
Leveraging Bitstream Metadata for Fast, Accurate, Generalized Compressed
Video Quality Enhancement

Max Ehrlich1, Jon Barker1, Namitha Padmanabhan2, Larry Davis2, Andrew Tao1, Bryan Catanzaro1, Abhinav Shrivastava2
1NVIDA 2University of Maryland, College Park

{mehrlich, jbarker}@nvidia.com {namithap, lsdavis}@umd.edu {atao, bcatanzaro}@nvidia.com abhinav@cs.umd.edu

Abstract

Video compression is a central feature of the modern
internet powering technologies from social media to video
conferencing. While video compression continues to mature,
for many compression settings, quality loss is still notice-
able. These settings nevertheless have important applica-
tions to the efficient transmission of videos over bandwidth
constrained or otherwise unstable connections. In this work,
we develop a deep learning architecture capable of restoring
detail to compressed videos which leverages the underlying
structure and motion information embedded in the video
bitstream. We show that this improves restoration accuracy
compared to prior compression correction methods and is
competitive when compared with recent deep-learning-based
video compression methods on rate-distortion while achiev-
ing higher throughput. Furthermore, we condition our model
on quantization data which is readily available in the bit-
stream. This allows our single model to handle a variety
of different compression quality settings which required an
ensemble of models in prior work.

1. Introduction
At its conception, the internet was a medium for the ex-

change of text data. This has rapidly changed over the last
decade to focus on multimedia, and in particular, video [1],
[2]. Video compression is, therefore, a critical feature of the
modern internet. Even short videos are orders of magnitude
larger than text data in their uncompressed form and would
be impossible to transmit in a timely manner over even a
broadband connection.

Although modern block-based codecs [3]–[7] are able to
achieve impressive compression ratios with limited quality
loss, even these codecs are challenged by bandwidth-limited
scenarios which are common in third world countries, rural
locations, and lower-class households [8]. Moreover, the ad-
ditional transmission latency induced by a low-bandwidth
internet connection is unstable: effective bandwidth can vary
greatly over time. One way to overcome this limitation is
to increase the aggressiveness of the video encoder creating

Figure 1. Don’t Spend Megabits, Use MetaBit. Our MetaBit sys-
tem takes heavily compressed frames and restores detail. The above
example is stored at only 0.039bpp. For each pair, our restoration is
shown with a blue border. Our method is able to faithfully restore
natural textures (left trees), clothing textures/human appearance
(middle woman), and artificial textures (top roof).

a smaller transmission, however this comes with an asso-
ciated loss in visual fidelity. We solve this fidelity loss by
formulating MetaBit, a novel convolutional neural network
architecture [9], [10] for restoring compressed videos. An
example of this is shown in Figure 1. In effect, we are trading
off the unpredictable and often extreme latency of internet
transmission for the measurable and predictable latency of
deep learning.

Metabit’s design is motivated by a number of oversights
we identified in prior work. In particular, Metabit is unique
in the space of video quality enhancement models because
it considers information present in the raw video bitstream.
Since the problem we are solving is one caused by video
compression, we find it natural to leverage this information
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Figure 2. Motion Vectors. Motion vectors resemble downsampled
optical flow. Left: reference image. Middle: optical flow. Right:
motion vectors extracted from the video bitstream. Optical flow
was computed with RAFT [11].

which describes in detail how the encoder degraded the given
video. We view this metadata as a set of “hints” which aid
our network in the restoration process. We leverage these
hints to improve both the speed and fidelity of the restoration
process by directly addressing specific design decisions in
prior video quality enhancement models.

Firstly, prior works expend significant resources on either
explicit [12], [13] or implicit [14]–[16] motion estimation.
This is a resource intensive task for a network which can be
entirely avoided by leveraging motion vectors from the bit-
stream that provide the motion information with no compu-
tation. Secondly, although Yang et al. [12] correctly observe
that not all frames contain the same amount of information,
they rely on explicit supervision, and train a discriminative
model, to determine the frames with the most information
which makes training cumbersome. The idea of using refer-
ence frames reappears several times in more recent works
[15], [16]. In many cases what these models are using are
simply Intra-Frames (I-frames) which the encoder intention-
ally stores at higher quality to use as references for decoding
later frames. The position of I-frames is explicitly stored in
the compressed bitstream so these high-quality frames can be
identified with no computation. Additionally, by differentiat-
ing I- and P- frames, we can allocate more parameters to the
I-frames and less parameters to the P-frames consequently
accelerating the entire architecture. This also introduces a
new restoration paradigm: where prior works are sliding-
window methods which take a group of frames and produce
a single output frame, our method restores blocks of frames
at a time, i.e., in a single forward pass, our network consumes
7 degraded frames and predicts 7 high quality frames. This
paradigm is much faster than the sliding window methods.

Another critical drawback of all prior works in this space,
and one which makes them cumbersome to use in real sce-
narios, is the requirement that a new model be trained per
constant quantization parameter (QP) setting. QP settings

generally range from 0-51 meaning that in the worst case
51 different models would need to be trained. This also pre-
cludes the use of compression methods, like constant bitrate
(CBR) and constant rate-factor (CRF), that allow QPs to vary
over time and, potentially, space. Since these two compre-
sion methods are in widespread use compared to the constant
QP method, prior art is quite difficult to use on real videos.
Luckily, the video bistream contains this quantization data
as well, so we forumulate a QP cross attention model that
reads the potentially time-and-space varying QP map from
the bitstream and directs the restoration blocks to adapt their
feature maps to varying quantization. This allows a single
model, which is easy to train and deploy, to outperform the
prior works which depend on an ensemble of models.

Finally, prior works use a limited benchmark of only the
H.265 (HEVC) [5] compression algorithm with constant QP
compression (see Section 3 for a detailed discussion). The
HEVC codec saw very limited use historically and is all
but deprecated by more modern codecs. The legacy H.264
(AVC) codec [3] currently handles approximately 90% of
internet compressed videos [1]. In addition to being more
common, it generates more noticeable degradations espe-
cially when paired with CRF quantization (which is the
default setting in ffmpeg and is therefore in widespread use).
Since the degradations of this codec are more severe, cor-
rection models are more useful. Although we benchmark
on the HEVC codec for comparison purposes (Appendix
A), we additionally report results using the more common
AVC codec using CRF encoding (see Section 5.4) and show
that prior works in general fail to generalize to these more
complex degradations.

We additionally propose new loss functions. In particular,
we formulate a Scale-Space [17] loss that allows the network
to focus on high frequency details which are removed by
compression and we use a GAN [18] loss which enables
the network to hallucinate plausible reconstructions. Finally,
we extend our comparison to include fully deep-learning-
based compression codecs and find that simply using AVC,
a widely supported codec, with our restoration network is
competitive in terms of rate-distortion and decoding time.

In summary, our contributions are:

1. An efficient formulation for video compression correc-
tion which leverages the underlying bitstream structure
of compressed videos to achieve state-of-the-art perfor-
mance.

2. A method which requires only a single model to handle
a range of different quality settings

3. A more rigorous evaluation procedure which includes
tests on realistic compression settings.

4. Improved loss formulations which allow the network to
produce plausible reconstructions in extreme compres-
sion scenarios.

1518



Inputs I-Frame Generation
Network

I-Frame Representation Network

10 GQ Blocks

...

3x3x64

10 GQ Blocks

...

3x3x16

I-Frame Representation
(160 channels)

10 GQ Blocks
3x3x64

...
1 Low Quality I-Frame Pixels

6 Low Quality P-Frame Pixels

6 P-Frame Motion Vectors
1 Restored I-Frame

...

Align to I-Frame

P-Frame Generation
Network

P-Frame Representation 

High Quality I-Frame

6 Warped High Quality I-Frames

6 P-Frame Motion Vectors

6 Low Quality P-Frame Pixels

Align to P-Frames

P-Frame Representation 
 (6 channels)

...

10 GQ Blocks
3x3x64

6 Restored P-Frames
Final Outputs

...

Figure 3. MetaBit System Overview. I-Frames are shown in Blue and P-Frames are shown in Pink. Our network takes an input (Orange) in
the form of a low-quality Group-of-Pictures and first performs multi-frame correction on the I-Frame. The resulting high-quality I-Frame is
used to guide correction of the low-quality P-Frames. The final output of our network (Yellow) is the entire high-quality Group-of-Pictures.
Please see Section 3 for an overview of all terminology.

2. Prior Work
JPEG Artifact Correction The related problem of JPEG
[19] artifact correction is a rich area of study with consistent
progress each year. In recent years this problem is solved
using convolutional neural networks [9], [10]. ARCNN [20]
is the first such method which was a simple regression
technique inspired by super-resolution architectures. These
works were later extended to “dual-domain” methods [21]–
[25] One flaw in these works was their focus on “quality-
aware” formulations, in other words. This was solved by
Ehrlich et al. [26], [27] using a formulation which was con-
ditioned on the JPEG quantization matrix and later improved
by Jiang et al. [28] where the network was encouraged to
correctly predict the JPEG quality.
Video Restoration Video compression correction is di-
rectly related to other video restoration tasks. Toflow [29]
used optical flow which is trained end-to-end with the restora-
tion task to align frames and operated as a sliding win-
dow. EDVR [30] also operates as a sliding window but
replaces the explicit motion estimation with deformable
convolutions [31]. Chan et al. [32] analyze critical com-
ponents of super-resolution and use this to design a simple,
flexible architecture. Relevant here, Li et al. [33] consider
super-resolution with common video compression settings.
S2SVR [34], [35] propose a novel unsupervised sequence-
to-sequence model which alleviates many of the concerns
about sliding-window techniques discussed earlier. Xiao et
al. [36] propose kernel grafts as a way to bypass complex
networks by transferring their learned representation into a
series of lightweight kernels. Lin et al. [37] improve HEVC
video decoding by incorporating a superresolution network
into the video decoder.

Video Quality Enhancement Video quality enhancement,
the task we solve here, was initially solved using “single-
frame” enhancement methods [38], [39] which outperform
image-based restoration techniques but use only a single
frame at a time. Yang et al. [12] propose MFQE which
takes multiple frames in a sliding window to correct an
entire video sequence. In addition to being the first multi-
frame video compression correction model, their key contri-
bution is the concept of Peak Quality Frames (PQFs). These
are individual frames that have a higher perceptual qual-
ity than other nearby frames, and they are identified using
a manually trained SVM [40]. They combine information
from nearby frames using pixel-wise motion estimation and
warping. Xing et al. [13] extend this idea by replacing the
PQF detecting SVM with a BiLSTM [41]. Deng et al. [14]
use implicit motion compensation with deformable convolu-
tions [31]. They show that this leads to a more accurate and
faster formulation. More recently, Ding et al. [42] design an
architecture for capturing adjacent patch information more
effectively and Zhao et al. [15] use a recurrent hidden state
and deformable attention to improve the result. Xu et al. [16]
show that STDF performance is improved by intelligently
selecting reference frames. In contrast to these techniques,
our method requires no motion estimation for alignment and
no supervision to determine high-information frames.
3. Background

Our method leverages concepts from video compression
to improve both processing speed and restoration quality
over prior works. Note that while we have selected AVC for
evaluations, our method depends on information found in all
codecs and is equally applicable to VP8/9, AV1, etc., and
nothing presented in this section is codec specific.
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Group of Pictures Modern video encoders pack informa-
tion over time into a Group of Pictures (GOP) based on the
assumption that over a small time interval motion, and there-
fore the difference between frames, is small. This yields two
types of frames: Intra-frames (I-frames), used as reference
images, and Predicted-frames (P-frames), which require a
reference to decode. I-frames are so called because they
can be decoded using only information contained within the
frame similar to a still-image. P-frames contain two major
components: Motion Vectors (discussed in the next section)
and Error Residuals. Error residuals are the difference image
between the motion-compensated frame and the true frame.
They encode all new information that could not be modeled
by motion. As I-frames contain most of the information for
a GOP, we allocate more parameters to the representation
and generation of the high quality I-frame and use that result
to guide restoration of the low-information P-frames.

Motion Compensation Video codecs include coarse
heuristic motion estimation in the encoding process. These
motion vectors are computed on blocks of pixels. See Fig-
ure 2 for a visual comparison of motion vectors to optical
flow. This operation alone compresses blocks of pixels into
4 tuples of source and destination while also reducing the
entropy of the error residual. Our network reads and applies
these coarse motions for alignment in lieu of pixelwise flows
which would need to be computed.

Tuning Quality vs. Bitrate Modern codecs provide sev-
eral methods for tuning the perceptual quality of a video
stream. By removing information (which lowers the per-
ceptual quality), the codec is able to further compress the
stream resulting in a smaller file. The most common meth-
ods are Constant Rate Factor (CRF) and Constant Bitrate
(CBR) with CRF being the default method in many imple-
mentations [43]. In the CRF paradigm, the user presents
the encoder with an integer in [0, 51] with higher numbers
indicating lower quality. The CRF number is considered a
“proxy” for perceptual quality. In CBR mode, the encoder
is asked to target a specific bitrate in bits-per-second (BPS).
This mode is commonly used if a stream is to be transmitted
over a connection of known maximum bandwidth. The un-
common Constant Quantization Parameter (CQP) method
is the mode tested by prior works. In both of the above cases,
the encoder converts the user input (CRF or target bitrate)
to a set of “QPs” which are used to quantize transform coef-
ficients. These QPs generally vary over space and time. In
CQP encoding, the user provides a single QP directly and
the encoder uses it for all blocks in all frames without re-
gard for information content. Use of this method is generally
discouraged since the encoder is no longer making intelli-
gent decisions about which information to keep or discard.
However, this method simplifies machine learning solutions
because a single QP incurs a predictable degradation. In con-
trast, varying QPs over space and time (as in CRF and CBR)

Generalized Quantization Block

Two Conv, 3x3xN,
LeakyReLU

Channel Attention

Input
Features Output

Input QPs

Spatial Attention

Shared Weights

Figure 4. Generalized Quantization Block. Our basic block is
designed to be efficient while merging information from the input
feature maps and varying quantization data. The block takes the
Quantization Parameters (Input QPs) and uses cross-attention to
adapt features to varying levels of compression.

incur different degradations even within the same frame.
Since CQP encoding is so uncommon and discouraged we
believe this benchmark is unrealistic and instead study the
default CRF encoding.
4. Method

Our task is to take a compressed frame and compute a
restored network output which is as close as possible to
the target (uncompressed) frame. We accomplish this with
a novel multiframe restoration network and loss functions.
One unique aspect of compression restoration, when com-
pared to other problems such as denoising, is that we have
an exact target frame and we know the exact procedure that
was performed on the target frame which caused the degra-
dation. This allows us to design a network architecture that
is informed by this procedure, and in our case, incorporate
metadata contained in the compressed video bitstream.

In particular, multiframe restoration methods are known
to improve when features in different frames are aligned (see
Section 5.6 for an ablation of this). Rather than compute
motion estimation, we leverage the motion vectors contained
in the video bitstream. Additionally, video compression al-
locates more information to I-frames than to P-frames (Sec-
tion 3). This was reflected in the “Peak-Quality Frames”
of MFQE [12], [13] which required explicit supervision. In-
stead of computing the locations of these frames, our method
simply assumes they are I-Frames1. By eliminating the need

1Examining charts provided by Yang et al. [12] shows that the PQFs

1520



to perform explicit motion estimation and detect high quality
reference frames, we can reinvest the requisite parameters
directly in the restoration task leading to high quality re-
sults. In the remainder of this section we describe our novel
restoration procedure and loss formulations. The procedure
is shown graphically in Figure 3.

4.1. Restoration Procedure

GQ Blocks We build a novel basic-block to perform
restoration on video frames with varying quantization. We
call this the Generalized-Quantization (GQ) block, which
is illustrated in Figure 4. The design consists of two paral-
lel branches with two convolutional layers each that share
weights. The top branch uses channel self-attention to atten-
uate the most informative input channels. Meanwhile, the
bottom branch uses cross-attention computed on the input
QP map to adapt the input features to the spatially-varying
quantization. The output features are summed to produce
the final output of the block. These blocks are stacked to
produce the larger structures in our network.
I- and P-Frame Representations Our network first per-
forms a multi-frame restoration on I-frames. Since the I-
frame itself contains most of the information in a group-of-
pictures, we compute a 64-dimensional representation using
10 GQ blocks. We then compute a 16-dimensional represen-
tation of the P-frames using 10 GQ blocks. This process is
shown in the top part of the blue box in Figure 3.

Motion Vector Alignment We then align the P-frame rep-
resentations to the I-frame representation by warping the
P-frame features using motion vectors. Each P-frame con-
tains motion vectors that copy blocks of pixels from the
previous frame into new locations in the destination frame.
We reverse the direction of these vectors and copy the P-
frame features backwards to align with the previous frame.
Repeating this process for all motion vectors in the group-
of-pictures yields a volume of P-frame features which are
coarsely aligned with the I-frame.
I-Frame Generation We concatenate the I-frame features
and aligned P-frame features channel-wise to yield a volume
containing aligned features for the entire group-of-pictures.
For a 7 frame GOP, this is a 160-dimensional representation
which we project to 64 dimensions for efficiency. We then
generate the high-quality I-frame using 10 more GQ blocks
with the final one yielding the 3 channel output.
P-Frame Generation Finally, we use the high-quality I-
frame to generate the high-quality P-frames. Each I-frame is
warped using the P-frame motion vectors to yield 6 copies
of the I-frame, each one aligned to one of the low-quality
P-frames. These warps are concatenated channel-wise with
the low-quality P-frames to create a 6 channel input. This

they detect are likely I-Frames due to their regular spacing, although we do
not analyze this here.

is projected to a 64-dimensional feature space and then pro-
cessed using 10 GQ blocks to yield the high-quality P-frame.
This process is shown in the pink boxes of Figure 3.

4.2. Loss Functions

Restoring videos which were subject to extreme com-
pression is a challenging problem. In general, we found that
traditional regression losses alone produce a blurry result.
This is directly caused by lossy compression’s preference
for removing high frequency details which is true for both
images and videos. We use two loss functions during training
in order to solve this problem.

Regression Loss We use the l1 error as our regression loss.
For network output O and target frame T we compute

L1(O, T ) = ||T −O||1 (1)
Scale-Space Loss We use a loss based on the Difference of
Gaussians (DoG) scale space [17]. The DoG is a fast approx-
imation to the Laplacian of Gaussians and as such functions
as a band-pass filter. By isolating these frequency bands
and weighting their error equally, the network is encouraged
to generate images which match in more than just the low-
frequency regions. Formally, given network output O and
target frame T , we compute 4 scales by downsampling O,
yielding the scale space

S = {O,O2, O4, O8} (2)

where entry Os is obtained by downsampling O by the factor
s in both the width and height. We then compute the DoG by
convolving each entry in S with 5× 5 2D gaussian kernels
of increasing standard deviation σ:

G(σ)ij =
1

2πσ2
e−

i2+j2

2σ2 (3)

for kernel offsets i, j. For each scale s we compute four
filtered images

IO,s,1 = G(1.1) ∗Os

IO,s,2 = G(2.2) ∗Os

IO,s,3 = G(3.3) ∗Os

IO,s,4 = G(4.4) ∗Os

(4)

where ∗ is the discrete, valid cross-correlation operator. We
then compute the difference

BO,s,1 = IO,s,2 − IO,s,1

BO,s,2 = IO,s,3 − IO,s,2

BO,s,3 = IO,s,4 − IO,s,3

(5)

to yield the per-scale frequency bands. This process is re-
peated for the target image yielding BT . The final loss is
then the sum of absolute error between the frequency bands

LDoG(O, T ) =
∑

s∈{1,2,4,8}

3∑
b=1

||BT,s,b −BO,s,b||1 (6)
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Table 1. Quantitative Evaluation. We report ∆PSNR (dB) ↑ / ∆SSIM ↑ / ∆LPIPS ↓, averaged over the MFQE [12] test split.

Method CRF

35 40 50

MFQE 2.0 [13] 0.681 / 0.015 / 0.004 0.660 / 0.019 / -0.001 0.538 / 0.023 / -0.015
STDF-R1 [14] 0.862 / 0.011 / 0.032 0.814 / 0.015 / 0.030 0.632 / 0.023 / 0.013

STDF-R3L [14] 0.846 / 0.010 / 0.032 0.882 / 0.015 / 0.029 0.817 / 0.027 / 0.011
RFDA [15] 0.273 / 0.006 / 0.012 0.395 / 0.011 / 0.006 0.458 / 0.020 / -0.021

MetaBit (Ours) 0.958 / 0.023 / -0.001 1.032 / 0.031 / -0.018 0.877 / 0.042 / -0.041

Table 2. Throughput. We measure throughput (FPS) on an NVIDIA
GTX 1080 Ti GPU. Despite having nearly twice as many parameters
our network is faster than or on-par with prior works and still able
to run on consumer hardware.

Method 240p 480p 720p 1080p Parameters (M)

MFQE 2.0 25.3 8.4 3.7 1.7 0.255
STDF-R1 38.9 9.9 4.2 1.8 0.330

STDF-R3L 23.8 5.9 2.5 1.0 1.275
RFDA 24.0 6.0 2.6 1.0 1.250

MetaBit (Ours) 26.9 5.4 2.2 1.0 2.449

GAN and Texture Losses We use the Wassertein GAN
formulation LW(O, T ) [44] with a critic modeled after DC-
GAN [45], which we modified using the procedure in Chu
et al. [46] to introduce temporal consistency (see Appendix
B for more GAN details). We include a texture loss [26]
which replaces the traditional ImageNet trained perceptual
loss with a VGG [47] network trained on the MINC materi-
als dataset [48]. Intuitively, if the images are encouraged to
produce similar logits from this MINC-trained VGG, then
it is likely the two images would be classified as the same
material and therefore have similar textures. We compare fea-
ture maps from layer 5 convolution 3 of this VGG network.
Formally:

Ltexture(O, T ) = ||MINC5,3(T )− MINC5,3(O)||1 (7)

Composite Loss Functions This yields the following two
loss functions, a regression loss

LR(O, T ) = αL1(O, T ) + βLDoG(O, T ) (8)

which is used for regression-only experiments, and a GAN
loss

LGAN(O, T ) = αL1(O, T ) + βLDoG(O, T )+

γLW(O, T ) + δLtexture(O, T )
(9)

where α, β, γ, δ are balancing hyperparameters.

5. Experiments and Results
The final architecture as described in Section 4 contains

nearly twice the parameters of the previous state-of-the-art
without performing any motion estimation or detection of

Table 3. GAN Scores. The GAN loss allows our network to gener-
ate more realistic images than the regression loss alone. Regression
loss leads to worse FID scores caused by the smooth, textureless
appearance of scene elements. Format is FID ↓ / LPIPS ↓

Method CRF

40 50

AVC (Degraded Input) 67.07 / 0.289 152.19 / 0.511
MetaBit (Regression) 80.67 / 0.272 154.42 / 0.470

MetaBit (GAN) 37.78 / 0.191 95.26 / 0.368

high quality frames and restores 7 frame blocks. We now
show empirically that this formulation works by comparing
to prior works on realistic benchmarks. Our method does this
while maintaining roughly the same (or better) throughput
as the previous methods.

We note two things about our claims here. The first is that
the architecture runs similarly-or-faster than models with
lower parameter counts because it does not depend on a
sliding window and does not need to allocate resources to
motion estimation. The second is that this efficient archi-
tecture allows us to allocate more parameters to the model
in order to improve benchmark performance with negligi-
ble penalties on speed. This synergizes with our novel loss
function and our use of quantization parameters.
5.1. Datasets

We train on the MFQE dataset [12] training split (108
variable length sequences). We randomly crop 256 × 256
patches from each example and apply random horizontal and
vertical flipping. We encode the resulting sequence with a 7
frame GOP and no B-frames, thus yielding one I-frame and
6 P-frames per example. We use CRF encoding with auto-
variance adaptive quantization for benchmarking. Please see
Appendix C for the exact compression commands we used.
We evaluate on the MFQE test split. This consists of 18
variable-length sequences (7890 frames) commonly used for
evaluation of compression algorithms and was proposed by
the Joint Collaborative Team on Video Coding [49].

5.2. Training Procedure

Our network is implemented using PyTorch [50] and
trained end-to-end for 600 epochs using the Adam optimizer
[51] with a learning rate of 10−4. We lower this learning rate
to zero over the last 200 epochs using cosine annealing [52].
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Compressed (CRF 40) STDF MetaBit (Regression) MetaBit (GAN) Target

Figure 5. Qualitative Results. Please zoom in to view fine details. Note the increased quality of the MetaBit model over STDF and the
enhanced sharpness and textures of the GAN method. This is particularly apparent on the trees (row 1), car (row 2), grass (row 3), and the
wood texture (row 4). Additional qualitative results are shown in Appendix F and the attached supplement.

For quantitative benchmarks, we train using the regression
loss (Equation 8) with α = 1.0, β = 1.0. Note that there
is not special balancing that is done in the regression loss
formulation.

For GAN training, we begin with regression weights and
fine-tune the entire network using our GAN loss (Equation
9) with α = 0.01.β = 0.01, γ = 0.005, δ = 1. We train
for an additional 200 epochs with a learning rate of 10−5

and the RMSProp optimizer. Please see Appendix B for
additional details on the GAN architecture. In this case we
use the balancing parameters only to keep the GAN loss
from becoming unstable and diverging, this was done by
fixing δ, lowering α, β together by one order of magnitude,
and then lower γ until training consistently converged.

For regression we report the change in PSNR, SSIM [53],
and LPIPS [54] averaged over all frames in the test set.
For GAN evaluation, we report the average FID [55] of the
compressed and restored frames.
5.3. Quantitative Results

We compare to MFQE 2.0 [13], STDF [14], and
RFDA [15]. These methods were all re-trained using publicly
available code. We do not compare with single-frame video
restoration methods or image restoration methods which
were found to have objectively worse performance than the
multiframe methods. Please see Appendix A for more details
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Figure 6. UVG Rate-Distortion. Distortion is measured with
PSNR. Using AVC + MetaBit method surpasses recent fully deep-
learning codecs at low bitrates. As expected, the improvement
reduces as bitrate increases. Rate here is “bits-per-pixel” (bpp).

about compared methods and how we chose them. Table 1
shows our quantitative results. We test STDF in both the
R1 (3-frame sliding window) and the R3 (7-frame sliding
window) setting. Of note here is the RFDA result which de-
spite being the most recent compared method made limited
gains. This appears to be caused by the larger temporal range
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Table 4. Compression Throughput. We measure FPS on an
NVIDIA GTX 2080 Ti GPU compared to recent deep-learning-based
codecs on 1080p frames. For encoding, our method uses AVC and
there is no GPU requirement. NeRV [56] encoding speed is not
directly reported but requires training a unique network per video.

Wu et al. [57] DVC [58] Liu et al. [59] NeRV [56] MetaBit (Ours)

Decoding 10−3 1.8 3 12.5 3.42
Encoding 2.4 1.5 2 - 52

that RFDA uses as hidden states are accumulated over time.
The temporally varying quality of CRF encoding became a
confounding factor.

Overall MetaBit makes an advancement in all metrics
over prior works, often by a large margin. This is particularly
noteworthy because we train only a single model to produce
all the results in Table 1 whereas all prior works required a
model per CRF setting. Since our model is conditioned on
the QP map, it is able to adapt to spatially and temporally
varying degradations in ways that prior works cannot. In
particular, MetaBit was the only method which improves
perceptual quality (LPIPS) on all three tested CRF values.

We also provide throughput results in Table 2. Note that
despite having more parameters and better restoration re-
sults, our method achieves similar throughput to STDF, even
exceeding it in some cases. We are also comparable in speed
to MFQE 2.0 which has 9 times fewer parameters. These
tests were performed in like-conditions to those reported by
prior works to control for the compute environment.
5.4. GAN Correction

While the results on CRF values {40, 50} show an im-
provement in quantitative metrics, these settings represent
extreme compression. We found that the regression result of
our network is not visually pleasing despite the improvement,
so we additionally show results using our GAN procedure.
Quantitatively, FID scores in Table 3 show a significant im-
provement in realism with LPIPS scores similarly indicating
a significant improvement in perceptual similarity. We show
qualitative results in Figure 5, note the significantly improved
textures, sharp edges, and additional detail introduced by the
GAN loss, particularly compared to STDF.
5.5. Comparison to Learned Video Compression

One application for this work is as a stopgap technology
between classical compression and fully deep-learning-based
compression. This allows for the speed, memory consump-
tion, and technical debt associated with classical compres-
sion algorithms to sustain, with bitstreams fully decodable by
users who lack the computational resources for deep models.
In Table 4, we compare the frame-rate of our method against
recently published learned video compression algorithms,
and in Figure 6, we compare rate-distortion on the UVG [60]
dataset. Our method is only bested by the recent NeRV [56]
for throughput (which we note has extremely long encoding

Table 5. Ablation. Inference FPS is computed on an NVIDIA GTX
1080 Ti for 240p frames, PSNR is computed for H.264 CRF 35.

Property Option Result

∆PSNR (dB) FPS

Parameter Distribution Favors I-Frames 0.954 26.9
Even 0.938 (-1.6%) 24.3 (-9.7%)

Motion Compensation
Motion Vectors 0.948 26.9
Optical Flow 0.952 (+0.4%) 17.0 (-36.8%)

Loss l1 and Scale-Space 0.954 -
l1 Only 0.900 (-5.6%) -

times) and achieves better rate-distortion results than many
compared methods especially at low bitrates.
5.6. Ablation

We ablate our design in Table 5, showing impact on
throughput and reconstruction accuracy. Note that the first
row in each section is the “reference” method, i.e., the final
model tested in previous sections.
Parameter Distribution Our architecture allocates more
parameters to the I-frame representation than the P-frame
representation (64- vs. 16- dimensional). Here, we compare
with an “even” distribution that allocates a 32-dimensional
representation to both. This performs worse in all regards.
Motion Compensation We use video motion vectors to
perform alignment. A natural comparison is using per-pixel
optical flow. For optical flow, we use a pre-trained RAFT [11]
model and find that indeed the fine motion detail does im-
prove performance but at a significant throughput penalty.
Loss We claimed in Section 4.2 that our scale-space loss
helps ensure a correct reconstruction of higher frequency
information leading to better reconstruction accuracy. We
test this and find that it indeed leads to a 5.6% improvement
over not using a scale-space loss.
6. Conclusion and Future Work

We presented a novel formulation for video compression
correction. Our network leverages the structure of the com-
pressed bitstream to outperform prior works while still being
extremely efficient. We proposed and tested an improved
benchmark with wider applicability. This work has the po-
tential to help people in bandwidth-constrained environments
by allowing heavily compressed bitstreams to be viewable.

We hope our work will inspire additional research. Par-
ticularly: high-resolution video is slow to process and time-
varying compression artifacts can introduce slight temporal
inconsistencies (see video examples in the attached supple-
ment). While our parameter count is modest in the space
of deep learning models and the method runs on consumer
hardware, a practical solution will need to be both smaller
and faster. Nevertheless, we believe that this technology is an
important stopgap between classical compression and fully
deep-learning compression.
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