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Abstract

Concept bottleneck models have been successfully used
for explainable machine learning by encoding information
within the model with a set of human-defined concepts.
In the context of human-assisted or autonomous driving,
explainability models can help user acceptance and un-
derstanding of decisions made by the autonomous vehicle,
which can be used to rationalize and explain driver or ve-
hicle behavior. We propose a new approach using concept
bottlenecks as visual features for control command predic-
tions and explanations of user and vehicle behavior. We
learn a human-understandable concept layer that we use
to explain sequential driving scenes while learning vehi-
cle control commands. This approach can then be used to
determine whether a change in a preferred gap or steer-
ing commands from a human (or autonomous vehicle) is
led by an external stimulus or change in preferences. We
achieve competitive performance to latent visual features
while gaining interpretability within our model setup. 1

1. Introduction
Understanding how human drivers and autonomous ve-

hicles make decisions is essential to ensure safe and reliable
operation in various real-world scenarios. Neural networks
are powerful tools used for automated learning in the field
of self-driving cars [2, 8, 25, 28, 30, 34, 37]. However, one
significant challenge associated with deep neural networks
is their nature as black-box models, which hinders the in-
terpretability of their decision-making process. This pa-
per proposes to address this challenge by applying concept
bottleneck models for explaining driving scenarios. Con-
cept bottleneck models incorporate vision-based human-
defined concepts within a bottleneck in the model archi-
tecture [22, 31]. By encoding driving and scenario-related

1The code for this work is available at https://github.com/
jessicamecht/concept_gridlock.
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Figure 1. Our proposed framework combines the power of con-
cept bottlenecks and Longformer [4] architecture to enable inter-
pretable prediction of control commands in automated driving. By
incorporating human-defined concepts within the concept bottle-
neck layers, we unravel the explainability bottlenecks for safer
and more reliable driving. The Longformer architecture allows
capturing long-range sequential dependencies in driving scenarios
and reveals interesting subsequences through its attention mecha-
nism, while the concept bottlenecks enhance transparency explain-
ing these through driving-related concepts.

concepts into the decision-making process, our objective is
to provide interpretable and explainable insights into the
factors that influence the actions of both drivers and au-
tonomous vehicles. Previous research has demonstrated the
effectiveness of learning vehicle controls for autonomous
driving [6, 24, 39, 42, 42], but the lack interpretability poses
challenges to trust, safety, and regulatory compliance. The
development of interpretable and explainable models has
thus gained significant attention in the research community,
aiming to bridge the gap between the performance and in-
terpretability of deep learning models.

Our proposed procedure offers a novel approach to ad-
dress this interpretability gap in a sequential setup. By in-
corporating human-defined concepts into the bottleneck of
the model architecture, we provide a means to understand
and interpret the decision-making process of drivers and au-
tonomous vehicles. Our results can be used for driver inter-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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vention prediction in applications such as adaptive cruise
control or lane keeping.

This work provides the following contributions:

• We propose a novel pipeline for explainable driv-
ing that builds concepts with large language models,
converts image features into explicit concept scores,
and then learns sequential patterns with a Long-
former architecture. We provide extensive experiments
around model architectures and feature backbones in-
cluding traditional approaches such as Residual Neu-
ral Networks (ResNet), Contrastive Language-Image
Pretraining (CLIP) models, and Vision Transformers
(ViT) for both single and multi-task setups.

• We find that the concept space maps accurately to dif-
ferent driving conditions and that we can use our trans-
former attention mechanism to select when to reveal
automated system explanations to a driver, highlight-
ing the utility of concept bottleneck models for the
rather unexplored sequential settings.

Our experimental results demonstrate the effectiveness of
concept bottleneck models in sequential learning. Our inter-
pretability analysis reveals that our concept bottleneck mod-
els offer insights into the factors influencing a driver’s and
subsequently a model’s decision-making process, enhanc-
ing transparency and trustworthiness in autonomous driv-
ing systems. For example, we show that they can explain
changes in driving behavior such as change of forward dis-
tance and give reasoning for those changes.

2. Related Work
2.1. End-to-End Learning of Vehicle Controls

Research in automated driving has examined perception-
based tasks such as finding lane markings, traffic lights,
recognizing traffic participants [6, 24, 39] as well as end-
to-end processes to learn vehicle controls [5, 42]. For ex-
ample, Xu et al. [42] explore a stateful model using a di-
lated deep neural network and recurrent neural network to
predict future vehicle motion given input images. Bojarski
et al. [5] train a deep neural network to map front-facing
video frames to steering controls. Hecker et al. [12] explore
an extension of a model taking multiple modalities as input
for control prediction. Different approaches use behavioral
cloning to learn a driving policy as a supervised learning
problem over observation-action pairs from human driving
demonstrations [24], but only a few explain the rationale for
system decisions [21], which makes their behavior opaque
and un-interpretable.

2.2. Concept Bottleneck Models

Using human concepts to interpret model behavior has
been drawing increasing interest [3, 18]. Concept bottle-

neck models [22] extend the idea of first predicting im-
age concepts, then using these concepts to predict a clas-
sification target [23]. Original concept bottleneck models
learn the concept space jointly or sequentially with a clas-
sification or regression task [22]. These models introduce
interpretability benefits, but require training the model us-
ing concept and class labels, which can be a key limitation.
Label-free concept bottleneck models [31] or models with
unsupervised concepts [35] alleviate this problem. Most of
the work on concept bottleneck models evaluates supervised
classification task setups [22, 31, 35, 43, 44].

The evaluation of concept bottleneck models in sequen-
tial settings remains relatively unexplored. Notably, con-
cept bottleneck models enable the identification of key fac-
tors or features that can contribute to driving decisions. Ex-
tracted concept representations from input data can high-
light relevant information that is driving the predictions.
Sequential evaluations provide valuable insights while cap-
turing temporal dependencies and understanding how con-
cepts evolve over time in dynamic scenarios such as driving.
Our work focuses on evaluating concept bottleneck models
in sequential tasks to assess their performance and inter-
pretability in dynamic decision-making domains.

2.3. Vehicle Action Explanations

The importance of explanations for an end-user has been
studied from the psychological perspective [26, 27] indicat-
ing the benefit of explanations in autonomous driving. Dif-
ferent work focuses on visual explanations [14, 15, 20]; e.g.
Wang et al. [41] introduce an instance-level attention model
that finds objects that the network needs to pay attention to.
Such visual attention might not be convenient for users to
“replay” (in the driving domain). It is therefore important
to be able to justify the decisions made and explain why
they are reasonable in a convenient manner, e.g. in natural
language [14, 15, 20]. Previous research in the field of ex-
plainable decision-making in autonomous vehicles explores
the use of recurrent neural networks for explanation gener-
ation. Kim et al. [21] use an architecture based on a con-
volutional image feature encoder and learn vehicle sensor
measurements such as speed while aligning temporal and
spatial attention. Their explanation generation process uses
an LSTM [17] to predict next-word probabilities. In con-
trast, our work demonstrates the potential of concept bottle-
neck models in providing insights into the decision-making
process. To incorporate scene information, Kim et al. [19]
use an active approach to feed human-to-vehicle advice into
the vehicle controller. However, this requires a priori infor-
mation from the human on a situation that is often difficult
to obtain. Similarly, Kim et al. [20] propose a system to
learn vehicle control with the help of human advice. Those
works show that human advice is useful, but do not directly
explain why a particular model makes a particular decision.

7347



Despite these advancements, there is still a need for fur-
ther research to develop robust and effective approaches for
explaining driver and autonomous vehicle decisions. Ex-
isting studies focus on specific aspects of post-hoc expla-
nations or how to use explanations a priori, but a frame-
work that integrates human-defined concepts for automated
driving in-situ within the model to enable white-box model
explanations is lacking. Our paper addresses this gap by
proposing a novel approach that utilizes concept bottleneck
models to encode various driving-related concepts within
the decision-making process. By incorporating concepts we
aim to provide a holistic understanding of the factors influ-
encing driver and autonomous vehicle actions from within
the model.

3. Methods

Consider predicting a target value y ∈ R from input
x ∈ Rd, while trying to gain reasoning c for the predic-
tion of the target value. That is, we observe training points
{(x(i), y(i))}ni=1, and we want to determine y(i), c(i) where
c(i) ∈ Rk is a vector of k concepts. We consider bottleneck
models of the form f(g(x)), where g : Rd → Rk maps
an input x into the concept space (“clear skies”, “a car in
the lane ahead in close proximity”, etc.), and f : Rk → R
maps concepts into a final prediction (e.g. forward distance
is 40 meters). These types of models are called concept
bottleneck models [22, 31] because the control command
prediction ŷ = f(g(x)) relies on the input x through the
bottleneck prediction ĉ = g(x).

3.1. Image Feature Backbone

Our method takes inspiration from video vision trans-
former networks [1, 29]. Typically, spatial backbones take
on the function of g : Rd → Rk that maps an input x into
the latent (un-interpretable) feature space, (e.g. Neimark
et al. [29] use the video vision transformer from Arnab et
al. [1] as a latent feature bottleneck). However, we incorpo-
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Figure 2. Pipeline of the interpretable concept bottleneck control
command prediction. v, a and d denote the sensor history of speed,
steering angle and leading vehicle distance.

rate explainability through concept bottleneck models [22].
This pre-trained conceptual spatial backbone operates as a
learned feature extraction module to determine sequential
decisions or control commands. We compare this model
with traditional convolutional- or transformer-based meth-
ods [1, 9–11, 45]. Let these features Finput denote the input
feature to the subsequent sequential evaluation component
(Longformer).

3.2. Concept Bottleneck

When replacing the feature backbone with a concept bot-
tleneck model we construct driving scenarios s. These sce-
narios are supposed to describe scenes and encode contex-
tual information about the driving scenario in natural lan-
guage. A scenario captures factors such as road conditions,
traffic density, and weather conditions. To obtain those sce-
narios, we leverage two concept curation methods. First,
we use the generative capabilities of GPT-3.5 [32] to create
diverse driving scenarios. We specifically ask the language
model to provide scenarios as described in the following,
starting with very general scenarios and subsequently gen-
erating more fine-grained scene explanations.

• List scenarios that could occur in traffic starting each
sentence with {a photo of ...}

• List scenarios that could occur in traffic with respect to
{weather; traffic participants, lane changing, highway
driving, city driving} starting each sentence with {a
photo of ...}

Like Radford et al. [33], we follow the template of {a photo
of ...} (e.g. a photo of a car driving on a highway) as a de-
fault, as it has been shown that the performance of specific
concept bottleneck models can be increased this way [33].

These generated scenarios are then combined with a sub-
set of existing human-created scene descriptions from the
NuScenes dataset [7]. We transform these descriptions into
the same pattern from Radford et al. [33]. This allows us to
enrich the dataset with other diverse driving contexts, e.g.
“pedestrians” or “workers on the street”, as well as com-
pare different concept curation methods. We then manually
filter the set for obvious duplicates. The specific construc-
tion of the concept space S is domain-specific and can be
customized for other driving-related domains. To the best
of our knowledge, this is the first captured driving-related
concept bottleneck, and we release these scenarios and code
upon publication.

In the concept bottleneck model g, we encode the image
features x using an image encoder gimage : Rd → Rl and
scenarios s ∈ S using a text encoder gtext : Rs → Rl [33].
For each image, we can then measure the similarity between
the embedding gimage(x) and the scenarios gtext(s) employ-
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ing cosine similarity:

simcos(x, s) =
gimage(x) · gtext(s)

∥gimage(x)∥∥gtext(s)∥
(1)

where · represents the dot product, and | · | denotes the Eu-
clidean norm to get an indication of what is happening in
image frames from the driving sequence.

3.3. Temporal Encoder

Video vision transformers encode visual features in a
temporal manner with a transformer architecture that was
originally developed for natural language processing [40].
This acts as our regression module f : Rl → R for each
frame encoded with g. The attention mechanism in a trans-
former neural network is given by

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V (2)

where where Q, K, and V are the query, key, and value
matrices, respectively, and d is the dimensionality of the
key vectors. The softmax function normalizes the attention
weights. Due to the original transformer attention complex-
ity of O(n2) , a Longformer architecture with a sliding win-
dow attention [4] is useful to reduce computational over-
head [29]. Given a sliding window size w and sequence
length n, its complexity is reduced to O(w × n) [4]. To
attend to other time steps in the sequence, we use a win-
dow attention size of eight frames. The sequence of fea-
ture vectors from the backbone and the sensor history of
previous vehicle speed v, steering angles a and distance
to leading vehicles d for each captured frame is fed to the
Longformer model as shown in Fig. 2. We prepend a spe-
cial token ([CLS]) at the beginning of the feature sequence.
The Longformer maintains global attention on that special
[CLS] token. After propagating the sequence through the
Longformer layers, we use the final state of the features re-
lated to this classification token as the final representation
of the video and apply it to the given regression task head
to learn the control commands through a linear regression
head. Each output from the temporal encoder is processed
with a Multi-Layer Perceptron (MLP) head to provide a fi-
nal predicted value. The MLP head contains two linear lay-
ers with a GELU [16] non-linearity and dropout [38] be-
tween them. The input token representation is processed
with layer normalization. We use one MLP for each task
trained separately, and two MLPs for the multi-task setup.
The idea for evaluating multi-task setups is that a person
might be more careful in their overall driving behavior for
both tasks, so that the two tasks could benefit from be-
ing trained together. We train our models with Root Mean

Squared Error (RMSE) loss L =

√∑N
i=1(f(g(x))−y)2

N with
g(x) = sim(x, s).

4. Experiments

4.1. Data

For comparative evaluation, we employ two datasets
consisting of diverse driving scenarios captured from real-
world driving situations. The datasets encompass a wide
range of environmental conditions, traffic scenarios, and
driver behaviors to ensure generalizability of our findings.

Comma2k19. We explore the Comma 2k19 dataset [36],
which captures commute scenarios with different features,
e.g. visual images, CAN data (e.g. steering wheel angle),
and radar data (distance to preceding vehicle) in the San
Francisco Bay Area. The Comma data mostly consists of
highway scenarios, and their captured sequences are com-
paratively long compared to other datasets. In total, Comma
2k19 has 100GB of data from 33 hours of driving. In this
work, we use a 25GB subset of the data. The data was cap-
tured at 20fps and was subsampled to 4fps to reduce re-
dundancy for training. All data sequences are one minute
long, but continuous driving sequences per session ranged
between 3 and 13 minutes. For our purposes, each driving
sequence consists of 240 samples.

NuScenes. The NuScenes dataset [7] is collected us-
ing a fleet of autonomous vehicles equipped with lidar,
radar, cameras, and ego-motion sensors, and is designed
for the development and evaluation of perception, planning,
and control algorithms. With data captured in various ur-
ban driving scenarios across multiple cities, the NuScenes
dataset provides researchers and developers with a range of
environments and traffic conditions to analyze. The dataset
includes annotations for each sensor modality, including 3D
bounding boxes, as well as natural language scene descrip-
tions, enabling algorithm development and evaluation in a
structured manner. Each scene of the dataset consists of 20
seconds and is resampled at 1fps. The descriptions serve
as ground truth for our the concept bottlenecks. We use a
subset of 250 scenes for evaluation of our method.

The two datasets serve different purposes. (1) the comma
dataset provides long driving sequences to learn potential
interventions on highway scenarios, that can be connected
to explanatory driving behavior. For example, we might like
to explain a change in leading-vehicle gap, occurring due to
a change of scenario (e.g. someone cut in the front lane),
versus changed user preferences. (2) the NuScenes dataset
with its natural language scene annotations can evaluate the
explanatory abilities of our model. These two datasets cap-
ture a wide variety of scenarios in city and highway driving.
For both datasets we resize all frames to 224 × 224 pixels.
We exclude distances over 70m for our evaluation, as we
empirically evaluated that distances beyond this threshold
contain little visual information useful for gap prediction
(e.g. no leading vehicle present). We use a 0.85/0.05/0.1
train/val/test split.
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Dataset Model Feat. Size a-MAE d-MAE (a,d)-MAE

Comma ResNet+GapFormer [34] 512 0.08 0.28 -
Comma CLIP+Longformer 512 0.03 7.95 [0.22, 8.97]
Comma ViT+Longformer 768 0.06 5.23 [0.8, 6.08]
Comma ResNet+Longformer 512 0.03 3.79 [0.37, 4.11]
Comma Concept (Full)+Longformer 643 0.7 0.97 [0.36, 1.83]
Comma ResNet+Concept (Full)+Longformer 1,155 0.37 2.43 [2.15, 1.74]

NuScenes ResNet+GapFormer [34] 512 0.57 0.74 -
NuScenes CLIP+Longformer 512 0.57 5.46 [3.51, 3.47]
NuScenes ViT+Longformer 768 3.75 1.31 [0.44, 16.62]
NuScenes ResNet+Longformer 512 5.87 26.5 [9.47, 43.81]
NuScenes Concept (Full)+Longformer 643 1.89 4.21 [0.36, 6.65]
NuScenes ResNet+Concept (Full)+Longformer 1,155 0.97 4.8 [2.46, 4.26]

Table 1. Mean Absolute Error (MAE) performance of different models on the downstream task of steering angle (a) and distance (d)
prediction in a single and multi-task setting, compared to the inherently explainable concept bottleneck model.
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Figure 3. Error analysis of different model backbones and tasks. We see fewer absolute error on smaller ground truth forward distances
and steering angles. This intuitively makes sense as the visual information is clearer for small gaps (e.g. when directly following a
leading vehicle), compared to longer distances. Similarly, learning small steering angles is easier, e.g. for lane keeping in highway driving,
compared to turning on an intersection. Our concept bottleneck model continually performs similarly or better to other approaches.

4.2. Backbones

To identify how explainable concept bottleneck mod-
els perform compared to standard methods, we conduct an
analysis of different backbone models. We evaluate the per-
formance of ResNet-18 [10], Vision Transformer [1], and
CLIP [33] backbones for our single- and multi-task control
command prediction task. ResNet-18 [10], with its deep
architecture and skip connections, has been a benchmark
backbone model in computer vision. Vision Transformer
(ViT) [1] replace convolutional layers with self-attention
mechanisms, with an ability to capture global dependen-
cies. We investigate the performance of the CLIP image
backbone, which is another transfomer-based backbone, but
typically its ViT-based image encoder is combined with a
transformer-based text encoder. We analyze its effective-
ness in capturing visual-semantic representations with only
its image-based encoder. Concept bottlenecks can provide
additional linguistic explainability without requiring addi-
tional language generation models (such as LSTMs in [21]).

5. Results
5.1. Control-Command Prediction Performance

We evaluate the performance of concept bottleneck mod-
els as interpretable feature extractors for downstream tasks.

Tab. 1 presents the Mean Absolute Error (MAE) perfor-
mance of different black-box backbones compared to the
concept bottleneck model on the tasks of steering angle
and distance prediction in both single and multi-task set-
tings. It can be observed that the concept bottleneck mod-
els achieve a competitive MAE across different datasets. In
particular, for the Comma dataset, the concept bottleneck
model with a feature size of 643 obtains with a MAE of
0.7 for angle prediction and 0.97 for distance prediction.
Similarly, for the NuScenes dataset, the concept bottleneck
model with a feature size of 643 achieves a MAE of 1.89 for
angle prediction and 4.21 for distance prediction. These re-
sults indicate that concept bottleneck models exhibit good
performance as interpretable feature extractors for down-
stream tasks. We see no significant difference in perfor-
mance of our concept bottleneck approach between single-
and multi-task setups. In Fig. 3, we show error based on
different ground-truth magnitudes. We observe that con-
cept bottleneck models as feature extractors can lead to
better performance of control command prediction, while
convolution-based approaches may fail to learn the task (on
the NuScenes dataset). However, when the visual proper-
ties are connected more strongly to the task (e.g. for gap
prediction, compared to steering angle prediction), we see
an increased utility and performance. In terms of computa-
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Distance <10

 a car in close proximity on the right lane

 a car in close proximity on the left lane

 a car in medium proximity on the same lane

 a car in close proximity on the same lane

  a car overtaking us

 a car in the front lane with the left blinker

 a car in medium proximity on the right lane

  poor visibility in front

  overtaking at t junction

Distance >50

   streetlights or other artificial lighting illuminating the road ahead

   a lane closure due to an accident

   a clear view of the road in daylight

   at night with oncoming headlights from another vehicle

  in difficult lighting conditions

   at night with the headlights illuminating the road ahead

   a wildfire warning sign in view

   at night with reduced visibility due to fog or mist

 a car in close proximity on the right lane

Figure 4. Visualization of explanation capabilities of our model to determine reasons drivers keep short forward distances (e.g. distance
< 10 meter) or longer distances (e.g. distance > 50 meter). Height of the lines indicates fraction of top-10 predictions.

Concept Curation Comma2k19 NuScenes

Human 1.77 3.93
GPT-3.5 0.89 2.02

Table 2. Comparison of concepts that were created by humans
(adapted from [7]) versus curated from GPT-3.5 [32] for predict-
ing lead vehicle distance. We can see that automatically curated
concepts can perform better in terms of distance MAE compared
to human curated concepts.

tion speed, our prediction procedure has an average model
inference latency over 100 runs of 0.1 seconds (exclud-
ing data processing), and system throughput (including data
processing) of 1 per second using an NVIDIA RTX A6000
GPU for long sequences (240 frames on Comma2k19) and
2 per second for short sequences (20 frames on NuScenes).

5.2. Scene Explanation Capabilities

By employing the concept bottleneck model, we can
analyze and interpret the factors contributing to larger or
smaller gaps to leading vehicles. The interpretability of the
concept bottleneck model allows us to understand the un-
derlying causes behind these gap variations, shedding light
on human decision-making processes in relation to preced-
ing vehicles. In Fig. 4, we see that smaller gaps are typi-
cally associated with a prediction of “vehicles in close and
medium proximity” or “cars in the front lane”. On the
other hand, large distances are associated with the predic-
tion of “a clear view”, “difficult lighting conditions”, or
“at night”. Intuitively a driver might keep a larger leading
distance at night, and shorter distances in e.g. a traffic jam.

To quantitatively evaluate the effectiveness of explain-
ability through the concept bottleneck, we design a human
evaluation study of 50 images per dataset. We evaluate the
top-10 concepts for each frame and extract the top-3 occur-
ring concepts over 20 frames. We present each short video
with the predicted concepts to three human crowdworkers
and ask them how many of the concepts are correct. When
we aggregate the worker votes by majority vote, we find
that 94% of the top-3 concept predictions have at least one

correct concept for NuScenes and 90% for Comma2k19. A
fine-grained evaluation of individual reviews (not majority
voted) shows that (for NuScenes/Comma) 9%/15% of in-
stances are labeled as having no correct concepts, 30%/32%
as having one correct concept, 38%/34% have two correct
concepts and 23%/19% have all top-3 concepts correct.

Additionally we calculate the common content words
between NuScenes scene descriptions and concept predic-
tions, such that the NuScenes descriptions serve as a form
of ground-truth. We consider the top-3 concept predictions
for each frame and then the top-3 concept predictions for
the entire scene, and remove any stopwords to only evaluate
relevant content words for each scene and scenario from the
concept bottleneck. By considering the top-3 predicted con-
cepts, we are able to correctly explain 81% of the scenes.
When considering the top-1 concept prediction, we can ex-
plain 76% of all scenes accurately. This demonstrates the
capability of our approach to effectively explain the content
of scenes by leveraging concept predictions and their inter-
section with scene descriptions. In Fig. 5, we also show
predictions of the concept model on driving scenarios.

5.3. Concept Curation

Concept curation plays a vital role in building a com-
prehensive understanding of the automated driving domain.
Traditionally, it has relied on human experts who bring their
expertise and domain knowledge to the curation process.
Humans can provide nuanced insights, contextual under-
standing, and connections between different concepts based
on their experience, but they are also costly and subjective.
Human curation can be time-consuming, limited by indi-
vidual biases, and susceptible to errors or omissions. We
evaluate a randomly selected subset of 270 human created
concepts, adapted with the template from Sec. 3.2 from the
scene descriptions of the NuScenes dataset. These textual
descriptions were made by expert annotators to add captions
for each scene (e.g.: “Wait at intersection, peds on sidewalk,
bicycle crossing, jaywalker”) [7]. We additionally evaluate
270 generated concepts by GPT 3.5 similar to [32], yield-
ing sentences like “driving on a highway with an overpass
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Figure 5. Three scenarios from the Comma dataset for gap prediction with scenario explanations from the concept bottleneck and attention
values (y-axis) over time (x-axis) at particular points in time (green dot). We observe that the Longformer attention is a good indicator for
when interventions might happen. For example, we see a leading car changing the lane, leading to attention drop (top) or a scenario of
passing at a T-junction, leading to a spike (bottom); or a scenario where the ego vehicle passes a trailer vehicle on the right, leading to an
attention spike (middle).

overhead”. Our results show that human curation is not bet-
ter compared to concept curation by large language models
(Tab. 2). On the Comma2k19 dataset we achieve a distance
MAE of 0.89 for GPT curated concepts, and 1.77 for hu-
man curated concepts on the Comma dataset, and MAE of
2.02 for GPT curated concepts, and 3.93 for human curated
concepts on the NuScenes data Tab. 2.

5.4. Does attention matter?

We provide an analysis of three scenarios extracted from
the Comma2k19 dataset, focusing on the gap prediction
task (Fig. 5). These scenarios are accompanied by explana-
tions generated from the concept bottleneck model, offering
insights into the underlying factors influencing the observed

gap variations. In our analysis, we investigate the role of
the Longformer attention mechanism as a valuable indica-
tor for identifying instances where interventions might oc-
cur. By examining the attention, we can discern patterns
and changes in the scene that may prompt user interven-
tion. In the first scenario, we observe the ego car chang-
ing lanes. This maneuver often requires careful monitoring
and potential intervention from the driver. By examining
the attention distribution captured by the Longformer, we
notice a significant drop in attention at the moment when
the ego car changes the lane and has a free lane ahead, and
an attention increase when it is back in a lane behind a ve-
hicle. This attention drop suggests that the concept bottle-
neck model correctly identifies this critical event and recog-
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Dataset Feat. Size a-MAE d-MAE

Comma 24 0.38 3.48
Comma 48 0.3 1.15
Comma 100 0.27 0.22
Comma 300 0.43 0.6
Comma Full 0.7 0.97

NuScenes 24 1.49 1.85
NuScenes 48 0.60 0.02
NuScenes 100 0.52 0.51
NuScenes 300 2.27 4.01
NuScenes Full 1.89 4.21

Table 3. Bottleneck size (randomly selected from full (643) bot-
tleneck) versus command control prediction performance. We ob-
serve that bottleneck size seems to have a significant impact on
performance, with a sweet spot at 100 concepts.

nizes the reduced relevance of certain features in the scene.
In the second scenario, we encounter a situation where the
ego vehicle passes a trailer vehicle on the right side. This
scenario often demands extra caution and anticipation from
the driver, as the presence of large vehicles can impact the
driving environment. Analyzing the attention distribution,
we observe a spike in attention when the trailer vehicle en-
ters the scene. This attention spike indicates that the model
successfully captures the significance of this change in the
scenery, identifying the trailer vehicle as a prominent ob-
ject that requires increased attention. The third scenario
involves a noteworthy change in the driving environment
on a T-junction while driving in the rain. As we analyze
the attention patterns, a spike in attention occurs when our
vehicle encounters the junction situation and the attention
serves as an indicator for the change in the scenery. The
model, through its attention mechanism, effectively recog-
nizes and highlights these critical moments, and can explain
these scenarios through its bottleneck activations.

We evaluate the Longformer attention to observe
whether it can be used to select when to reveal a concept
to a user. If a particular part of a sequence in (semi-) au-
tonomous driving is of relevance, indicated by the atten-
tion, it can be used to decide if an intervention from the
autonomous car is required, if the user should take over and
provide reasond why (given the concept explanation).

5.5. Does Bottleneck Size Matter?

We investigate the impact of bottleneck size on the per-
formance, to evaluate how the size of the bottleneck affects
the accuracy of control command predictions. The abla-
tion study varies the size of the bottleneck while keeping
all other factors constant. The ablation study results are
summarized in Tab. 3. The feature size denotes the number
of concepts in the bottleneck layer, which were randomly
drawn from all possible 643 scenarios. We observe that as

the bottleneck size increases, both steering angle MAE and
distance MAE decrease. For Comma data with a bottle-
neck size of 24, the steering angle MAE is 0.38 and distance
MAE is 3.48. With a bottleneck size of 100, the steering an-
gle MAE decreases to 0.27, and the distance MAE drops to
0.22. Interestingly, further increasing the bottleneck size to
300 resulted in worse performance. We observe a similar
tendency for the NuScenes dataset: increasing the bottle-
neck size leads to improved prediction performance up to
a certain threshold after which we observe decreasing per-
formance. With a bottleneck size of 24, the steering angle
MAE is 1.49 and distance MAE is 1.85. Increasing the bot-
tleneck size to 100 reduces both steering angle MAE (0.52)
and distance MAE (0.51) with performance degradation for
larger concepts. The findings indicate an impact of bottle-
neck size on the prediction accuracy, with a “sweet spot”
at a bottleneck size of 100 concepts. There are different
reasons for the performance benefits with smaller concept
sizes. Previous work shows that it is possible to achieve
good performance with smaller concept spaces [44] and that
correlated concept spaces can be an issue [13]. We conjec-
ture that the performance benefit in our work for a smaller
concept space may be based on (1) multiple concepts in the
original concept set having only small deviations, which
means that we might achieve the same or better results
when excluding them. For example, the difference between
the concept “a pedestrian crossing”; “a pedestrian crossing
crosswalk”; “a pedestrian crossing traffic light” can be sub-
tle. (2) the image size of 224 × 224 pixels does not allow
for fine-grained concept granularity. For example different
street signs like “a curve sign”; “a steep hill sign”; “a wind-
ing road sign” can be too fine-grained to be visible.

6. Conclusion
This study validates the effectiveness of concept bottle-

neck models for explainability in sequential settings for au-
tomated driving. Our work leverages a concept bottleneck
model and Longformer sequential processing unit within a
control command prediction setup and we show competi-
tive performance to standard black-box approaches. Using
our method, we identify and explain factors contributing to
changes in driving behavior both visually through linguistic
explanation as well as temporally through transformer at-
tention. This can explain e.g. changes in forward distance
to a leading vehicle, and enable a deeper understanding of
the decision-making processes in automated driving. Our
model demonstrates effectiveness in explaining scene con-
tent, which can serve as a baseline for future work align-
ing linguistic, visual and temporal explanations. Future
work could explore more use-cases (such as speed predic-
tion), fuse more modalities into the prediction procedure, or
analyse bottleneck uncertainty (e.g. with test-time interven-
tions) in more detail.
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