
POISE: Pose Guided Human Silhouette Extraction under Occlusions

Arindam Dutta1,∗ Rohit Lal1,∗ Dripta S. Raychaudhuri1,2,† Calvin-Khang Ta1 Amit K. Roy-Chowdhury1

1University of California, Riverside 2AWS AI Labs
{adutt020@, rlal011@, drayc001@, cta003@, amitrc@ece.}ucr.edu

Abstract

Human silhouette extraction is a fundamental task in
computer vision with applications in various downstream
tasks. However, occlusions pose a significant challenge,
leading to incomplete and distorted silhouettes. To ad-
dress this challenge, we introduce POISE : Pose Guided
Human Silhouette Extraction under Occlusions, a novel
self-supervised fusion framework that enhances accuracy
and robustness in human silhouette prediction. By combin-
ing initial silhouette estimates from a segmentation model
with human joint predictions from a 2D pose estimation
model, POISE leverages the complementary strengths of
both approaches, effectively integrating precise body shape
information and spatial information to tackle occlusions.
Furthermore, the self-supervised nature of POISE elimi-
nates the need for costly annotations, making it scalable
and practical. Extensive experimental results demonstrate
its superiority in improving silhouette extraction under oc-
clusions, with promising results in downstream tasks such
as gait recognition. The code for our method is available
https://github.com/take2rohit/poise.

1. Introduction
Human silhouette extraction is a fundamental task in com-

puter vision with wide-ranging applications in human mo-
tion analysis [30], surveillance [36], augmented reality [1],
and human-computer interaction [2]. The precise extraction
of human silhouettes from images and videos enables the
accomplishment of higher-level tasks, including gait recogni-
tion [9] and activity recognition [18]. However, the presence
of occlusions [3] poses substantial challenges to the extrac-
tion process, resulting in incomplete or distorted silhouettes
that impede the performance of downstream tasks.

Occlusions are common in real-world scenarios, where
human subjects navigate complex and cluttered environ-
ments. They occur when certain areas of the human body are
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Figure 1. Problem overview. Existing works on segmentation
struggle to effectively handle occlusion, leading to fragmented
silhouettes (Top row). One approach to remedy this is by using
2D pose estimates, however, this fails to preserve the body shape
(Middle row). In this paper, we propose POISE , a novel self-
supervised framework that integrates both segmentation and 2D
pose predictions to enable accurate prediction of human silhouettes
under occlusion while preserving the body shape (Bottom row).

concealed or overlapped by objects or other individuals in the
scene. Examples include objects obstructing body parts and
self-occlusions caused by body parts coming into contact.
State-of-the-art techniques for extracting human silhouettes,
which involve pretrained semantic segmentation models like
DeepLabv3 [5, 6], struggle in such scenarios. Despite being
trained on large-scale natural datasets, these models are not
explicitly trained to handle occlusions. Consequently, they
tend to misidentify occluded regions as background, result-
ing in fragmented and inaccurate silhouette predictions, as
shown in Figure 1. Additionally, it is infeasible to acquire
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datasets with complete ground-truth human segmentation
masks under occlusions due to visual uncertainty.

To overcome these challenges, we present a novel fusion
framework, Pose Guided Silhouette Extraction under Occlu-
sions (POISE ), that significantly enhances the accuracy and
robustness of human silhouette prediction. Our approach
combines the predictions from a segmentation model, which
initially estimates the silhouettes, with the human joint pre-
dictions from a 2D human pose estimation model. The pose
estimation model provides crucial spatial information by
predicting the keypoints and inferring the body structure,
aiding in handling occlusions. However, it lacks detailed
information about the body shape. This is addressed via
the initial silhouettes predicted by the segmentation model
for the unoccluded regions, capturing precise body shape
information. By fusing these two complementary sources of
information, we refine the silhouette predictions, resulting in
silhouettes that are unfragmented and preserve body shape,
as illustrated in Figure 1.

Existing approaches for jointly learning poses and
silhouettes primarily rely on supervised learning [28, 50]
which necessitates large annotated datasets for training.
In this work, we relax this assumption and instead learn
the fusion framework in an self-supervised fashion.
Specifically, given pretrained segmentation and pose
estimation models, we train the fusion model to mimic the
predictions given by the pair via a pseudo-labeling approach.
In order to utilize the pose predictions for silhouette
estimation, we design a novel auxiliary transformation
function to convert the sparse keypoint estimates into
dense human silhouettes. Our self-supervised approach
alleviates the need for costly annotations and makes the
method more scalable and applicable to real-world scenarios.

Main contributions. Our primary contributions are summa-
rized as follows:

1. We address the problem of self-supervised human sil-
houette extraction under occlusion.

2. We present an effective fusion framework that leverages
pretrained 2D pose estimation and silhouette extraction
models to produce accurate and robust human silhou-
ettes.

3. Our framework is based on self-supervised learning,
which eliminates the need for costly pixel-level annota-
tions or pose annotations, thereby enhancing scalability.

4. Beyond showcasing excellent results on silhouette ex-
traction benchmarks, we also demonstrate the utility of
the predicted silhouettes on downstream tasks such as
gait recognition.

The rest of the paper is organized as follows: in Section
2, we review prior works in human silhouette extraction,

pose estimation, and gait recognition. Section 3 describes
the proposed framework in detail. Experimental results and
analysis are presented in Section 4, followed by conclusions
and future directions in Section 5.

2. Related Works
Human Parsing and Silhouette Extraction. Extensive re-
search has been conducted on human silhouette extraction,
with earlier works such as [52] utilizing Hidden Markov
models for modeling human silhouettes. More recent ap-
proaches leverage deep learning by primarily addressing the
problem as semantic segmentation [4–6, 13, 26, 29, 34, 51].
These methods have achieved high accuracy, but require
large labeled datasets of human images with corresponding
segmentation masks. Pretrained models like DeepLabV3 [6]
perform well in diverse settings due to their training on
extensive datasets. Despite the success of these methods,
occlusion remains a challenge. Zhou et. al. [55] proposed a
multistage architecture for de-occluding humans, while Li et.
al. [22] introduced a state-of-the-art human parsing frame-
work that can also be utilized for silhouette extraction by
mapping all parts of the human body to the foreground. How-
ever, these algorithms require labeled training data, which is
a limiting factor.
Human Pose Estimation. Human pose estimation involves
localizing keypoints on the human body, such as the head,
elbows and knees, in 2D or 3D space. Deep learning-
based pose estimation methods such as [27, 37, 44, 46],
have achieved remarkable success on challenging academic
datasets. However, these models are typically trained in
supervised settings and often exhibit limited generalization
capabilities when applied to unseen images. To overcome
this, Zhang et. al. [48] proposed a novel domain adaptive
3D pose estimation algorithm. Jiang et. al. [16] proposed
RegDA, a domain adaptive 2D pose estimation algorithm,
which was further improved upon by Kim et. al. [17] in
their work on UDAPE. Further, a source-free approach was
recently proposed in [33]. These unsupervised methods have
made significant contributions to enhancing pose estimation
in settings where labeled data is unavailable.
Human Pose Estimation under Occlusions: Modern hu-
man pose estimation algorithms often fail to localize human
keypoints under occlusions. To counter the same, Zhou
et. al. [54] introduced a novel algorithm based on siamese
networks and feature matching to improve 2D human pose
estimation performance under occlusions. Cheng et. al. [8]
exploits spatio-temporal continuity for handing occlusions
thus leading to improved pose estimation. Qiu et. al. [31]
used a novel graph formulation for improving human pose
estimation under multi-person occlusion scenario. Liu et.
al. [25] introduced a novel multi-stage framework for ob-
taining human keypoints under occlusions. Note that, these
algorithms are entirely supervised learning algorithms ne-
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cessitating costly annotations. To mitigate the same, Wang
et. al. [41] introduced a novel contrastive learning based
occlusion-aware algorithm for predicting 3D human pose
from given 2D keypoints. However, this algorithm still needs
access to ground-truth 2D keypoints.

Multi-Task Learning for Pose and Parsing. Multitask
learning for human pose and body parsing aims to leverage
the complementary information from both tasks to enhance
their individual performances. Nie et. al. [28] introduced
an adaptive convolutional architecture that facilitates joint
human pose estimation and body parsing. Their approach
was trained in a supervised manner, minimizing a linear com-
bination of losses for each task. Liang et. al. [23] proposed
a novel architecture that utilizes the semantic correlation be-
tween pose estimation and body parsing tasks. By exploiting
this correlation, they were able to improve the accuracy of
both tasks. More recently, Zhang et. al. [50] explored the
explicit cross-task consistency between pose estimation and
parsing. However, all of these methods are fully supervised
and thus, require labeled data for both tasks.

Gait Recognition. Gait recognition, a fundamental task in
computer vision, involves identifying individuals based on
their unique walking patterns. Silhouettes have been exten-
sively studied and utilized for gait recognition for nearly two
decades. Pioneering works by Collins et. al. [9] and Wang et.
al. [42] laid the groundwork for employing silhouettes in this
context. Since then, numerous studies [40] have explored the
use of silhouettes for gait recognition. As gait recognition
under occlusions poses a challenge, it is crucial to prepro-
cess silhouettes to handle occlusions before incorporating
them into gait recognition systems. This preprocessing step
ensures the robustness and reliability of the gait recognition
process, even in the presence of occlusions.

3. Method

3.1. Problem Formulation

Given a dataset of images T = {xi}N
i=1, where each

xi ∈ RH×W×3, our goal is to train a model M : RH×W×3 →
RH×W that accurately predicts the silhouette y correspond-
ing to an input image x. To achieve this, we leverage the
predictions of pretrained segmentation (S) and 2D pose esti-
mation (P) models. These models provide initial predictions
for the silhouette and sparse keypoints, respectively.

In order to align the sparse keypoints from P with dense
human silhouettes, we utilize a pose-to-silhouette transfor-
mation function g : RK×2 → RH×W, where K represents the
number of keypoints. We term this function Pose2Sil. By
carefully fusing the predictions from S and the transformed
keypoints using g, POISE aims to produce accurate and
robust silhouettes.

3.2. Pose Guided Silhouette Extraction

For each image x ∈ T , we generate two silhouettes,
IS and IP , using pretrained models S and P , respectively.
Specifically,

IS = S(x) (1a)
IP = g ◦ P(x) . (1b)

Here, IS represents the silhouette obtained from the pre-
trained segmentation model, while IP is derived from the
sparse pose predictions transformed by g.

These pair of silhouettes provide complementary infor-
mation. While IS retains image-specific body shape details,
it may become fragmented in the presence of occlusions.
On the other hand, IP produces a continuous silhouette but
may lose accuracy in capturing the body shape. Thus, our
problem of obtaining robust silhouettes under occlusions
boils down to learning a mixed representation of the two
individually noisy silhouettes. To learn a robust silhouette
representation, we train M to effectively combine the infor-
mation from these two noisy silhouettes under occlusions.
This is accomplished by minimizing the pixel-wise binary
cross-entropy loss between the predicted silhouette and those
obtained from the pretrained models,

LS = Lce (M(x), IS) (2a)
LP = Lce (M(x), IP) . (2b)

Notably, we train our model to focus exclusively on the
foreground information from IS and ignore the background.
This selective attention allows M to concentrate solely on
the identity-specific features derived from IS . This is partic-
ularly crucial since the segmentation model may misidentify
body parts as background due to occlusion, rather than the
other way around. In practice, this is carried out via a simple
masking operation, which ignores all background pixels in
IS .

We also use the pseudo-labels obtained from M itself to
regularize the training. Given an image x, we first obtain
the pseudo-label Ipl = M(x). These pseudo-labels are
subsequently used to train the model using the pixel-wise
binary cross-entropy loss,

Lpl = Lce (M(x), Ipl) . (3)

In order to prevent noisy predictions from impeding the
learning process, we use a confidence threshold τ to mask
out possible incorrect pseudo-labels. This ensures only the
high-quality predictions are reinforced by the model.

The overall training objective is given by

min
M

λ1LS + λ2LP + λ3Lpl , (4)

where each λi, for i ∈ [1, 3], controls the influence of in-
dividual loss terms in generating the final silhouette. An
overview of our framework can be found in Figure 2.

36155



Glossary

- Pose Estimation

 - Pose2Silhouette

- Pretrained Silh.

 

 

- Model under
Training

- Cross Entropy

 - Frozen Weights

- lnput Image

Figure 2. Framework overview. The key idea in POISE is to use two noisy silhouettes: IS and IP , obtained from S and g ◦P respectively,
to train our model M to predict robust silhouettes under occlusion. Note that, IS and IP provide complimentary information - IS retains
identity specific shape features while IP provides a generic human silhouette for the pose keypoints. POISE learns a self-supervised fusion
of IS and IP .
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Figure 3. Learning Pose2Sil. The model g takes in the pose-
keypoints: p ∈ RK×2 as inputs and predicts corresponding silhou-
ettes: s ∈ RH×W. The model g is trained on a synthetic dataset D
and is trained by minimizing the binary cross-entropy loss between
the predicted silhouettes and ground-truth silhouettes.

3.3. Obtaining Silhouette from Pose Keypoints

To leverage the valuable information derived from the
pose keypoints for training M, we incorporate a dedicated
module, Pose2Sil, which facilitates the transformation from
pose to silhouette. In this section, we outline the training
methodology employed for this module.

We assume access to an auxiliary synthetic dataset D =
{(xi, si, pi)}M

i=1 containing images of humans with corre-
sponding annotations for pose keypoints p and segmentation
masks s. Due to its synthetic nature, it is simple to obtain
annotations [39], unlike the real-world images in T . We

train g by minimizing the binary cross-entropy loss between
the silhouette predicted from the pose and the correspond-
ing ground-truth silhouette, Lce (g(p), s). We illustrate this
training process in Figure 3. Since the model g does not rely
on RGB images during training or inference, it remains unaf-
fected by domain changes. Thus, it is domain-agnostic and
can be applied seamlessly across different domains without
retraining.

3.4. Estimating Pose Keypoints under Occlusion

Due to the limited generalization capabilities of pretrained
pose estimation models [16, 17], directly applying them to
the images in T may result in subpar keypoint localization,
as illustrated in figure 4. Consequently, self-supervised do-
main adaptation of these pretrained models becomes impera-
tive to ensure their effectiveness on our specific domain.

In this work, we build upon the state-of-the-art domain
adaptive pose estimation algorithm, UDAPE [17]. We lever-
age the availability of a synthetic dataset D as our source
dataset, and T serves as our target dataset. The images in
T may contain occlusions, which can significantly hinder
the accuracy of pose estimation, as highlighted in previous
research [54]. To enhance pose estimation under occlusions
on the target dataset, we introduce occlusions into the source
dataset itself [20]. By doing so, we force the model to learn
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robust representations that facilitate improved pose estima-
tion under occlusions in the target dataset. Please note that
we do not have access to the ground-truth labels of T .

Figure 4. Limited generalization
capacity of pre-trained pose esti-
mation models. Left: Direct Infer-
ence of pre-trained model trained
on dataset D on BRIAR dataset.
Right: Inference after adapting the
pre-trained model to the same.

The adaptation
algorithm follows the
self-training frame-
work inspired by the
widely-used Mean-
Teacher approach [38].
It involves the utiliza-
tion of two identical
models: a teacher
model and a student
model. Both models
are initially initialized
with the same weights
at time step t = 0.
Subsequently, at each
time step t, the student model parameters θ are updated by
leveraging the supervisory signals provided by the teacher
model, as well as the annotated data from the synthetic
dataset D. The parameters of the teacher model, denoted as
θ̃, are updated using an exponential moving average (EMA)
of the student model parameters, ensuring a smoother and
more stable learning process.

Student

Teacher

Source
Prediction

Source
Ground-

TruthSource
Image

Target
Image

Student
Prediction
on Target

Teacher
Prediction
on Target

EMA

Figure 5. Adaptation of the pose estimation model. The algo-
rithm is based on [17] with explicit occlusion handling by occlusion
augmentation on the source dataset. A1 and A2 are augmentation
operators such as rotation, scaling, etc. Similarly, A−1

1 and A−1
2

are inverse augmentation operators which essentially undo respec-
tive augmentations.

To update the student model, a combination of supervised
and self-supervised losses is employed. The supervised loss
Lsup is computed using a mean square criterion on the source
dataset, leveraging the annotated ground-truth labels. In ad-
dition to the supervised loss, a self-supervised consistency

criterion Lunsup is introduced to encourage consistency in
the pose predictions of two different augmentations of an
image. Figure 5 shows a schematic diagram of the adapta-
tion algorithm for learning P . Once the adaptation is done,
we use the updated teacher model as P to obtain the pose
estimates on the images in T . Figure 6 shows the importance
of introducing occlusions in the source data which leads to
improved pose estimation under occlusions.

Source w/o
occlusions

Source with
occlusion

Figure 6. Domain Adaptive Pose Estimation under Occlusions.
Left: Inference of adapted model without occluding the source data
(D). Right: Inference of adapted model with occlusions on the
source data (D).

4. Experiments and Results

In this section, we provide a thorough assessment of
POISE , highlighting its exceptional ability to accurately
extract human silhouettes even when they are partially ob-
scured. We evaluate POISE on five datasets, assessing its
performance not only in human silhouette extraction but
also in gait recognition. Our method outperforms existing
off-the-shelf solutions and requires no extra annotations.

4.1. Datasets

We use the following datasets in our experiments.
• Humans3.6M [15] is large scale real-world video dataset

with over 3 million frames featuring from 11 professional
actors performing different actions such as walking, eating,
etc.. Following standard protocol, we use subjects ’S1’,
’S5’, ’S6’, ’S7’ and ’S8’ for training and subjects ’S9’ and
’S11’ for testing. Similar to [17], we use ≈ 20,000 frames
for training and another ≈ 3000 for evaluation. We use
the mean-IoU (mIoU) metric [35] to report segmentation
performance on this dataset.

• UP-S31 [21] is an image-based human part segmenta-
tion dataset with over 8000 images with 31 corresponding
part annotations. However, several images containing
more than one person were removed from our experiments
leading to a total of 5226 images being used for our ex-
periments. This was dis-jointly split into 4227 images for
training and 1059 images for testing. We use the mean-IoU
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(mIoU) metric [35] to report segmentation performance
on this dataset.

• CASIA-B [45] is a large-scale multi-view indoor gait
recognition dataset with 124 subjects across 11 views.
Each subject has a total 10 sequences - six sequences under
Normal (NM) conditions and two each under Carrying Bag
(BG) and Wearing different Clothing (CL) conditions. We
adhere to existing works such as [43] for training/testing
and gallery/probe partitions. We report Rank-1 accuracy
for gait recognition experiments using GaitBase [11] on
this dataset.

• BRIAR [10] is a recent large-scale real-world biomet-
ric dataset with images of individuals under challenging
conditions such as atmospheric turbulence and natural oc-
clusions. For this work, we prepare the frames by tracking
the person with Byte-Track [49]. We then select about
20,000 frames at different distances, allocating roughly
75% for training and the remainder for testing. Since we
lack ground-truth silhouettes, we present qualitative sil-
houette extraction results. Additionally, we evaluate gait
recognition using GaitBase [11] on a subset of 87 subjects
divided into 60 for training and 27 for testing.

• 3DOH50K [47] is large-scale real-world occlusion dataset
with over 50000 frames. As the ground-truth segmentation
masks are incomplete and images do not have ids associ-
ated with them, we report qualitative results for silhouette
extraction on this dataset.

Generating occluded images. We use the datasets men-
tioned above to generate corresponding occluded RGB im-
ages for evaluation purposes. In particular, we consider two
kinds of occlusions - Random Erase (RE) Occlusions [53]
and Common Objects in Context (COCO) Occlusions [24].
For both Random Erase and COCO Occlusions, we first
estimate keypoints on clean images using the adapted pose
estimation model described in Section 3.4 and then add oc-
clusions on randomly selected keypoints. This ensures that
the occlusion always covers a certain part of the human body.
Additional details on the same is presented in the section 1
of the supplementary.

4.2. Implementation details

In our experiments, we employ the DeepLabv3 archi-
tecture [7] with the ResNet-101 [14] feature extractor as
the backbone for our model M. For most of our experi-
ments, we leverage the ResNet-101 pre-trained on the COCO
dataset [24] as the segmentation network S. However, for
the specific scenario of COCO occlusions on Huamns3.6M
and UP-S31 dataset, we adopt the SCHP architecture [22]
pre-trained on the LIP dataset [12] as S. For experiments
with Random Erase Occlusions, M is trained with five dif-
ferent severities of occlusion (12, 16, 20, 24, and 28), and
the same model is used for inference on the five different
severities of occlusion. Data augmentation strategies such

as random rotation, translation, and shear are also used to
regularize the training process. Additional implementation
details are provided in the section 2 of supplementary.
Synthetic Dataset. We use SURREAL [39] as our synthetic
dataset D. SURREAL is a large-scale dataset containing
over 6 million frames of synthetically generated human im-
ages against an indoor background.
Pose Estimation Model (P). Adhering to [17], we use the
Simple Baseline decoder [44] with Resnet-101 backbone
[14] the architectures for our student and teacher networks.
The networks are trained for a total of 80 epochs with the first
40 epochs being used for supervised training of the student
model and the other 40 epochs for adaptation to the target
domain. We use a batch size 32 while optimizing using the
Adam optimizer [19] with an initial learning rate of 1e− 4,
decaying by a factor of 0.1 after 45th and 60th epochs.
Pose2Sil Model (g). The architecture of g is the same as
that of the DCGAN [32]. The model is trained for a total of
200 epochs using the Adam optimizer [19] with a learning
rate of 1e− 4 and a batch size of 32.

Table 1. Quantitative Results using mIoU metric for POISE against
IS and IP on the Humans3.6M dataset with COCO occlusions.

Method mIoU
IS 80.14
IP 75.97
POISE 87.22
POISE + Weak Sup. 89.67
Full Sup. 92.75

4.3. Results

4.3.1 Silhouette Extraction

We evaluate the effectiveness of POISE for human silhou-
ette extraction under occlusion in terms of segmentation
accuracy. Table 1 shows the efficacy of POISE is learning
strong feature representations to perform human silhouette
extraction under COCO occlusions on Humans3.6M dataset.
While our results are inferior to a fully-supervised baseline
by ≈ 5.5 %, we show that we can bridge this gap to ≈ 3 %
by fine-tuning the network with limited supervision, i.e. con-
sidering 5 % of the training dataset as annotated. This shows
that POISE learns generalized feature representations that
can be effectively used to obtain optimal human silhouettes
under occlusions. We report the mIoU on UP-S31 dataset at
six different occlusion severities in Table 2. We note that for
Random Erase occlusions, POISE provides an improvement
of ≈ 8% against IS and ≈ 3% against IP . For COCO oc-
clusions, POISE provides an improvement of ≈ 2% against
IS and ≈ 3% against IP . This shows the deficiencies of
using state-of-the-art human segmentation methods in sce-
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Table 2. Quantitative Results using mIoU metric for POISE against
IS and IP on the UP-S31 dataset. RE - Random Erase Occlusion,
COCO - COCO occlusion.

Occlusion
Severity IS IP POISE

RE - 12 79.67 81.98 85.58
RE - 16 78.25 81.72 85.35
RE - 20 76.71 81.43 85.11
RE - 24 74.88 81.34 84.55
RE - 28 73.28 80.84 83.66
COCO 78.68 77.34 80.86

narios involving occlusion. We present additional qualitative
results on the same in the section 3 of the supplementary.

We also assess the performance of POISE on the BRIAR
dataset under natural occlusion scenarios. In Figure 7, we
visually demonstrate how POISE excels at extracting silhou-
ettes, closely resembling the original body shape from IS . In
occluded regions, POISE relies on IP for guidance. Further,
as shown in Figure 7, when dealing with human subjects
of diverse body shapes (compared to the synthetic dataset
D), IP fails to retain body-specific information, while IS
retains most of it. POISE combines information from both
IS and IP to produce optimal silhouettes.

Figure 8 shows the efficacy of POISE in handling natu-
ral occlusions on the 3DOH50K dataset. As POISE uses
complementary self-supervisory signals (from IS and IP )
during training, it is able to handle occlusions reasonably
well. The results are particularly interesting as it shows sil-
houettes from an self-supervised method i.e. POISE is better
off as compared against ground-truth silhouettes. Additional
results using recent segmentation methods are provided in
section 4 of the supplementary.

4.3.2 Gait Recognition

In this section, we present the efficacy of POISE on
the downstream task of gait recognition on two datasets:
CASIA-B and BRIAR.

Results on CASIA-B: We present gait recognition results on
the CASIA-B dataset for three different walking conditions:
Normal (NM), Carrying Bag (BG) and Clothing (CL). We
evaluate POISE under the following two different settings.
Duration of Occlusion. In this setting the severity of the
occlusion remains the same across frames but the number
of occluded frames changes. As an example, 20% occlu-
sion means that for every video in the dataset, a temporally
continuous set of frames of length 20% of the total num-
ber of frames are occluded. Table 3 presents quantitative
results on the performance of POISE against IS and IP at

POISEPose-
keypoints

Image

Figure 7. Qualitative results on BRIAR. Silhouettes extracted
using POISE compared against IS and IP on natural occlusions
encountered in the BRIAR dataset. Note that while we use COCO
occlusions for training, the model M generalizes seamlessly to
natural occlusions.

Image Ground-
Truth

POISE

Figure 8. Qualitative results on 3DOH50K dataset [47] Silhou-
ettes obtained by POISE compared against the original ground-
truth silhouettes provided. Clearly, silhouettes from POISE are
much more complete as compared against the ground-truth silhou-
ettes.

fixed occlusion severity of 12. It is interesting to note that
POISE outperforms both IS and IP by significant margins
under scenarios of temporally long occlusions.
Severity of Occlusion. Similar to our experimental settings
for section 4.3.1, we study the effect of varying occlusion
severity on gait recognition, keeping the same duration
of occlusion. Table 4 presents quantitative results on the
performance of POISE against IS and IP at an occlusion
duration of 50%. We note that, although with increasing
severity of occlusion gait recognition performance falls for
all the three listed methods, POISE still outperforms IS
and IP by significant margins.

Results on BRIAR: Table 5 shows the efficacy of POISE in
obtaining robust silhouettes that help with gait recognition
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Table 3. Average Rank-1 gait Recognition Accuracy using GaitBase [11] across 11 different camera positions (0◦, 18◦, .., 180◦) for
POISE against IS and IP on the CASIA-B dataset as a function of varying occlusion duration.

Method 20% 33% 50% 67% 80%

NM BG CL NM BG CL NM BG CL NM BG CL NM BG CL

IS 84.44 65.58 48.68 82.35 64.42 47.51 79.75 61.19 44.58 75.45 57.38 40.99 71.34 54.31 39.97
IP 54.95 33.22 25.75 52.08 31.64 24.47 51.72 30.68 23.36 49.44 29.88 24.40 48.44 29.66 23.50
POISE 83.38 68.38 52.63 83.01 68.15 52.49 81.85 66.87 51.01 81.05 65.15 49.82 78.96 63.54 49.17

Table 4. Average Rank-1 gait Recognition Accuracy using GaitBase [11] across 11 different camera positions (0◦, 18◦, .., 180◦) for
POISE against IS and IP on the CASIA-B dataset as a function of varying occlusion severity: 12, 16, .. 28.

Method 12 16 20 24 28

NM BG CL NM BG CL NM BG CL NM BG CL NM BG CL

IS 79.75 61.19 44.58 79.57 61.99 45.03 80.26 61.03 43.32 79.54 59.99 42.29 79.62 59.15 41.96
IP 51.72 30.68 23.36 48.78 30.21 22.56 46.75 28.31 22.03 44.72 27.12 21.46 43.23 25.93 20.75
POISE 81.85 66.87 51.01 81.25 65.52 50.08 80.47 66.32 51.11 80.05 64.70 49.57 80.36 65.73 49.02

Table 5. Quantitative Results for top-k gait recognition accuracy for
POISE against IS and IP on BRIAR dataset using GaitBase [11].

Method top-1 top-3 top-5
IS 8.96 22.39 31.72
IP 14.20 28.60 38.68
POISE 16.66 31.69 40.54

Table 6. Ablation study results. Pseudo-label loss significantly
improves rank-1 gait recognition accuracy on CASIA-B dataset
(occlusion duration: 50%, severity: 12). Best result is in bold and
second result is underlined.

Method LIS LIP Lpl NM BG CL Avg.

IS ✓ 80.22 62.26 43.31 61.93
IP ✓ 52.23 31.07 24.79 36.03
POISE ✓ ✓ 81.33 63.89 54.35 66.52
POISE (full) ✓ ✓ ✓ 83.30 67.00 52.11 67.47

on the BRIAR dataset. We obtain improvements of ≈ 7 %
and 8 % in terms of top-1 and top-5 gait recognition accuracy
over simply using IS . These improvements are significant as
the videos in the dataset suffer from atmospheric turbulence
and have instances of persistent natural occlusions.

A thorough discussion with additional quantitative analy-
sis on gait recognition on the two aforementioned datasets is
provided in section 5 of the supplementary.

4.3.3 Importance of Pseudo-Labeling:

We present an ablation study on the importance of using
pseudo-labels from the model M under training. Table 6
shows that there is an improvement of ≈ 1% owing to the

use of the pseudo-label loss as described in Equation 3.

5. Conclusion

We present POISE , an innovative approach for robust
human silhouette extraction under occlusions. By leveraging
pose estimation and self-supervised learning, POISE ef-
fectively addresses the limitations posed by occlusions, en-
suring accurate and preserved body shape representations.
Unlike traditional methods, POISE eliminates the need for
expensive annotations, making it cost-effective and prac-
tical. Experimental results demonstrate the superiority of
POISE in improving silhouette extraction under occlusions.
Furthermore, POISE exhibits promising performance in gait
recognition tasks, underscoring its potential impact in var-
ious applications. In summary, POISE offers a straightfor-
ward yet valuable solution for extracting precise silhouettes
in challenging scenarios, contributing to advancements in
biometrics and related fields.
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