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Figure 1. Given challenging hand interaction videos (top), a recent state-of-the-art hand pose estimation approach [64] (middle), fails to
produce accurate 3D hand poses. To address this, we exploit a large-scale motion-capture dataset AMASS [37] to train a motion prior and
use latent optimization to recover hand pose from videos. Our model HMP (bottom) is robust to occlusion and produce temporally stable
results, outperforming previous work on standard benchmarks.

Abstract

Understanding how humans interact with the world ne-
cessitates accurate 3D hand pose estimation, a task compli-
cated by the hand’s high degree of articulation, frequent oc-
clusions, self-occlusions, and rapid motions. While most ex-
isting methods rely on single-image inputs, videos have use-
ful cues to address aforementioned issues. However, exist-
ing video-based 3D hand datasets are insufficient for train-
ing feedforward models to generalize to in-the-wild scenar-
ios. On the other hand, we have access to large human mo-
tion capture datasets which also include hand motions, e.g.
AMASS. Therefore, we develop a generative motion prior
specific for hands, trained on the AMASS dataset which fea-
tures diverse and high-quality hand motions. This motion
prior is then employed for video-based 3D hand motion
estimation following a latent optimization approach. Our

integration of a robust motion prior significantly enhances
performance, especially in occluded scenarios. It produces
stable, temporally consistent results that surpass conven-
tional single-frame methods. We demonstrate our method’s
efficacy via qualitative and quantitative evaluations on the
HO3D and DexYCB datasets, with special emphasis on an
occlusion-focused subset of HO3D. Code is available at
https://hmp.is.tue.mpg.de

1. Introduction
Hands often serve as our primary mean for manipulat-

ing objects and engaging with our surrounding environ-
ments. Therefore, accurately reconstructing the 3D poses
and shapes of hands from RGB images plays a crucial
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role in a range of applications including human–computer
interaction, augmented/virtual reality (AR/VR), robotics,
biomechanics, and animation. Despite years of research in
this direction, this task is still challenging due to the high
degree of articulation, occlusion caused by hand–object in-
teractions, self-occlusion, and rapid motion inherent to hand
movements.

Existing methodologies predominantly investigate the
estimation of hand pose and shape from single images [5,6,
11, 26, 33, 34, 40, 42, 48, 59, 70]. However, such approaches
tend to generate temporally-inconsistent reconstructions of
hand motion. They are often plagued by jitter, missing pre-
dictions, and produce noisy motion results (see middle row
of Fig. 1).

In contrast to the aforementioned scenarios, videos serve
as a rich source of data for hand motion analysis. Unlike
single images, videos contain temporal information that can
help to predict coherent hand reconstructions throughout
time by learning correlations between time-adjacent frames.
They encapsulate a wealth of cues related to hand motion
that could improve hand pose and shape estimation. How-
ever, this valuable aspect remains largely under-explored,
with very few attempts [14, 21, 57, 69] being made to lever-
age video data. Most recently, Fu et al. [14] introduced a
feedforward model which takes a video as input and recon-
structs the observed hand sequence. However, this method
has very limited generalization capability since existing
video-based 3D hand motion datasets [8, 17] are limited
in terms of the number of subjects and background diver-
sity. On the other hand, large motion capture datasets e.g.
AMASS [37] contain accurate and diverse 3D hand pose
annotation, but they do not contain images.

Motivated by these observations, our key insight is that
we can leverage existing MoCap datasets to build a robust,
generative 3D hand motion prior and use this generative
motion prior for 3D hand pose and shape estimation from
monocular videos. After training on the large AMASS mo-
tion capture dataset, we use HMP (Hand Motion Priors) as
a motion prior at test time for 3D hand pose and shape esti-
mation from noisy and partial observations e.g. RGB videos
and 2D or 3D joint sequences. In particular, we introduce
a latent optimization framework which interacts with HMP
to estimate the parameters of hand motion. This interaction
happens by parameterizing the motion in the latent space of
HMP, and by using HMP priors in order to regularize the
optimization towards the space of plausible motions.

Experimental results for 3D hand pose and shape estima-
tion on two existing hand pose estimation video datasets,
DexYCB [8] and HO3D [17], show that our method out-
performs state-of-the-art methods. To analyze our method’s
robustness to occlusion, we curate an occlusion-heavy test
set from HO3D which we name HO3D-OCC and demon-
strate that our approach is more robust to occlusions than

existing approaches. Further, we show that our method
surpasses traditional motion priors e.g. Gaussian Mixture
Models, PCA-based temporal priors, as well as a direct op-
timization hand pose and shape parameters.

In summary, our contributions include:

• We introduce a generative hand motion prior learned
from a large-scale MoCap dataset AMASS [37].

• We present a latent optimization-based method for ac-
curate hand pose and shape estimation from monocular
videos.

• We demonstrate that our method reconstructs more ac-
curate 3D hand motion under partial or heavy occlu-
sions thanks to our robust generative motion prior. We
highlight this on HO3D-OCC, an occlusion-specific
subset of HO3D dataset.

• We show that our framework allows us to perform bet-
ter hand reconstruction results compared to traditional
temporal priors or direct optimization of hand pose and
shape.

2. Related Work
2.1. Hand Pose Estimation From a Single Image

Methods estimating 3D hand pose from single images
can be split into model-free and model-based approaches.

Model-free methods [33, 34, 42, 48, 59, 70] directly es-
timate the hand pose by predicting 3D joint positions
[6, 10, 50, 52, 70] or joint heatmaps [5, 11, 26, 40]. For in-
stance, Zimmermann et al. [70] propose the first convolu-
tional network to detect 2D hand joints and lift them into
the 3D space with an articulation prior. Iqbal et al. [26] in-
troduce a 2.5D representation allowing to make use of sup-
plementary depth supervision. Likewise, Spurr et al. [48]
present biomechanical constraints to refine the pose predic-
tions on 2D supervised data. These methods require abun-
dance of annotated data to train due to the lack of 3D priors.

MANO [46] is a parametric model of hands. In MANO,
the hand is parameterized by pose and shape parameters.
The pose parameters define the articulation of the hand,
including finger bending and other movements, while the
shape parameters define the overall structure and mor-
phology of the hand. Several model-based approaches
[2, 4, 11, 12, 22, 35, 67] directly predict MANO parame-
ters. The 3D hand joint and mesh vertex coordinates are
computed from the MANO parameters using linear blend
skinning. Zhang et al. [67] introduce a framework that har-
nesses a differentiable re-projection loss for accurate hand
mesh recovery. Similarly, Hasson et al. [22] use a contact
loss that ensures the interaction between the hand and any
object appears realistic in predictions. Despite the notable
advances achieved by image-based techniques, their results
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are still not temporally consistent due to occlusions and mo-
tion blur present in single frames.

2.2. Temporal Hand Pose Estimation

Recent methods [21, 35, 41, 49, 57, 69] attempt to lever-
age temporal data from videos to improve the hand pose
estimation performance. Hasson et al. [21] use the photo-
metric consistency between the re-projected 3D hand pre-
dictions and the optical flow of adjacent frames as supervi-
sion. Liu et al. [35] train an initial model on an annotated
dataset, and deploy it on a large-scale video dataset to col-
lect pseudo-labels. They use pseudo-labels to train a single
frame model. Meanwhile, Ziani et al. [69] use temporal
constrastive learning to learn features that are robust to oc-
clusion and motion blur. They also demonstrate the per-
formance of learned features on a temporal model similar
to VIBE [32], a full-body human pose and shape estima-
tion method. Fu et al. employ a transformer-driven archi-
tecture to process temporal relationship between the input
video frames [14], resulting in a temporally coherent and
accurate hand pose estimation. A limitation of this method
is their reliance on video hand pose datasets for training,
but the limited subject and background diversity in current
datasets impedes the generalizability of methods which take
video as input.

In contrast, our method makes use of AMASS motion
capture dataset to learn a robust motion prior and fits the
latent code of this motion prior to 2D hand keypoint esti-
mations estimated by off-the-shelf algorithms. This makes
it more general and flexible compared to existing works re-
lying on video inputs.

2.3. Motion Prior Models

Given the absence of motion prior models specific for
hands, we turn our attention to methods focused on mod-
eling human body movements. There has been a signifi-
cant amount of research on 3D human dynamics for vari-
ous tasks, including motion prediction and synthesis [1, 3,
7, 13, 16, 20, 27, 38, 43, 44, 54, 56, 60–62, 68]. Recently, hu-
man pose estimation methods have started to incorporate
learned human motion priors to help resolve pose ambi-
guity [32, 45, 66]. Motion-infilling approaches have also
been proposed to generate complete motions from partially
observed motions [19, 24, 28, 29]. Diffusion models [47]
have also been used as priors for motion synthesis and in-
filling [25,53,63,65]. Rempe et al. [45] train an autoregres-
sive VAE-based motion prior on AMASS dataset, called
HuMoR. They use HuMoR as a motion prior at test time for
3D human perception from noisy and partial observations
across different input modalities such as RGB videos and
2D/3D joints. It is computationally expensive to perform
latent optimization since HuMoR is autoregressive. Neural
Motion Fields (NeMF) express human motion as a time-

conditioned continuous function and demonstrate superior
motion synthesis performance [23]. Our approach extends
NeMF by leveraging it as a motion prior for hands.

3. Method
Our method HMP consists of two phases (Fig. 2): In

the initialization phase, it detects hand bounding boxes, 2D
hand keypoints, and initialize MANO hand pose and shape
estimates ( Sec. 3.2) from video frames. In the multi-stage
optimization phase ( Sec. 3.4), it then refines those estimates
in a video by enforcing hand motion prior constraints.

3.1. Preliminaries

HMP takes as input a video of T frames I={I1, ..., IT }.
The camera is assumed to be static, i.e. Rcam = I
and Tcam = [0, 0, 0] where Rcam ∈ SO(3),Tcam ∈
R3. The hand motion in global coordinate system Q =
{Qt = {Φt, τt, θt, β}}Tt=0 consists of global orientation
Φt ∈ SO(3), global translation τt ∈ R3, hand pose θt ∈
R15×3, and hand shape β ∈ R10 for all visible timesteps
t. We use MANO model to represent hand meshes in time
[46]. Similar to parametric body models, MANO model
outputs a triangulated hand mesh Vt ∈ R778×3 for each
timestep t derived from hand motion Q.

Existing 3D hand pose datasets such as HO3D [17],
DexYCB [8] contain images with hands, but they do not
have sufficient data with diverse and accurate 3D hand
pose annotation. On other hand, large-scale motion cap-
ture datasets such as AMASS [37] have highly-diverse 3D
hand motion data captured in accurate mocap setups, but
they do not contain images. Our key insight is to lever-
age large-scale motion capture datasets to address the data
scarcity problem. We first train a hand motion model on
AMASS, which learns a prior model on natural hand mo-
tion. We then introduce a novel optimization-based frame-
work for recovering hand motion by leveraging this motion
prior ( Sec. 3.4). In this formulation, our method can work
with any pose regressors and 2D hand keypoint estimators
in plug-and-play fashion (Tabs. 3 and 5).

3.2. Initialization

We first obtain bounding boxes for hands using an off-
the-shelf hand tracking model [9]. For each bounding box,
we estimate hand pose and shape in global coordinates
Q̂= {Q̂t}Tt=0, where Q̂t = {Φ̂t, τ̂t, θ̂t, β̂t}, using PyMAF-
X [64]. Hand bounding box detection methods often fails
when the hand is occluded by objects or during two-hand in-
teractions. To obtain initialization for such frames we per-
form spherical interpolation (SLERP) for the cases where
the bounding box confidence is lower than a threshold. Our
optimization starts from this initial condition.

For 2D keypoints, we use keypoints combined from Me-
diaPipe and PyMAF-X [36,64]. If MediaPipe does not have
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Figure 2. HMP method overview: Given a video of hand, we first use off-the-shelf methods to obtain initial 2D hand keypoints and
MANO hand pose and shape parameters via the regressor. We propose a latent optimization framework that optimizes the hand motion to
reduce 2D pose errors and increase motion likelihood under hand motion prior. The final output is temporally stable hand motion.

a detection for a timestep we project 3D joints obtained
from PyMAF-X to the image space and use it as the key-
point source. We experimented with different keypoint es-
timation methods and empirically found that it is best to
blend keypoints from Mediapipe and PyMAF-X (see Sec 4).
This keypoint blending approach aims to combine strengths
of each keypoint source for more accurate estimation. We
refer to SupMat for more details.

3.3. Hand Motion Prior

Our objective is to build a motion prior to ensure the es-
timated hand motion’s plausibility and to constrain the so-
lution space during motion optimization. To achieve this,
we employ a variational autoencoder (VAE) [31]. The VAE
learns a latent representation, denoted as z, of the hand mo-
tion and regularizes its latent code distribution to be a nor-
mal distribution. We want the decoder D of the VAE to be
non-autoregressive for faster sampling while not sacrificing
accuracy. Such a design choice becomes pivotal, especially
when the motion prior is used iteratively during optimiza-
tion. Autoregressive motion priors, such as HuMoR [45],
tend to be unsuitably slow in handling long motion se-
quences. In contrast, a non-autoregressive decoder can be
evaluated for the entire sequence in parallel. To this end, we
adopt a Neural Motion Field (NeMF) [23] based decoder to
represent body motion as a continuous vector field of hand
poses via a NeRF-style MLP [39]. Section 3.4 discusses the
application of NeMF for latent optimization.

Building on the approach from [23], our system solely
models local hand motion using the prior. Specifically, D

Stage Variables Loss terms Description

1 Φ, τ, β
Lo,Ltr,Lβ ,
Los,Lts,L2D

global translation
+ rotation

2 Φ, τ, β, zθ
Lo,Ltr,Lβ ,Los,

L2D,LMP
+ local hand pose

Table 1. Multi-stage optimization variables and loss terms.

is an MLP accepting the latent code zθ and a time step t to
produce the local hand pose θ̂t for the respective time step:

D : (t, zθ) → (θ̂t), (1)

Here, zθ controls the local pose θ of the hand. Given
a specific zθ, the entire sequence can be sampled in paral-
lel by simply varying the values of t. To incorporate the
motion prior during latent optimization, we optimize the la-
tent code {zθ} instead of solely optimizing the local hand
motion {θt}Tt=0. We initialize the latent code using the pre-
trained encoder E of the VAE; i.e., zθ=Eθ({θ}Tt=0).

As opposed to to the approach in [23], we omit the global
orientation information during motion prior training. This
decision is grounded on the observation that hand global
orientation is considerably less constrained. Unlike the
body’s global orientation, which is motion-limited by grav-
ity, hands have the liberty to move freely in the air. Details
for the training process are given in SupMat.

3.4. Latent Optimization

This section explains the latent optimization process for
estimating hand motion. Our goal is to optimize the vari-
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Stages Variables Loss Function Loss Coefficients

Stage-1 Φ, τ, β Lo,Ltr,Lβ ,Los,Lts,L2D lr = 0.05, λo = 3, λtr = 1, λos = 1, λts = 5, λβ = 3, λ2D = 0.05
Stage-2 Φ, τ, β, zθ Lo,Ltr,Lβ ,Los,L2D,LMP lr = 0.05, λo = 2, λtr = 1, λos = 1, λβ = 10, λ2D = 0.05, λMP = 300

Table 2. Multi-stage optimization loss coefficients.

ables expressing hand motion: global orientation Φ, global
translation τ , shape β, and the motion prior latent code zθ.

Objective Function: The objective function we aim to
minimize is defined as:

L = λoLo + λtrLtr + λβLβ + λosLos + λtsLts

+λMPLMP + λ2DL2D,
(2)

where we use seven different objective terms with their cor-
responding coefficients. Values for these coefficients are
given in Tab. 2. The first term ensures that the optimized
global orientation is close to the initial global orientation
through Lo:

Lo =

T∑
t=0

g(Φt, Φ̂t)
2. (3)

where g is the geodesic distance between two rotations. The
second term Ltr encourages the global translation not to di-
verge from its initial values:

Ltr =

T∑
t=0

∥τt − τ̂t∥22. (4)

The third term motivates shape parameters to be close to
zero vector through Lβ :

Lβ = ∥β∥22. (5)

The fourth and fifth terms encourage smoothness of the
global translation and orientation:

Los =

T−1∑
t=0

g(Φt+1,Φt)
2, (6)

Lts =

T−1∑
t=0

∥τt+1 − τt∥22 . (7)

The 2D keypoint error term, L2D, constrains our motion to
be aligned with the 2D keypoints predicted from detectors:

L2D =

21∑
i=1

∑
t∈Tdetect

αi
tρ

(
Π
(
RcamJ

i
t + Tcam

)
− xit

)
. (8)

Here Tdetect represents the time-steps where we have the
keypoint detection. J i

t stands for location of joint i in
timestep t. xit is the corresponding detected keypoint in

image space, Π represents perspective projection to image
space using camera intrinsics K, αi

t represents the detec-
tion confidence for the joint i, and ρ is the Geman-McClure
function [15]. The last term constrains hand motion to be
valid by minimizing the negative log-likelihood of the latent
code.

LMP = − logN (zθ;µθ ({θt}) , σθ ({θt})) . (9)

Multi-Stage Optimization: The estimation of 3D pose and
shape from 2D video presents an inherently ill-posed prob-
lem. Attempting to optimize all parameters simultaneously
can lead to local minima. To mitigate this, we adopt a
gradual optimization process that progresses from coarse to
fine-grained level. This approach serves the purpose of con-
straining the optimization problem at each stage.

Our optimization strategy unfolds in two distinct stages.
During the initial stage, our objective is to align the initial
hand estimations from PyMAF-X with the video data by op-
timizing the global orientation Φ, global translation τ , and
shape β only. In the second stage, we include the motion
prior latent code z to optimize the local pose, a phase that
involves a more refined level of optimization. We use the
Adam optimizer [30].
Occlusion Handling: For occluded frames, the off-the-
shelf methods used for initialization, i.e. 2D keypoint and
bounding-box detectors, PyMAF-X, do not provide any re-
sults. To robustly handle such frames without detection,
we mask the objective terms in corresponding time steps,
leaving us to solely optimize the latent code zθ with the
observed time steps. Motion prior in such cases behave as
an motion infilling method which infer the occluded frames
with the cues from visible frames. This is a key part of our
method which makes it robust to occlusions.
Parallel Optimization: A natural candidate for motion
prior formulation is HuMoR [45]. However its autoregres-
sive formulation renders it impractical for using long se-
quences. Instead, we aim to have a motion prior suitable for
batch optimization. Our architecture is based on a recent
work NeMF [23]. Its formulation allows parallel optimiza-
tion, making it applicable to long motion sequences.

4. Experiments
4.1. Datasets and Metrics

HO3D is a dataset focused on capturing temporal interac-
tions between hands and objects. This dataset comprises
interactions of 10 subjects with 10 distinct YCB objects, all
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HO3D-v3
Methods PA-MPJPE ↓ RA-MPJPE ↓ RA-ACC ↓

TempCLR† [69] 10.6 - 3.7
HandOccNet† [41] 9.1 24.9 -

METRO [34] 12.1 38.7 17.4
PyMAF-X [64] 10.8 29.6 9.3
[34] + HMP (Ours) 10.8 31.3 2.4
[64] + HMP (Ours) 10.1 26.7 2.2

Table 3. State-of-the-art comparison on the HO3D-v3 dataset [18].
Methods denoted with † uses HO-3D as their training dataset.

DexYCB
Methods PA-MPJPE ↓ RA-MPJPE ↓ RA-ACC ↓

ArtiBoost† [58] - 12.8 -
Deformer† [14] 5.2 - -

PyMAF-X [64] 11.6 38.1 17.1
[64] + HMP (Ours) 8.9 34.1 3.6

Table 4. State-of-the-art comparison on the DexYCB dataset [8].
Methods denoted with † uses DexYCB as their training dataset.

captured from various viewpoints [17, 55]. The manipula-
tion of handheld objects within this dataset often results in
substantial occlusions, posing challenges for analysis. We
worked on version-3 of the dataset for evaluation.
HO3D-OCC: We choose occlusion-specific sequences
from HO3D to highlight the performance of different meth-
ods under occlusion. This subset is derived from the train-
ing segment of HO3D and is comprised of 1736 frames.
DexYCB [8]: This dataset contains 10 subjects grasping
20 different objects from YCB-Video dataset [55]. Ground-
truth values are obtained through an optimization process
using hand-annotated 2D keypoints, and multiview RGB-
D captures. The sequences are shorter (2-3 seconds) and
motions have less articulation in comparison to HO3D [17].
The default split (S0) is used for evaluation.
AMASS [37] is a large dataset of 3D human motion capture
curated from various marker-based datasets. Among many
datasets included in the AMASS repository, GRAB [51],
TCDHands, and SAMP [20] feature hand articulations. We
use these datasets to train our motion prior.
Metrics: We report Procrustes aligned (PA-MPJPE), root
aligned (RA-MPJPE) Mean-Per-Joint Projection Error in
millimeters (mm). We also report root aligned accelera-
tion error (RA-ACC) in mm/s2. Acceleration error demon-
strate the smoothness of estimated motion.

4.2. Comparison With the State-of-the-Art

Our aim is to have a method that generalize well to video
from different sources. One way of ensuring that is to use a
method that performs best in in-the-wild settings. PyMAF-
X [64] is the current SOTA hand pose and shape estimation
method. We use PyMAF-X as our main baseline and report
other results based on it.

Our main goal in this paper is to recover coherent mo-

HO3D-v3
Methods PA-MPJPE ↓ RA-MPJPE ↓ RA-ACC ↓

PyMAF-X [64]
+ SLERP 10.7 29.4 5.9

No Motion Prior 10.5 28.0 1.9
PCA-based Prior 13.8 31.1 10.7
GMM-based Prior 10.4 27.5 3.4

Stage-1 (PyMAF-X) 10.5 26.8 2.0
Stage-1 (MediaPipe) 10.3 27.0 1.9
Stage-1 (MMPose) 10.3 27.1 1.8
Stage-1 (Blend) 10.2 27.7 1.9
Stage-2 (Blend) 10.1 26.7 2.2

PyMAF-X [64] 10.8 29.6 9.3
[64] + HMP (Ours) 10.1 26.7 2.2

Table 5. Ablation studies on the HO3D-v3 dataset [18].

tion of hands. Therefore, we would like to emphasize met-
rics which measures the quality of the estimated motion e.g.
RA-ACC. Unfortunately such metrics are not available for
the evaluation server of the HO3D dataset. Therefore, in
Tab. 3 we use the training set to report metrics and compare
with methods doing so. All results listed on DexYCB Tab. 4
use S0 subset.

Recent methods, such as Deformer [14] and Arti-
Boost [58], use HO3D and DexYCB as their primary train-
ing datasets. However, given the limited background and
subject diversity inherent to HO3D and DexYCB, methods
solely trained on these datasets struggle to generalize effec-
tively to in-the-wild videos. In contrast, neither PyMAF-X
nor our motion prior relies on these datasets for training,
thereby enhancing their generalization to in-the-wild sce-
narios. Consequently, directly comparing our method with
those trained on HO3D and DexYCB can be challenging.
To signify this distinction, we have marked such methods
with a † in the corresponding tables. Overall, our method
outperforms the existing state-of-the-art (SOTA) techniques
on the HO3D and DexYCB datasets. Furthermore, our ap-
proach enhances the performance of the PyMAF-X method,
which we employ for initialization, across both datasets.

Additionally, we provide qualitative results DexYCB in
Fig. 3, on an in-the-wild video in Fig. 4, and on HO3D in
Fig. 5. Please see the SupMat for more results. Compared
to PyMAF-X method, our method is robust to occlusion
caused by hand-object interaction.

To show the applicability of aforementioned plug-and-
play fashion in Sec. 3.2, we also report quantitative num-
bers for optimization with different initialization methods
in Tab. 3.

4.3. Ablation Study

We report the ablation experiments on HO3D and
DexYCB datasets, in Tabs. 5 and 6 respectively. In this sec-
tion, we analyze the critical components of our method.
Motion Prior: In addition to the NeMF-based motion prior
we use, we report the results of using no motion prior, a
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DexYCB
Methods PA-MPJPE ↓ RA-MPJPE ↓ RA-ACC ↓
PyMAF-X [64] + SLERP 11.5 36.5 6.0

No Motion Prior 10.9 36.4 3.4
PCA-based Prior 16.9 41.6 15.3
GMM-based Prior 10.8 38.7 4.8

Stage-1 (PyMAF-X) 10.8 35.1 3.4
Stage-1 (MediaPipe) 10.8 39.1 3.4
Stage-1 (MMPose) 10.8 39.4 3.4
Stage-1 (Blend) 10.8 35.5 3.4
Stage-2 (Blend) 8.9 34.1 3.6

PyMAF-X [64] 11.6 38.1 17.1
[64] + HMP (Ours) 8.9 34.1 3.6

Table 6. Ablation studies on the DexYCB dataset [8].

HO3D-OCC
Methods PA-MPJPE ↓ RA-MPJPE ↓ RA-ACC ↓
PyMAF-X [64] 15.3 48.9 26.0
PyMAF-X [64] + SLERP 14.4 41.3 7.9

Stage-1 13.0 38.2 2.8
Stage-2 12.6 38.1 3.0

Table 7. Performances on occlusion specific HO3D-OCC subset

PCA-based motion prior, and GMM-based motion prior,
denoted as No Motion Prior, PCA-based prior, and GMM-
based prior respectively. In the No Motion Prior experi-
ments, we directly optimize the MANO hand pose instead
of the latent code of the motion prior. We introduce a pose
smoothness term to the pose optimization process, replac-
ing the motion prior likelihood. Our motion prior trained
on AMASS dataset outperforms these motion prior base-
lines on both the HO3D and DexYCB datasets.
Multi Stage: We run ablation studies to demonstrate the
results of different stages of our optimization process. We
show that Stage-2 which optimizes local pose through latent
optimization help to improve results over the Stage-1.
Keypoint Blending: We analyzed the performance with
different 2D hand keypoint detection algorithms: MM-
Pose [9], MediaPipe [36], and PyMAF-X [64]. We also
reported a variant where we blend keypoints from Medi-
aPipe [36] and PyMAF-X [64]. We find out that blending
MediaPipe and PyMAF-X are better 2D hand keypoint de-
tectors compared to MMPose. Blending MediaPipe with
the PyMAF-X give the best results overall.

5. Conclusion and Discussion

In this work we propose HMP, a latent optimization-
based method for 3D hand pose and shape estimation from
video. Motivated by the fact that existing video-based
3D hand datasets are insufficient for training feedforward
models to generalize to in-the-wild scenarios, we develop
a generative motion prior specific for hands, trained on
the AMASS dataset and then employ motion this prior for
video-based 3D hand motion estimation following a latent
optimization approach.

VIDEO

HMP (OURS)

SOTA METHOD

Figure 3. 3D hand pose and shape estimation on DexYCB
videos: input video (top), PyMAF-X (middle), HMP (bottom)

VIDEO

SOTA METHOD

HMP (OURS)

Figure 4. 3D hand pose and shape estimation on an in-the-wild
video: input video (top), PyMAF-X (middle), HMP (bottom)

Our integration of a robust motion prior significantly en-
hances performance, especially in occluded scenarios. It
produces stable, temporally consistent results that surpass
conventional single-frame methods. Our method’s efficacy
is demonstrated through both qualitative and quantitative
evaluations on the HO3D and DexYCB datasets, with spe-
cial emphasis on an occlusion-focused subset of HO3D.
Our method can be used in plug-and-play fashion with any
single-stage pose and shape regressor and improves its per-
formance further. Due to this flexibility, unlike existing
video hand pose and shape estimation methods, HMP works
on in-the-wilds videos, too.
Limitations: A limitation of our approach is its reliance
on 2D keypoint estimation quality. Existing 2D keypoint
predictors can fail under heavy occlusion or motion blur.
Acknowledgements: We thank Nikos Athanasiou, Peter Kulits,
and all Perceiving Systems department members for their valuable
feedback and insightful discussions.
Disclosure: https://files.is.tue.mpg.de/black/
CoI_ICCV_2023.txt
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SOTA METHOD
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RGB INPUT

RGB INPUT

Figure 5. 3D hand pose and shape estimation on HO3D videos: input video (top), PyMAF-X (middle), HMP (bottom)
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