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Abstract

Generative diffusion models, including Stable Diffusion
and Midjourney, can generate visually appealing, diverse,
and high-resolution images for various applications. These
models are trained on billions of internet-sourced images,
raising significant concerns about the potential unauthorized
use of copyright-protected images. In this paper, we examine
whether it is possible to determine if a specific image was
used in the training set, a problem known in the cyberse-
curity community as a membership inference attack. Our
focus is on Stable Diffusion, and we address the challenge of
designing a fair evaluation framework to answer this mem-
bership question. We propose a new dataset to establish a
fair evaluation setup and apply it to Stable Diffusion, also
applicable to other generative models. With the proposed
dataset, we execute membership attacks (both known and
newly introduced). Our research reveals that previously pro-
posed evaluation setups do not provide a full understanding
of the effectiveness of membership inference attacks. We
conclude that the membership inference attack remains a sig-
nificant challenge for large diffusion models (often deployed
as black-box systems), indicating that related privacy and
copyright issues will persist in the foreseeable future.

1. Introduction
In recent years, there have been rapid advancements in

generative modeling techniques within the field of deep learn-
ing. Among these, generative diffusion models, particularly
those utilising the Stable Diffusion framework, have gained
prominence due to their capability to generate high-quality,
diverse, and intricate samples. These models hold consider-
able potential for numerous applications, such as data aug-
mentation, art creation, and design optimization. However,
as these models become more widely adopted, addressing
the privacy concerns linked to their use is essential. Re-
cently, Getty Images filed a lawsuit against Stability AI,
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Figure 1. Pitfalls in the evaluation setting can lead to incor-
rect conclusions on the effectiveness of membership attacks
against large diffusion models such as Stable Diffusion. An ex-
emplary misleading setup involves finetuning the model on a very
small dataset with a low internal variance (such as the POKEMON
dataset), which gives a remarkable performance for the selected
attacks. However, for the proposed new dataset we observe a drastic
performance drop. Our setup does not modify the state-of-the-art
Stable Diffusion model but focuses on creating fair membership
inference evaluation, possibly close to a real-life usage of the mem-
bership attacks.

accusing it of unlawfully copying and processing millions of
copyright-protected images [21]. This lawsuit comes on the
heels of a separate case Getty lodged against Stability in the
United Kingdom, as well as a related class-action lawsuit
that California-based artists filed against Stability and other
emerging companies in the generative AI sector [22].

One critical issue that arises in this context is determining
whether a specific data point was used during the training
process of a model. Extracting this information from a model
- known as membership inference attack - can be crucial in
cases where copyrighted or sensitive data are used without
permission, leading to potential legal issues. Although mem-
bership inference attacks have been extensively studied in
the context of discriminative models [3, 30, 35, 36], the in-
vestigation of their effectiveness against generative diffusion
models is still in its infancy.
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In this paper, we contribute to the understanding of mem-
bership inference attacks in large diffusion models, particu-
larly Stable Diffusion. We provide insights into these models,
their susceptibility to different membership attacks, and the
challenges of their evaluation due to the lack of distinct train-
ing and test data. To address these issues, we propose a new
dataset for fair and robust evaluation setup. We conduct at-
tacks against Stable Diffusion and assess their effectiveness.
Our findings underscore the complexity of data membership
inference in large diffusion models. Our main contributions
can be summarized as follows:

• We identify the pitfalls of the existing evaluation of
membership inference attacks for large diffusion mod-
els.

• We provide a new dataset1 along with a construction
methodology. It allows us to have a more robust eval-
uation setup for membership inference attacks on the
state-of-the-art Stable Diffusion model.

• With the proposed dataset, we thoroughly evaluate a
set of membership inference attacks, which are not pro-
hibitively expensive against Stable Diffusion, including
the loss threshold attack and its variants. We also intro-
duce new attacks that focus on modifying the diffusion
process to extract more information about membership
from the model.

2. Background
2.1. Diffusion models

Over the past two years, diffusion models [31] have
emerged as a novel class of generative models, overshad-
owing Generative Adversarial Networks [8] by achieving
state-of-the-art results on numerous benchmarks [5] and be-
coming the core technology behind widely popular image
generators such as Stablxe Diffusion [24], Midjourney [32],
Runway [24], Imagen [25] and DALL-E 2 [19, 20].

In essence, Denoising Diffusion Probabilistic Models [10]
are probabilistic generative models trained by progressively
adding noise to the data and then learning to reverse this
process.

During training, a noised image xt ←
√
atx+

√
1− atϵ

is produced by adding Gaussian noise ϵ ∼ N (0, I) to a
clean image x, with a decaying parameter at ∈ [0, 1] such
that a0 = 1 and aT = 0. The diffusion model fθ is trained
to remove the noise ϵ and recover the original image x by
predicting the added noise. This is achieved by stochastically
minimizing the objective 1

N

∑
i Et,ϵL(xi, t, ϵ; fθ), where

L(x, t, ϵ; fθ) = ∥ϵ− fθ(xt, t)∥22 (1)

1https : / / drive . google . com / drive / folders /
17lRvzW4uXDoCf1v_sIiaMnKGIARVunNU

Despite being trained with a simple denoising objective,
diffusion models have shown the ability to generate high-
quality images. The process involves sampling a random
vector xT from a normal distribution N (0, I) and then ap-
plying the diffusion model fθ to remove the noise from this
random image. However, instead of removing all noise at
once, the model gradually removes part of the noise itera-
tively in each generation step.

The final image x0 is obtained from xT using a noise
schedule σt (dependent on at), where the model iteratively
applies the rule xt−1 = fθ(xt, t) + σtN (0, I) to σ1 = 0.
The effectiveness of this process is based on the fact that the
diffusion model was trained to denoise images with varying
levels of noise. Applying this iterative generation process
with large-scale diffusion models yields results that closely
resemble real images.

Certain diffusion models are designed to generate specific
types of images by incorporating conditional inputs in addi-
tion to the noised image. Class-conditional diffusion models
utilise a class label, such as "car" or "plane", to generate a
desired image class. Text-conditioned models extend this
concept by taking the text embedding of a prompt, such as "a
photograph of an astronaut riding a horse in space," which
is created by a pretrained language encoder like CLIP [18].

2.2. Stable Diffusion

Stable Diffusion is the largest and most popular open-
source diffusion model [24]. This model is an 890 million
parameter text-conditioned diffusion model trained on 2.3
billion images.

Diffusion models can achieve state-of-the-art synthesis
results on image data and other applications. However, the
optimisation of powerful diffusion models that operate di-
rectly in pixel space can consume hundreds of GPU days,
and inference can be expensive due to sequential evaluations.
To overcome this challenge, the authors of Stable Diffu-
sion [24] propose applying diffusion models in the latent
space of powerful pretrained autoencoders. This approach
allows for training and inference on limited computational re-
sources while retaining the quality and flexibility of diffusion
models.

Formally, given an image x, the encoder E encodes x
into a latent representation z = E(x), and the decoder D
reconstructs the image from the latent, giving x̃ = D(z) =
D(E(x)). To preprocess conditional information y from
various modalities (such as language prompts), the Stable
Diffusion framework introduces a domain-specific encoder
τθ that projects y to an intermediate representation. Over-
all, the Stable Diffusion model is trained by stochastically
minimizing the objective 1

N

∑
i Et,ϵL(zi, t, ϵ; fθ), where

L(z, t, ϵ; fθ) = ∥ϵ− fθ(zt, t, τθ(y)∥22 (2)

4861



3. Membership inference attack
Membership inference attack [30] answers the question

"was this example in the training set?". Currently, two
most common approaches are loss based attacks and shadow
models.

3.1. Loss based attacks

In principle, loss-based membership inference attacks are
based on the following simple observation [36]. A model
training minimises a loss function on a training set, hence we
expect the loss to be lower for training samples than for test
ones. In most cases, such methods treat the attacked model
a as white-box, assuming that the attacker has access to the
model, its source code and trained weights. This assumption
is often not met in practice, as API-based generative machine
learning services such as Midjourney [32] increase in pop-
ularity. In general, methods based solely on the analysis of
the loss of the model are less effective than methods utilising
shadow models [3, 4].

3.2. Shadow models

Membership inference attacks based on shadow models
involve creating multiple models that imitate the behaviour
of the target model, but whose training datasets are known
to the attacker. By studying the labelled inputs and outputs
of these shadow models, researchers can gain insight into
the target model’s behaviour and develop attacks that can ex-
ploit its vulnerabilities. For diffusion models [4] introduced
membership inference attacks called LiRA. This approach
involves training a collection of shadow models on random
subsets of the training dataset. Once the shadow models
have been trained, LiRA computes the loss for each example
under each shadow model. By analysing the distribution of
losses, LiRA can then determine whether a given example
belongs to the training dataset or not. Although shadow
models have proven to be a powerful tool in the development
of membership inference attacks, this approach has its own
disadvantages. Such methods are computationally very ex-
pensive, as they require the training of multiple copies of the
target model. In particular, for large diffusion models such
as Stable Diffusion, the cost of developing multiple shadow
models is in practice too high.

4. Attack Challenges and Pitfalls for Large Dif-
fusion Models

Lack of nonmembers To perform and evaluate a mem-
bership inference attack we need two sets: members and
nonmembers. Typically, member data samples are drawn
from the training set, whereas nonmembers from the test set.
Unfortunately, for the Stable Diffusion model, we cannot fol-
low this approach. The original Stable Diffusion model was
trained on the data from the LAION-2B EN dataset, a subset

of the LAION-5B [28]. Since the dataset is huge (more than
2 billion images) and was not divided into a test and training
set, nonmember samples are not easily available.

Shadow models cost As stated in Section 3.2 the shadow
models are computationally expensive. The method requires
training several dozens of models from scratch. For huge
models, such as Stable Diffusion, this approach is practi-
cally infeasible. In particular, the cost of training a single
Stable Diffusion model is estimated at 600,000$. More-
over, it would take 80.000 A100 GPU-hours to complete the
training.

Pitfall 1: Evaluation based on fine-tuning In [6] authors
propose to tackle the lack of nonmembers by fine-tuning the
Stable Diffusion on a dataset that was not used for training
the original model. However, it has been demonstrated that
fine-tuning the model can easily lead to overfitting [12]. As
shown in [4], better diffusion models are more vulnerable
to membership inference attacks: the quality of the gener-
ated samples is proportional to the success rate of the attack.
This is especially the case for models that overfit to the lim-
ited training data during fine-tuning [36], leading to inflated
performance and misleading conclusions.

Pitfall 2: Distribution mismatch between members
and nonmembers Another approach to dealing with the
absence of a natural nonmember dataset is to draw samples
from a dataset similar to the training data that was not actu-
ally used in the training. However, for a fair evaluation of
membership inference attacks, it is important that the mem-
bers and nonmembers share the same feature distribution. If
these two groups can be easily distinguished based on fea-
ture distribution mismatch, then there is a high risk that the
attack method will learn to distinguish between the features
of the two data groups [15] instead of the behaviour of the
model on these two sets.

5. The LAION-mi dataset
To address the absence of nonmembers samples for the

Stable Diffusion model we propose a new dataset consisting
of members and nonmembers called LAION-mi. This new
dataset aims to facilitate a realistic evaluation of membership
inference attacks against large diffusion models. We do not
fine-tune nor modify the Stable Diffusion model in any other
way, in order to avoid the first pitfall from Sec. 4. To
mitigate the second pitfall, we apply a sanitization process
on the member set. Figure 2 shows a general scheme of how
the LAION-mi dataset is constructed.

5.1. Sources of members and nonmembers sets in
LAION-mi

Members Stable Diffusion-v1.4 was trained on all data
points from the LAION Aesthetics v2 5+ dataset (see Ap-
pendix C for details), so all samples from this dataset can
serve as member candidates for our new dataset.
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Figure 2. A general scheme of constructing LAION-mi dataset.
First, members and nonmembers are sampled from LAION Aesthet-
ics v2 5+ and LAION-2B Multi Translated datasets, respectively.
Then, we remove nonmember that are duplicates of samples from
the member set. Finally, to ensure that the distribution of member
samples is indistinguishable from nonmembers distribution, we
execute an extensive sanitization algorithm on the member set.

Nonmembers To obtain the nonmembers set, we use
LAION-2B Multi Translated dataset [14]. This dataset is
created by LAION-5B authors from LAION-2B Multi, a
subset of LAION-5B, but unlike LAION-2B EN, LAION-
2B Multi consists of samples which descriptions are in other
languages (not English). LAION-2B Multi Translated is
obtained by translating these descriptions to English. Since
SD-v1.4 was fine-tuned using samples with an aesthetic
score above 5 (obtained by LAION-Aesthetics_Predictor
V2 [26]), to build our nonmembers set we also use samples
with aesthetic score above 5. The score is precomputed by
the LAION-2B Multi Translated dataset authors.

5.2. Adapting members and nonmembers sets to
ensure the validity of evaluation setting.

As mentioned before, for a fair evaluation of the member-
ship inference attack we should ensure that the underlying
data distribution is the same for the member and nonmember
samples. We solve it by introducing the adaptation step for
members and nonmembers subsets constituting LAION-mi
dataset. During the adaptation, we first deduplicate the non-
members set (Sec. 5.3) and then filter the member set using
sanitization process (Sec. 5.4). Finally, we obtain members
and nonmembers sets which have the same, indistinguishable
underlying distribution.

5.3. Deduplication

Member samples in the nonmembers source dataset
Duplicate samples are images present in a dataset more than
once. It has been shown [34] that LAION-2B EN contains ap-
proximately 30% duplicates when it comes to the image data.
We can expect that the whole LAION-5B contains samples,
which are present both in LAION-2B EN and LAION-2B
Multi Translated. These samples can potentially contaminate
LAION-mi nonmembers subset with members samples and
therefore compromise the fairness and correctness of our
solution. The following procedure aims to address this issue.

Solution In order to obtain the nonmembers set free of
contamination by members samples we perform two-step
deduplication. The first step aims to propose a set of dupli-
cate candidates for each nonmember sample. The second
step filters out nonmembers samples, which we suspect have
a duplicate in the members source dataset. We end up with
the clean nonmembers set.

Duplicate candidates We need to somehow obtain the
samples from the LAION-2B EN dataset which are the most
similar to the given sample from the nonmember source. We
achieve this by querying the Clip Retrieval Client [1]. This
service searches through the LAION-5B dataset and returns
the requested amount of samples that are the most similar
to the input image. In our approach, we obtain up to 40
duplicate candidates per nonmember sample. One important
limitation of this service is that it doesn’t distinguish between
subsets of LAION-5B. LAION-5B is split into LAION-2B
EN and LAION-2B Multi using the CLD3 [33] language
identifier on the captions of images. Because we care only
about the duplicates from the LAION-2B EN, we need to
check if the returned candidate is from this dataset. We use
CLD3 to check if the given candidate is from the LAION-2B
EN dataset. Only samples from the LAION-2B EN dataset
are considered duplicate candidates.

Duplicates detection and filtering When it comes to fil-
tering out the duplicates we propose the following approach:
we define the distance metric between the nonmember and
its duplicate candidate, and then if the distance is below
some threshold we decide that this sample has a duplicate
in the members set, effectively discarding it from the final
nonmember set.

Firstly, for each sample, we calculate the L2 distances
of CLIP image embeddings between the sample and all of
its duplicate candidates. Then the final duplicate candidate
for each sample is the one with the lowest L2 distance score.
We then end up with the approximately normal distribution
of L2 distances (see Fig. 3a).

We then pick the threshold below which we reject sam-
ples and mark them as duplicates. Our goal here is to filter
out as many duplicates as possible, to avoid contamination
of the nonmembers set with members samples. At the end
of this process, we have less than 1% of the duplicates by
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setting this threshold at 0.5, using the rule of three [13]. We
manually confirm it by sampling random 300 samples and
checking for the duplicates, without finding any. For the
threshold of 0.5 we reject approximately 75% of nonmem-
bers as having a duplicate in the members source dataset. It
is a really conservative approach, but as we show next, it is
necessary in order to achieve the cleanest nonmembers set
possible.

To further confirm that we pick the correct threshold we
perform a manual analysis of the duplicates ratio in different
L2 score intervals and show the results in Figure 3b. Since
our goal is to make the cleanest nonmembers dataset possible,
we pick a threshold of 0.5 to avoid duplicates.
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Figure 3. The distribution of the L2 distances between duplicate
candidates and the original images approximately follow a normal
distribution, with a mean around 0.4 (left). For increasing L2
threshold value the duplicates count decreases sharply, with the
interval [0.4, 0.5) containing approximately 8% duplicates and
92% non-duplicates.

5.4. Sanitization

Differences between sets As we have stated before, one
of the most important challenges of membership attack eval-
uation is ensuring that the member and nonmember samples
come from the most similar distribution possible, in our
case both images and their descriptions coming from these
subsets should be indistinguishable from each other. How-
ever, our source of nonmembers is obtained by translating
captions from LAION-2B Multi to English using machine
translation2. Therefore, we expect the distribution of cap-
tions’ CLIP [18] embeddings to be different for members
and nonmembers sets. We need to address this issue to not
fall into the second pitfall, which we line up in the Sec. 4.

Assessment approach In order to assess the magnitude
of this problem and the efficacy of our sanitization approach
we use three metrics. All are based on the CLIP embeddings
of the descriptions and images. The metrics are as follows:

• Fréchet Inception Distance (FID) [9]: in order to com-
pare the resulting metric we compute it for two cases:

2Facebook’s M2M100 1.2B model [7]

internal (between two random samples of 10k exam-
ples from the same set) and comparative (between 10k
random members and 10k random nonmembers). If the
difference between these two is significant, we assume
that there is a mismatch between distributions.

• Visual analysis of PCA 2D projection: we use PCA
decomposition on the embeddings to project them into
a 2D space using scikit-learn [2] implementation. The
mismatch in the underlying distributions should be in-
dicated by a mismatch of the distributions of the PCA
components of the projected embeddings.

• Classification: we train a binary classifier in order to dis-
tinguish between embeddings of the descriptions. High
accuracy indicates a significant difference between the
two sets.

Scale of the problem Our experiments confirm the seri-
ousness of the issue. Firstly, we observe that FID for the
comparative case is way greater than for any of the internal
cases, see Tab. 1. Secondly, visual analysis of embeddings
projected to 2D space using PCA, Fig. 4a) confirms our
concerns that these text embeddings are in fact different. Fi-
nally, a simple logistic regression model separates prompt
embeddings with a 90% accuracy.

Santization algorithm The goal of this process is to
create a member set that is as similar as possible to our
deduplicated nonmembers set.

Main intuition behind the sanitization algorithm (Alg.
1) is to train a set of binary classifiers to label samples as
members or nonmembers in an iterative fashion, and then
pick only the samples from one of these sets, for which all of
the models predict wrong label. In effect, at each iteration,
one of these sets becomes closer to the other one in terms of
the text embeddings distribution.

In general, we can use both members and nonmembers
sets to perform this classifier-based filtering. In our case, we
filter only the huge members set (LAION Aesthetics v2 5+

Table 1. FID comparison for 10k samples. For text data we calcu-
late FID for CLIP embeddings. To calculate FID for image data we
first resize images to 512x512 and then use Pytorch FID implemen-
tation [29]. To calculate internal FID we divide the dataset into 2
equal random subsets, each of 10k samples.

FID
DATA SUBSET TEXT IMAGES

MEMBERS INTERNAL - RANDOM 9.84 7.00
MEMBERS INTERNAL - SANITIZED 9.77 7.06
NONMEMBERS INTERNAL 9.73 7.01

COMPARATIVE - RANDOM 66.43 13.90
COMPARATIVE - SANITIZED 13.54 8.87
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(a) Prompts embeddings
before sanitization

(b) Prompts embeddings after
three iterations

(c) Image embeddings after
three iterations

Figure 4. Sanitization effect on prompts and image embeddings distribution of the members and nonmembers sets. Figure 4a shows
that there is a significant difference between prompts embeddings of nonmembers and members samples before the sanitization process.
After three iterations of our sanitization Algorithm 1 these distributions match closely – Figure 4b. Despite the fact that the algorithm uses
only prompts embeddings, we observe in Figure 4c that image embeddings distributions are also well aligned after the third iteration of our
algorithm. We suspect that it is due to the close match between images and their descriptions so that aligning text distributions leads to
aligning image distributions as well.

Algorithm 1 Sanitization algorithm

1: F ← ∅ ▷ trained binary classifiers
2: NM ← deduplicated nonmembers
3: M ← global set of members
4: Mi ← ∅ ▷ sanitized members after i-th iteration
5: TrainSet← ∅ ▷ training dataset
6: for i← 1, 2, ..., n do
7: TrainSet← ∅
8: if i = 1 then
9: TrainSet← sample of size |NM | from M

10: else
11: TrainSet←Mi−1

12: end if
13: TrainSet← TrainSet ∪NM
14: Fi ← trained classifier on TrainSet
15: while |Mi| < |NM | do
16: Mtmp ← sample from M
17: for j ← 1, 2, ..., i do
18: if Fj predicts member label for sample then
19: Mtmp ←Mtmp \ sample
20: end if
21: end for
22: Mi ←Mi ∪Mtmp

23: end while
24: end for
25: SM ←Mn ▷ final sanitized members set

consists of 600M samples, our deduplicated nonmembers
set has 42.5k samples). The main reason is that the dedu-
plication process (see Sec. 5.3) is a great bottleneck of our
system; to get duplicate candidates for all 160k nonmember
candidates, we query the retrieval API for 50h.

Results To obtain our final set of 40k sanitised members
we apply the algorithm for three iterations. To obtain this
subset we filter approximately 5M samples from LAION
Aesthetics v2 5+ dataset, which takes only 2h on a single
NVidia RTX 2080Ti. Using our assessment methodology we
confirm its efficacy. FID score in the comparative case drops
significantly compared to the starting members set. We see
that the PCA components’ distribution align (see Fig. 4b)
and a binary classifier’s accuracy is almost random.

Images embeddings Regarding the image embeddings
for LAION-2B EN and LAION-2B Multi Translated, we ex-
pect them to have the same characteristics as they come from
the same source. This assumption is confirmed by a low FID
value between them, see Tab. 1. Additionally, the FID value
decreases even further after the text-focused sanitization and
a binary classifier’s accuracy is almost random. Therefore,
additional sanitization efforts focused on image embeddings
are not necessary, and the PCA components are also aligned,
see Fig. 4c).

6. Experiments
6.1. Threat model

A membership inference attack is defined as follows. We
consider an adversary A that aims to infer whether a single
data point x was included in the training set D of a generative
model M . The attacker has no knowledge about the dataset
D and is only able to query the model M . We distinguish
three scenarios according to the attacker’s capabilities.

• In the black-box scenario, an adversary queries a gen-
erative model with a text prompt and gets a generated
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image. The attacker has no knowledge about the model
architecture and no access to its weights.

• In the grey-box scenario an adversary has access to the
visual and text encoders of the attacked model. Thus,
they are able to calculate the latent representation (em-
bedding) of a given image and text prompt. However,
the attacker still has no access to the model weights.

• Finally, in the white-box scenario, an adversary has
full access to the model, its source code and trained
weights.

We start with a baseline white-box model loss threshold
attack, which is based on the fact that machine learning
models learn by minimising the loss in the training samples.
We extend our analysis by covering metrics related to model
inference. Moreover, we introduce new white-box attack
methods and show that they outperform the commonly used
baseline method. We also describe and evaluate a grey and a
black-box scenario. The attacks are based on the intuition
that generative models tend to synthesise samples similar to
their training set. For all attacks, we evaluate a variant in
which the losses are obtained as the average of 5 losses (5
different passes through the model, each time with a different
noise) following the findings of [3]. We explore more attack
methods in the Appendix D.

6.2. Threshold attack

A general threshold attack is formulated as follows. For
a selected threshold τ , the attack classifies the image x as a
member if L < τ . Otherwise, x belongs to the nonmember
set. Commonly used threshold attacks focus only on a model
loss. We extend our analysis by Pixel and Latent error,
defined as follows:

Model loss We monitor the loss of the diffusion model
given by Eq. 1 L(x, t, ϵ; fθ) = ∥ϵ− fθ(xt, t)∥22.

Pixel error We define the pixel error as the reconstruction
error between an original image x and the generated image
x′ defined as L(x, x′) = ∥x− x′∥22.

Latent error This measurement is similar to the pixel
error. However, it focuses on the reconstruction error be-
tween a latent representation z of the original image x and
the latent representation z′ generated by the diffusion model.
The error L(z, z′) is defined as ∥z − z′∥22.

6.3. Attack methods

We present a baseline and the best-performing attack
methods evaluated in our experiments. Most methods are
only applicable under the white-box scenario but we also
examine the attacks in the grey- and black-box scenario. An
exhaustive description and analysis of these different attack
methods are given in Appendix D.1.

Baseline loss threshold In [4] the authors show that eval-
uating the model loss at timestep 100 for the latent with
applied noise scale αt at t = 100 yields the best results for
the membership inference attacks based on model loss. We
follow this method and evaluate the model loss at timestep
100 for the latent noised with scale α100.

Methods exploiting the noise There are many possible
variants of adding or removing noise in the diffusion process
before we make a final decision based on the loss. The in-
tuition (or hopeful assumption) behind such attacks is that
member samples would behave more robustly than nonmem-
bers under noisy conditions. We explore many different
settings and refer a reader to Appendix D.1 for details.

Generation from prompt To perform this attack we
pass only the prompt associated with the original images
to the model. We do so to simulate a real-world scenario,
where we have access to the model only via the API. In the
black-box scenario, we calculate the Pixel error between
the original image and the image generated by the model
using the default method of 50 timesteps. In the grey-box
scenario, we obtain the generated images in the same way
as in the black-box scenario, but then we calculate the latent
representation of the original and generated images using
the visual encoder of the attacked model and then calculate
the latent error between them.

6.4. Targeted datasets

LAION-mi In our paper we use our LAION-mi dataset
proposed in Section 5. For each attack, we use the same sub-
set of 5000 member samples and 5000 nonmembers samples,
further referred to as the attack set. We find that different
training and evaluation set splits can produce significantly
different results, some almost 10 times better than others
(see Appendix E). Following these findings, we evaluate our
attacks on 100 random subsets (evaluation sets) of 500 mem-
bers and 500 nonmember samples drawn from the attack set
and then report the mean and the standard deviation of the
performance.

POKEMON POKEMON dataset [17] is a Text2Image
dataset. We use it to first finetune the original StableDiffu-
sion v1.4 model using a subset of 633 samples (members),
leaving the remaining 200 samples as nonmembers. We eval-
uate our attacks on 1000 subsets obtained from random 200
member and all nonmember samples. We also conduct an
analysis of the influence of overfitting on the attack perfor-
mance in Appendix F.

7. Results
We evaluate the attacks for two setups. First, we attack

the Stable Diffusion v1.4 model, which we do not modify
in any way. We draw data samples of members and non-
members from our LAION-mi dataset. Then, we evaluate
the effectiveness of the attacks on the same model, which is
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Table 2. Threshold membership inference attacks results on LAION-mi and POKEMON datasets. We demonstrate the importance of
evaluating membership inference attacks in a fair setting. On the POKEMON dataset some of the attacks are almost perfect, with partial
denoising reaching 99.5% TPR@FPR=1%, but on ours LAION-mi dataset with original SD-v1.4 we reach at most 2.51%. Our proposed
methods outperform the Baseline loss threshold method.

TPR@FPR=1%. ↑
SCENARIO LOSS METHOD LAION-MI POKEMON

WHITE-BOX

MODEL LOSS

BASELINE LOSS THR. 1.92%±0.59 80.9%±2.27

REVERSED NOISING 2.51%±0.73 97.3%±0.93
PARTIAL DENOISING 2.31%±0.61 94.5%±1.34

REVERSED DENOISING 2.25%±0.64 91.5%±1.63

LATENT ERROR

REVERSED NOISING 1.26%±0.62 11.5%±1.84
PARTIAL DENOISING 2.42%±0.62 99.5%±0.4

REVERSED DENOISING 2.17%±0.64 61.1%±2.74

PIXEL ERROR

REVERSED NOISING 1.90%±0.51 8.36%±1.66
REVERSED DENOISING 2.03%±0.55 12.0%±1.97
PARTIAL DENOISING 1.75%±0.68 25.38%±2.55

GREY-BOX LATENT ERROR GENERATION FROM PROMPT 0.93%±0.41 7.15%±1.5

BLACK-BOX PIXEL ERROR GENERATION FROM PROMPT 0.35%±0.19 12.0%±1.9

finetuned on the POKEMON dataset [17]. Here, we use test
and training data splits (633/200 samples) as member and
nonmember sets.

Metric A metric to evaluate the membership attack is
true-positive rate (TPR) calculated at a low false-positive
rate (e.g. FPR=1%). For privacy-related problems, it is a
much better metric than common aggregate metrics, such as
accuracy or AUC [3].

Discussion In Table 2 we observe a severe discrepancy in
the effectiveness of the attacks achieved for the LAION-mi
dataset and fine-tuning on POKEMON. In the second case,
two white-box attacks (reversed noising and partial denois-
ing) achieve a very high TPR. However, when the attacks
are applied against our LAION-mi dataset, we observe a
huge drop in performance. Here we clearly see the effects
of the first pitfall from Sec. 4, namely the fine-tuned model
overfits, and the membership inference task becomes trivial.
We explore this topic further in Appendix F. The obtained
results demonstrate that evaluation on a small dataset (used
for finetuning the model) is misleading and a more careful
setup, such as our proposal, is required.

Moreover, the results show the limited performance of
loss-based attacks in the black- and grey-box scenarios, even
for the simple POKEMON setting. This highlights an im-
portant issue, as many image-generation services work as a
black-box API. As mentioned in 3.1 this trend is unlikely to
change in the future.

In theory, identifying training samples in black-box sce-
narios can be approached by extracting training samples
from the model, as in [4]. However, this approach requires

the generation of hundreds of images per text prompt, which
is computationally expensive. This approach is also limited
to identifying training samples that have been memorised
by the model. For those reasons, such methods are not well
suited for identifying the membership of a sample. For the
white-box scenario, the state-of-the-art approach is a method
based on the shadow models. However, as stated in 3.2,
this strategy is too costly for large diffusion models such
as Stable Diffusion. We further discuss the applicability of
shadow models in Appendix G.

8. Conclusion

We showed that evaluation of membership inference at-
tacks with the model finetuning approach may lead to false
conclusions. As an alternative, we proposed a new carefully
crafted dataset, which mitigates the main limitation of the
original LAION dataset, which is a lack of a test set. Hav-
ing the proposed dataset and reliable set of nonmembers, we
evaluated several membership inference attacks and obtained
results, which contradict previous findings.

Our dataset could help the community evaluate attacks on
large generative diffusion models such as Stable Diffusion
in a more rigorous and fair setting. A clear picture of how
successful the membership attacks are is essential for a sound
policy on matters such as data ownership and privacy. We
argue that for large diffusion models, where shadow models
are prohibitively expensive, membership inference remains
a very challenging task.
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