has been previously addressed in a number of other
contexts [20, 25, 31, 38, 39]. However, prior work has made
several strong limiting assumptions which we aim to ad-
dress here. First, prior work has treated categories of image
corruptions as IID, failing to account for causal relation-
ships in the image generation process (e.g., low brightness
causes longer exposure times or higher sensor sensitivity,
resulting in motion artifacts or increased quantum noise, re-
spectively). The lack of interactions leads to a set of image
corruptions potentially decoupled from reality.

Second, corruption severity is often modeled heuristi-
cally without controlling for the impact on image quality
and assuming all severities are equally likely. Defining
corruption severity on a discrete scale [20] often ignores
the fact that severity is continuous in real-world conditions
(e.g., blur due to motion depends on the velocity of the
system or scene). Furthermore, because DNNs are highly
non-linear, performance change due to severity is also likely
non-linear. Since corruption severity in the real world is of-
ten non-uniform, robustness evaluations should reconsider
the nature of the assumed severity distribution.

Lastly, prior work typically assumes common corrup-
tions are out-of-distribution (OOD), positing that they are
not actually “common” (or even present) within the training
sample distribution. While this has benefits for assessing
model performance on unseen conditions, it fails to con-
sider the more likely scenario where the assumed distri-
bution naturally contains image corruptions (even if rare)
and the model may have access to corrupted samples dur-
ing training. Even in that case, the evaluation can still target
specific corruption conditions while ensuring that the model
has also been trained on data representative of the assumed
“true” distribution.
OC robustness evaluation: OC representation learning is
formulated as an unsupervised object discovery problem, so
the absence of annotations (e.g., semantic labels, bounding
boxes, object masks) forces models to learn only from the

structure and imaging conditions inherent to the data distri-
bution. To successfully develop OC methods that work on
highly variable real-world data, robustness evaluations must
be also able to account for a wider set of imaging conditions
consistent with the image generation process. Training and
evaluating the robustness of OC methods thus relies on a
clear statement of the assumptions underlying the train and
test distributions.

Our approach and contributions: We address limita-
tions of prior robustness work by developing a causal in-
ference framework that enables us to unify common inter-
pretations of robustness while also providing a means to
improve the alignment between evaluation data and chal-
lenging, domain-specific imaging conditions. We show
that knowledge of the image generation process enables the
specification of causal graphs which explicitly capture as-
sumptions about the sources of and dependencies between
image corruptions (described further in Section 3.3). We
conduct the first extensive evaluation of the robustness of
OC methods using contrasting causal models of the data
generating process (DGP) and show that assumptions about
the causal model structure and its underlying distribution
are critical for interpreting OC model robustness. Lastly,
we demonstrate that common corruption robustness of OC
methods can also be interpreted as dealing with long-tail
image distributions contrary to the more restrictive OOD
assumption.

To investigate the robustness of OC methods, we devel-
oped the RobustCLEVR framework and dataset. We build
off prior works which initially evaluated OC methods on
CLEVR [24] and CLEVRTex [26], datasets consisting of a
collection of uncorrupted scenes composed of sets of sim-
ple objects with varying complexity of color, material, and
texture properties. We use our causal framework to generate
multiple variants of RobustCLEVR with each investigating
the effects of distributional assumptions on measured model
robustness. This benchmark and framework is the first of its
kind for OC learning and provides a stepping stone towards
realizing its potential on real-world data.
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Figure 3. RobustCLEVR variant with causally-dependent corruptions. Rows are different samples from the same causal model and columns
are images rendered at each node of the model. Corruptions are rendered according to order of the causal model from left to right: Clean,
cloud, blur, gamma, lens distortion, displacement/motion blur, defocus blur, noise, ground truth.

2. Related Work

Robustness benchmarks Robustness in deep learning for
computer vision has been extensively studied outside of OC
learning [14]. Several benchmarks have enabled system-
atic evaluation of robustness of deep learning methods with
respect to image classification [20, 31, 32, 38], object de-
tection [13, 39], instance segmentation [1], and distribution
shifts [29, 54]. While challenging datasets for OC learning
such as CLEVRTex [27] have helped push the boundaries of
these methods, datasets for evaluating robustness to image
corruption remains unexplored.
Object-centric methods Methods for decomposing scenes
into their constituent objects (without explicit object-level
labels) have emerged recently under a variety of names
including unsupervised object discovery, unsupervised se-
mantic segmentation, and OC learning. Early techniques [8,
18, 30] processed images via a series of glimpses and
learned generative models for scene construction by inte-
grating representations extracted over multiple views. More
recent techniques learn models capable of generating full
scenes from representations bound to individual objects.
For generative [3, 16, 17, 19, 23, 34] and discriminative [35]
methods, image reconstruction plays a crucial role in the
learning objective.

Beyond static scene images, multi-view and video
datasets provide additional learning signals for unsuper-
vised object discovery. Recent techniques [2, 15, 26, 28, 47]
have exploited object motion estimated via optical flow for
improving OC representations. In contrast, multi-view tech-
niques [42, 43] take advantage of overlapping camera per-
spectives for improving scene decomposition. We focus on
static scenes in this work and multi-view methods remain
candidates for future evaluation.
Causal inference for robustness Lastly, causal inference
and computer vision research have become increasingly in-
tertwined in recent years [5, 14, 45]. Early works [6, 36] fo-
cused on causal feature learning and have expanded to other
vision tasks and domains [22, 37, 44, 53]. Causal inference
and robustness have also been explored in the context of
adversarial [53] and non-adversarial [10,40,52] conditions.

3. Methods
3.1. Structural causal models

Structural causal models (SCM) consist of variables,
their causal relationships, and their distributional assump-
tions, all of which describe an associated data generating
process. The DGP can be represented as a Directed Acyclic
Graph (DAG) G consisting of variables (V) as nodes and re-
lationships (E) as edges and where the output of the node
is a function of its parents and an exogenous noise term.
A joint distribution over all variables underlies the SCM
which encodes their dependencies.

In computer vision, knowledge of the imaging domain
and vision task provides a means for constructing such
SCMs. While full knowledge of V , E , and distributional
information is generally not possible, plausible SCMs of
the data generating process may still be constructed. These
SCMs encode expert knowledge and assumptions which
can be verified through observational data. Alternatively,
in simulated data, as in the case of CLEVR, we have full
knowledge of the DGP including access to all variables and
their underlying distributions. Critically, our framework al-
lows us to leverage this access to fully specify arbitrary
graphical causal models of the DGP and then generate data
in accordance with those models and their underlying dis-
tributions.

3.2. Robustness

To date, the definition of robustness in computer vision
has assumed many forms [14] including (but not limited
to) adversarial or worst-case behavior, out-of-distribution
performance, and domain generalization. We aim to unify
many of these interpretations via a causal framework.

First, we make a key distinction: the SCM of the data
generating process describes our a priori beliefs about the
true data distribution, independent of any sampling of the
data. This provides a frame of reference for specifying
robustness conditions such as when image corruptions are
rare, due to distribution shift, or out-of-distribution. When
evaluating robustness, we rely on this distinction in order to
verify that the sampled training and evaluation datasets are
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consistent with our assumptions about the true underlying
DGP.

Formally, let G = (V, E) be the structural causal model
of a data generating process. In the case of natural images,
the nodes V = {vi} represent variables such as the concepts
of interest, distractor concepts, environmental conditions,
and sensor properties. The model G induces a joint distri-
bution pG({vi}) over all variables V where p(v1, . . . , vi) =
Πj≤ip(vj |paj) where paj are the parents of j in G.

We consider common perspectives of robustness condi-
tions in the context of structural causal models as follows.

• Distribution shift - Any shift in the marginal or con-
ditional distributions of nodes in V .

• Out-of-distribution (OOD) - The case when test con-
cepts or image conditions are not in the support of
pG({vi}). This can be viewed as a special and extreme
case of distribution shift.

• Long-tail robustness - Samples drawn from the DGP
which are rare relative to the joint, marginal, and/or
conditional distributions.

• Adversarial - Direct image manipulation performed
via intervention (i.e., do(X = x + δ) where do(·)
represents setting the value of X independent of its
parents and δ represents the adversarial perturbation
added to the clean image)

This framework naturally allows for precise definition of
the known/assumed robustness conditions as they relate
to specific nodes of the DGP, which is in contrast to
many common approaches which paint robustness in broad
strokes. Conventional robustness evaluations are still in-
cluded as a special case (i.e., IID corruptions assumed to be
OOD) while more general evaluations may be implemented
via soft/hard interventions on any subset of nodes in the
SCM/DAG. These interventions measure the effects of spe-
cific types of corruptions on the image generating process
by manipulating node values/distributions (independent of
their parents) while maintaining downstream causal rela-
tionships.

3.3. SCM of the Corruption Generating Process

For studying the robustness of OC methods, we consider
the case where image scenes composed of a finite set of ob-
jects are corrupted according to various imaging conditions.
Objects and scene geometry are first sampled independent
of imaging conditions so that we can focus our attention on
modeling the corruption generation process. We define an
SCM/DAG G = (C, E) where each ci applies a corruption
to the already-constructed scene and edges eij indicate de-
pendencies between corruption types.

For each corruption, we associate one (or more) severity
parameter γi such that for any image x, corruption c, and

similarity metric m(x, c(x; γ)), we observe greater image
degradation as γ increases:

γi > γj ⇒ m(x, c(x; γi)) < m(x, c(x; γj))

c(x; γ = 0) = x

Severity parameters are sampled from the causal model
such that γi = fi(γpai

, ϵi) where the causal mechanism fi
is a function of γpai

, the severity parameters for the parents
of node i, and ϵi, a noise term.

3.4. Generating RobustCLEVR

The RobustCLEVR framework supports the definition
of arbitrary SCMs/DAGs which capture various structural
relationships and distributional assumptions regarding the
data generating process and corresponding image corrup-
tions. Image corruptions are implemented via Blender
workflows or “recipes” and are typically defined by one or a
few corruption parameters (i.e., the γi from Sec. 3.3). While
arbitrary corruption recipes may be defined using Blender
to achieve a range of photorealistic effects, we imple-
mented Gaussian blur, defocus blur, displacement/motion
blur, gamma, clouds, white noise, glare, and lens distortion.

For each image, the initial set of objects, their materials,
and their placement in the scene are first sampled according
to [24]. We then sample corruption parameters from the
distribution defined by the SCM/DAG. Using the Blender
Python API, we apply the corruptions (given their sampled
parameters) to the scene according to the ordering specified
by the DAG.

Our framework evaluates robustness in two novel ways.
(1) Specification of the SCM/DAG allows for the genera-
tion of a wide range of unseen distortions that may result
from complex interdependencies/relationships between cor-
ruptions. (2) Unlike prior works which consider corruption
severity only at discrete and heuristic levels, samples from
a DGP defined in our framework have corruption severities
which vary continuously and consistent with the underly-
ing distribution. Crucially, (1) and (2) enable better align-
ment with real world conditions where types of image cor-
ruptions rarely occur in pure isolation and their impact on
image quality is continuously varying.

4. Experiments and Results
Baseline Algorithms We evaluate pixel- and glimpse-

based OC algorithms for all experiments. For pixel-
based methods we evaluate EfficientMORL [16], GENE-
SISv2 [17], and IODINE [19]. For glimpse-based methods,
GNM [23], SPACE [34], and SPAIR [8] are evaluated. With
the exception of Experiment 4 (Sec. 4.4), all models were
trained on the public CLEVR training set and evaluated on
the appropriate RobustCLEVR variants. We use code for
baseline algorithms originally provided by [27].
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Table 1. Mean Intersection over Union by model for IID-sampled corruptions. Rows within groups correspond to whether the corruption
severity is sampled uniformly. Highlighted cells indicate the best performance in that column.

mIoU
Model Severity Blur Clouds Defocus Gamma Lens Distortion Motion Blur Noise Clean

GENESISv2 Non-uniform 38.67 ±0.31 35.70 ±0.36 39.04 ±0.31 28.86 ±0.39 18.64 ±0.25 22.13 ±0.35 39.25 ±0.31 38.94 ±0.31
Uniform 39.24 ±0.31 38.35 ±0.32 38.93 ±0.31 26.01 ±0.40 26.27 ±0.28 30.27 ±0.33 39.54 ±0.31 39.00 ±0.31

GNM Non-uniform 52.77 ±0.58 29.98 ±0.77 58.41 ±0.52 51.75 ±0.75 27.13 ±0.52 24.88 ±0.65 56.71 ±0.53 61.32 ±0.50
Uniform 56.38 ±0.52 35.37 ±0.72 54.47 ±0.54 45.50 ±0.76 43.14 ±0.50 40.08 ±0.63 58.01 ±0.51 61.01 ±0.50

IODINE Non-uniform 63.75 ±0.45 32.83 ±0.96 66.60 ±0.42 27.84 ±0.77 26.83 ±0.46 30.78 ±0.64 65.84 ±0.45 66.20 ±0.40
Uniform 65.77 ±0.42 39.51 ±0.94 64.16 ±0.43 22.78 ±0.70 42.11 ±0.47 46.14 ±0.61 67.13 ±0.42 66.24 ±0.40

SPACE Non-uniform 42.98 ±0.69 31.85 ±0.70 49.54 ±0.63 45.26 ±0.70 17.28 ±0.40 19.51 ±0.53 49.23 ±0.63 51.09 ±0.64
Uniform 48.37 ±0.62 37.65 ±0.67 45.37 ±0.63 42.95 ±0.72 28.36 ±0.48 30.10 ±0.62 49.85 ±0.63 50.95 ±0.63

SPAIR Non-uniform 69.74 ±0.56 49.04 ±0.86 71.86 ±0.56 30.85 ±0.91 23.60 ±0.49 31.19 ±0.68 71.13 ±0.57 72.99 ±0.57
Uniform 71.22 ±0.55 57.88 ±0.67 69.92 ±0.54 25.16 ±0.82 39.60 ±0.58 46.99 ±0.68 72.13 ±0.56 73.04 ±0.56

eMORL Non-uniform 18.05 ±0.24 14.23 ±0.24 18.47 ±0.25 14.62 ±0.22 12.05 ±0.17 12.47 ±0.19 17.86 ±0.24 18.54 ±0.25
Uniform 20.42 ±0.34 20.60 ±0.29 20.04 ±0.34 15.46 ±0.23 15.31 ±0.24 16.63 ±0.29 20.01 ±0.32 20.67 ±0.34

Table 2. Mean Squared Error (MSE) by model for corruptions sampled IID. Lower MSE indicates better recovery of the original clean
image. Highlighted cells indicate the best performance in that column.

MSE
Model Severity Blur Clouds Defocus Gamma Lens Distortion Motion Blur Noise Clean

GENESISv2 Non-uniform 58.60 ±2.06 193.36 ±6.33 38.19 ±1.03 216.07 ±7.13 599.75 ±11.79 402.55 ±9.64 38.10 ±1.06 26.62 ±0.68
Uniform 40.22 ±1.13 131.23 ±3.88 50.49 ±1.55 259.92 ±6.41 324.83 ±7.27 230.88 ±6.14 31.35 ±0.79 26.80 ±0.68

GNM Non-uniform 117.60 ±2.63 288.40 ±7.31 96.39 ±1.93 875.12 ±36.45 598.87 ±12.20 390.67 ±8.81 103.53 ±2.08 87.10 ±1.79
Uniform 100.12 ±2.03 230.11 ±5.60 107.94 ±2.23 1182.75 ±36.29 319.91 ±7.05 246.39 ±5.55 95.93 ±1.92 87.42 ±1.78

IODINE Non-uniform 76.52 ±2.16 455.67 ±13.47 58.05 ±1.51 1720.36 ±55.11 592.79 ±12.05 382.55 ±8.47 88.62 ±2.58 49.76 ±1.36
Uniform 60.74 ±1.55 381.64 ±12.13 69.67 ±1.81 2246.86 ±56.38 318.31 ±7.05 229.03 ±5.62 66.78 ±1.59 50.05 ±1.37

SPACE Non-uniform 98.27 ±2.36 325.26 ±10.11 76.14 ±1.59 788.30 ±19.61 591.01 ±12.12 367.83 ±8.29 89.43 ±1.88 62.83 ±1.33
Uniform 80.95 ±1.74 221.29 ±5.85 90.13 ±2.04 950.58 ±19.44 319.09 ±7.00 220.79 ±5.19 78.04 ±1.59 63.13 ±1.36

SPAIR Non-uniform 81.14 ±2.16 770.07 ±32.68 63.16 ±1.55 1797.57 ±59.94 623.68 ±12.88 408.85 ±9.15 90.24 ±2.48 53.18 ±1.41
Uniform 66.23 ±1.64 381.76 ±11.76 74.88 ±1.87 2377.58 ±61.43 334.74 ±7.39 247.47 ±6.13 69.51 ±1.68 53.60 ±1.43

eMORL Non-uniform 62.58 ±2.04 1044.46 ±51.85 42.03 ±1.09 2014.28 ±58.91 609.37 ±12.68 371.51 ±8.61 85.20 ±2.92 32.11 ±0.84
Uniform 46.85 ±1.29 455.46 ±14.41 58.75 ±1.70 2662.18 ±63.08 310.45 ±6.91 211.35 ±5.40 51.65 ±1.24 31.78 ±0.91

Metrics Consistent with prior work, we report perfor-
mance on mean Intersection over Union (mIoU) and Mean
Squared Error (MSE). The mIoU metric measure the abil-
ity of the model to locate and isolate individual objects
in the scene (i.e., object recovery) while MSE measures
reconstruction quality (i.e., image recovery). Metrics are
computed relative to the uncorrupted images and the corre-
sponding masks. For each baseline in Experiments 1-3, we
train a set of three models corresponding to different ran-
dom seeds. Due to significant variability in mIoU, we report
metrics for the model+seed with the highest clean mIoU and
obtain confidence intervals using 1000 bootstrap samples of
predictions for each corruption. These results represent an
upper bound on performance.

Dataset variants In each experiment, a test set is gener-
ated consisting of 10k distinct scenes. For each scene, cor-
ruptions are rendered according to the parameters and or-
dering determined by the associated causal model. For eight
corruption types and 10k scenes, this yields 80k images for
evaluation per experiment. Within each scene object prop-
erties including type, color, material, scale, and placement
are all randomized according to the original CLEVR dataset
described in [24].

4.1. Experiment 1: Independent corruptions, uni-
form severity

We first generate a RobustCLEVR variant where the
causal model produces IID corruptions (where corruption
parameters γ are sampled uniformly - See Appendix for
distribution details). This corresponds to the conventional
corruption evaluations where corruptions are OOD and in-
dependent with severity uniformly distributed. Results of
evaluating OC methods on this data are found in Tables 1
and 2

The results indicate that the ability to recover underlying
objects is largely tied to the distribution of corruption sever-
ity across the different corruption types. Figure 4 shows
how mIoU differs as a function of severity for each algo-
rithm. For instance, for the cloud corruption, we see that
SPAIR and IODINE report similar mIoU at low severity but
SPAIR’s performance degrades more gracefuly as severity
increases.

4.2. Experiment 2: Independent corruptions, non-
uniform severity

We next examine the impact of independent corruptions
with non-uniform severity. A similar RobustCLEVR vari-
ant is generated with the same DAG as Experiment 1 but
where the corruption parameter(s) for each node are sam-
pled from non-uniform distributions. Since for most pa-
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(a) Blur corruption (b) Cloud corruption

Figure 4. Object recovery (mIoU) as a function of normalized severity. The severity is calculated by normalizing the sampled corruption
parameter distribution to the interval [0, 1] (with each panel normalized independently). For each corruption (panels (a), (b)), severity is
sampled (left) uniformly and (right) non-uniformly.

Table 3. Mean Intersection over Union (mIoU) by model for corruptions sampled non-IID. Corruption order in the table from left to right
reflects the sampling order in the causal model. Higher mIoU indicates better recovery of the original clean image. Highlighted cells
indicate the best performance in that column.

mIoU
Model Severity Clouds Blur Gamma Lens Distortion Motion Blur Defocus Noise Clean

GENESISv2 Non-uniform 38.75 ±0.30 38.88 ±0.30 36.88 ±0.31 34.32 ±0.31 31.79 ±0.29 31.80 ±0.29 32.28 ±0.29 38.86 ±0.30
Uniform 38.18 ±0.32 38.33 ±0.32 34.71 ±0.34 31.98 ±0.31 29.85 ±0.29 29.88 ±0.29 30.61 ±0.28 38.90 ±0.31

GNM Non-uniform 55.02 ±0.73 52.95 ±0.71 55.54 ±0.70 53.71 ±0.67 48.78 ±0.65 48.42 ±0.65 47.13 ±0.66 61.32 ±0.50
Uniform 53.87 ±0.77 50.81 ±0.74 53.29 ±0.75 51.18 ±0.71 47.04 ±0.69 45.56 ±0.67 44.68 ±0.69 60.99 ±0.51

IODINE Non-uniform 59.87 ±0.74 59.56 ±0.75 49.88 ±0.85 46.49 ±0.78 41.34 ±0.66 41.16 ±0.67 41.75 ±0.69 66.56 ±0.41
Uniform 58.51 ±0.81 58.06 ±0.81 39.41 ±0.91 36.57 ±0.81 32.59 ±0.66 31.85 ±0.66 32.85 ±0.69 66.40 ±0.40

SPACE Non-uniform 47.92 ±0.67 46.76 ±0.66 47.69 ±0.66 42.95 ±0.62 37.56 ±0.61 37.36 ±0.60 36.31 ±0.60 51.31 ±0.63
Uniform 46.49 ±0.72 44.78 ±0.70 45.76 ±0.69 40.89 ±0.64 36.51 ±0.63 35.17 ±0.61 33.74 ±0.60 51.07 ±0.62

SPAIR Non-uniform 69.60 ±0.66 68.73 ±0.65 58.70 ±0.89 53.24 ±0.82 46.53 ±0.69 46.37 ±0.70 47.14 ±0.69 73.28 ±0.57
Uniform 67.35 ±0.76 66.13 ±0.74 46.83 ±1.01 41.86 ±0.87 36.70 ±0.70 36.12 ±0.71 36.99 ±0.72 72.93 ±0.57

eMORL Non-uniform 17.98 ±0.25 17.92 ±0.25 17.12 ±0.25 16.46 ±0.24 15.61 ±0.22 15.54 ±0.22 15.39 ±0.22 18.60 ±0.26
Uniform 17.59 ±0.26 17.48 ±0.26 15.78 ±0.24 15.22 ±0.22 14.57 ±0.21 14.33 ±0.21 14.19 ±0.21 18.60 ±0.25

Table 4. Mean Squared Error (MSE) by model for corruptions sampled non-IID. Corruption order in the table from left to right reflects the
sampling order in the causal model. Lower MSE indicates better recovery of the original clean image. Highlighted cells indicate the best
performance in that column.

MSE
Model Severity Clouds Blur Gamma Lens Distortion Motion Blur Defocus Noise Clean

GENESISv2 Non-uniform 52.49 ±2.70 57.66 ±2.75 80.43 ±3.15 124.71 ±3.60 171.34 ±3.90 172.97 ±3.91 166.59 ±3.90 26.62 ±0.69
Uniform 64.80 ±4.12 73.34 ±4.08 120.74 ±4.24 168.43 ±4.27 207.51 ±4.33 212.16 ±4.42 200.17 ±4.53 26.62 ±0.67

GNM Non-uniform 122.31 ±4.03 127.52 ±4.04 190.73 ±9.72 217.21 ±9.77 252.33 ±9.53 251.75 ±9.41 235.50 ±7.98 87.21 ±1.82
Uniform 133.39 ±5.09 141.30 ±5.04 289.28 ±12.18 317.00 ±11.81 346.80 ±11.37 346.07 ±11.25 302.66 ±9.02 87.25 ±1.77

IODINE Non-uniform 131.41 ±8.26 137.09 ±8.27 382.47 ±22.97 417.21 ±22.81 457.00 ±22.06 458.36 ±22.04 419.13 ±19.75 50.02 ±1.39
Uniform 143.15 ±9.34 151.12 ±9.35 683.71 ±30.12 720.13 ±29.58 752.83 ±28.77 761.58 ±28.64 673.68 ±24.93 49.79 ±1.33

SPACE Non-uniform 101.92 ±4.10 109.77 ±4.11 239.08 ±10.77 273.42 ±10.78 309.49 ±10.21 309.46 ±10.14 294.86 ±9.41 62.77 ±1.35
Uniform 123.10 ±6.43 134.88 ±6.36 401.79 ±14.03 439.68 ±13.84 469.27 ±13.06 468.05 ±12.73 440.53 ±11.80 63.13 ±1.35

SPAIR Non-uniform 134.54 ±8.15 140.47 ±8.12 371.67 ±22.71 409.36 ±22.45 454.70 ±21.89 455.62 ±21.92 419.69 ±19.69 53.34 ±1.40
Uniform 216.09 ±18.82 224.80 ±18.73 721.41 ±31.21 759.17 ±30.44 797.32 ±29.55 803.72 ±29.72 726.93 ±27.35 53.23 ±1.38

eMORL Non-uniform 147.29 ±11.24 153.64 ±11.29 469.62 ±26.98 503.31 ±26.72 545.94 ±26.04 544.75 ±25.84 502.95 ±23.45 32.26 ±0.84
Uniform 258.83 ±27.74 268.29 ±27.84 926.02 ±39.64 959.81 ±39.23 993.88 ±38.18 991.45 ±37.84 904.73 ±36.42 32.27 ±0.85

rameters, monotonically increasing/decreasing the value of
a corruption parameter corresponds to an increase in the
severity of the corruption, the uniform distribution from Ex-
periment 4.1 is replaced with a Half-Normal distribution.
This trades off a bias towards low-severity cases with the
possibility of sampling higher severity cases from the dis-
tribution tails. Images from this variant are visualized in
Figure 2. Results of evaluating OC methods on this data are
found in Tables 1 and 2.

Results show that long-tailed severity distributions lead
to measurable changes in absolute and relative values of
mIoU across models. For instance, performance generally

improves for the Gamma corruption when the severity dis-
tribution shifts from uniform to non-uniform, whereas Lens
Distortion or Motion Blur exhibit lower performance as a
result of the long-tail. Furthermore, Figure 4 also illustrates
non-linear relationships between performance and severity.

4.3. Experiment 3: Dependent corruptions

An important benefit of the causal graph relative to the
current standard robustness evaluation approach is the abil-
ity to describe causal relationships known or assumed to
exist in the image domain of interest. As such, we next con-
sider a more challenging RobustCLEVR variant where the
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underlying causal model follows a chain structure. Corrup-
tions are linked sequentially and sampled corruption param-
eters are a function of the parameter values of their imme-
diate parent.

As in Experiment 4.2, we also consider the impact of
distributional assumptions on the measured robustness. We
create an additional variant of the chain model with non-
uniform severity distributions and evaluate the performance
of OC methods on the data generated from this model as
well. While the causal model variants in this experiment no
longer produce IID corruptions as in Experiment 1 and 2,
the evaluation is still considered OOD since all models were
trained on only clean CLEVR data. Results for Experiment
3 are found in Tables 3 and 4.

While the chain DAG structure suggests that the total im-
age corruption increases as images are sampled in sequence
along the DAG, the causal mechanisms and distributions at
each node also dictate how each corruption severity is sam-
pled. For instance, this may lead to larger differences in
performance from one corruption to the next in the model
(e.g., Blur → Gamma vs. Defocus → Noise).

4.4. Experiment 4: Long-tail Robustness

Lastly, many real world scenarios allow for the possibil-
ity that corrupted images are in-distribution (ID) but occur
infrequently in the training set (either due to the rarity of the
corruption in reality or due to sampling bias such as prefer-
ences by annotators for labeling clean images). We gen-
erate a RobustCLEVR variant which treats the corruptions
as in-distribution but occurring with low probability. As in
Section 4.2, the causal model DAG is specified as a tree of
depth 1 whereby all corruptions are mutually independent
and severities are non-uniformly distributed (see Appendix
for details). For each OC method, we train two models, one
on only clean data and one on data including corruptions
with pcorr = 0.01, pclean = 1 −

∑
i pcorri . Each training

dataset consists of 50k unique scenes.
All models are evaluated on a separate corrupted test set

sampled from the same causal model used for training as
well as the test set from Experiment 1 which contained IID
corruptions with uniform severity. These test sets corre-
spond to the long-tail robustness and distribution shift cases
described in Section 3.2. Results are shown in Table 5.

With all models (excluding SPACE), the inclusion of cor-
rupted samples in the training set appears to generally de-
crease robustness for the corresponding model. For models
like GNM and GENESISv2, the performance differences
are small whereas models like IODINE and eMORL often
differ by > 10% when corruptions are included/excluded
from the training set. These trends hold for evaluation on
both the uniform and non-uniform distributions for sever-
ity. This is discussed in more detail in Section 5.

5. Discussion
The experiments in Section 4 suggest that OC methods

are not immune to image corruptions. While it is not sur-
prising that performance degradation would occur in these
cases, the sensitivity to low-severity corruptions suggests
that OC models are not inherently more robust than non-
OC techniques. We attribute much of this finding to the
use of image reconstruction as a common component of the
learning objective for these models. For generative meth-
ods, this is due to the log likelihood term in the ELBO ob-
jective while discriminative methods like Slot Attention use
MSE directly. Consistent with results on CLEVRTex [27],
models which produce lower MSE (i.e., better image recov-
ery) also tend to produce lower mIoU (i.e., object recov-
ery). The use of image reconstruction by OC models during
learning may encourage the latent representations to encode
nuisance or appearance factors not critical to scene parsing.
The result of this learning strategy is poor object recovery
when those same nuisance factors are modified or corrupted
as in a robustness scenario.

We also find that the structure and corresponding distri-
bution of the underlying data generating process matters in
assessing model robustness. We observe measurable per-
formance differences as a result of changing causal and dis-
tributional assumptions. For instance, considering two top
models from Experiments 1-3, GNM and SPAIR, we ob-
serve differences in relative mIoU performance on the same
set of corruptions drawn from the IID (Table 1) and non-
IID causal models (Table 3). While we expect the mIoU to
change for each model as a result of the distribution shift,
the disparity in mIoU between the two models for any given
corruption is not constant between the IID and non-IID sce-
narios. When causal models are defined to approximate spe-
cific real-world distributions, measuring such performance
differences may be critical to understanding and predicting
model behavior in the wild.

Lastly, the results of Experiment 4 indicate that robust-
ness is not a purely OOD problem. The inclusion of cor-
rupted data as rare samples in the training distribution has
a negative impact on robustness for many of the models.
This warrants further research as it contradicts existing find-
ings for robustness in supervised, discriminative models
where data augmentation with heavy corruption or other im-
age transformations yields significant gains in robustness to
common corruptions [7, 9, 21, 33, 41, 49, 51]. One possi-
ble explanation is that the corrupted images (while rare in
training), simply provide less informative signal about the
scene geometry and object properties. Alternatively, when
the training sample size is fixed, the inclusion of these cor-
rupted images also means that fewer clean images are also
available for learning. When corrupted images are in dis-
tribution, OC models with image reconstruction objectives
may be increasingly incentivized to reconstruct low level
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Table 5. Comparison of model performance when corruptions with non-uniform severity are in-distribution (clean + corrupt) and out of
distribution (clean only). Highlighted cells indicate the best performance in that column.

mIoU
Model Train Distribution Severity Blur Clouds Defocus Motion Blur Gamma Lens Distortion Noise Clean

GENESISv2

clean Non-uniform 0.218 0.201 0.224 0.137 0.204 0.130 0.224 0.225
clean + corrupt Non-uniform 0.191 0.185 0.193 0.147 0.196 0.121 0.189 0.194
clean Uniform 0.224 0.217 0.221 0.179 0.200 0.167 0.226 0.225
clean + corrupt Uniform 0.193 0.188 0.192 0.167 0.196 0.153 0.192 0.195

GNM

clean Non-uniform 0.466 0.243 0.524 0.226 0.493 0.247 0.489 0.550
clean + corrupt Non-uniform 0.456 0.231 0.515 0.221 0.367 0.246 0.487 0.543
clean Uniform 0.503 0.279 0.485 0.359 0.423 0.390 0.512 0.548
clean + corrupt Uniform 0.494 0.262 0.475 0.352 0.297 0.387 0.504 0.540

IODINE

clean Non-uniform 0.627 0.303 0.651 0.310 0.275 0.262 0.628 0.647
clean + corrupt Non-uniform 0.274 0.210 0.284 0.180 0.290 0.155 0.277 0.288
clean Uniform 0.645 0.356 0.635 0.463 0.230 0.412 0.649 0.649
clean + corrupt Uniform 0.283 0.233 0.279 0.228 0.275 0.207 0.281 0.288

SPACE

clean Non-uniform 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123
clean + corrupt Non-uniform 0.664 0.386 0.717 0.273 0.617 0.255 0.708 0.732
clean Uniform 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123
clean + corrupt Uniform 0.704 0.472 0.683 0.463 0.554 0.434 0.716 0.730

SPAIR

clean Non-uniform 0.685 0.475 0.706 0.309 0.290 0.232 0.693 0.716
clean + corrupt Non-uniform 0.682 0.578 0.700 0.315 0.624 0.230 0.697 0.708
clean Uniform 0.701 0.559 0.688 0.463 0.241 0.389 0.705 0.716
clean + corrupt Uniform 0.694 0.640 0.682 0.463 0.615 0.388 0.703 0.707

eMORL

clean Non-uniform 0.397 0.318 0.406 0.226 0.204 0.205 0.421 0.411
clean + corrupt Non-uniform 0.192 0.170 0.196 0.130 0.219 0.120 0.184 0.197
clean Uniform 0.405 0.384 0.400 0.313 0.181 0.283 0.420 0.410
clean + corrupt Uniform 0.197 0.179 0.195 0.161 0.204 0.143 0.185 0.199

corruptions which have no bearing on object recovery. So
while OC methods aim to represent objects explicitly with
less reliance on textures and other spurious image patterns,
the reconstruction objective may unintentionally impose a
barrier to success.

Limitations We note several limitations of this work to be
addressed in future research. First, defining causal models
of the image/corruption generating process is not trivial and
we make no claim that our RobustCLEVR corruption vari-
ants model the “true” causal mechanisms or distributions
for real-world image corruptions. We also acknowledge that
the full space of possible causal model graphs, mechanisms,
and distributions is intractable to evaluate. Nonetheless, we
evaluate two contrasting causal models which are sufficient
to successfully demonstrate that OC model performance is
highly dependent on the SCM and underlying data distribu-
tion. We also did not explore causal dependencies between
properties of the scene and the occurrence of corruptions
(e.g., the presence of dark settings only for specific objects).
However, our variants instead intend to capture a wide range
of image distortions independent of the scene composition
with the purpose of more broadly testing OC methods be-
yond the conventional IID case. Further, the corruptions
in RobustCLEVR are applied late in the rendering pipeline
which limits their overall realism. That said, CLEVR-like
scenes are considerably simpler than real world data and

the lack of robustness on RobustCLEVR images provides
a useful check prior to testing on more complex scenes.
Lastly, metrics are computed relative to ground truth image
masks and clean images, yet in severe cases, corruptions
will prevent OC methods from fully recovering the original
objects/image. While this may make it difficult to estimate
the true upper bound on performance, this does not prevent
relative comparisons between models.

6. Conclusion

In light of recent advances in object-centric learning, we
present the first benchmark dataset for evaluating robust-
ness to image corruptions. To thoroughly test robustness,
we adopt a causal model framework whereby assumptions
about the corruption generating process can be explicitly
implemented and compared. We evaluate a set of state-
of-the-art OC methods on data generated from causal mod-
els encoding various assumptions about the corruption gen-
erating process. We find that OC models are not robust
to corruptions and further demonstrate through our causal
model framework that distributional assumptions matter
when comparing model robustness. While our results indi-
cate that OC models are not implicitly robust to a range of
natural image corruptions, object-centric learning still holds
great promise for achieving robust models in the future.
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