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Abstract

In this paper, we contrast the usage of two deep-learning
approaches for the automatic grading of diabetic retinopa-
thy (DR) and diabetic macular edema (DME) in retinal fun-
dus photographs using a relatively small novel dataset. We
developed a telemedicine system to collect and humanly
grade 11,109 diabetic patients. The certified graders an-
notated the level of DR as well as the existence of a refer-
able DME in the macula-centered fundus images only. We
use EfficientNet to build an AI-based model for both prob-
lems. To examine the transfer learning validity, the model
was trained on an external dataset (EyePacs) and then fine-
tuned on the egyptian data for the DR and DME grading
problems. Firstly, we use the macula-centered images only
in fine-tuning. Secondly, we use optic-disc-centered im-
ages in addition to macula-centered images. We obtained
the labels for the optic-disc-centered images directly from
the corresponding macula-centered labels as weak labels.
Then, both types of images are used in fine-tuning. We
found an increase in the DR performance using the sec-
ond approach in both accuracy and quadratic weighted
kappa(QWK). Notably, QWK increased from 90.23% to
91.3% using additional weakly labeled optic-disc-centered
fundus images.

1. Introduction
Diabetes is one of the most widely spread diseases

around the world, especially in many developing countries.
According to the international diabetes federation, approxi-
mately 463 million adults (20-79 years) are living with dia-
betes throughout the world [47].

Diabetic Retinopathy is one of the most dangerous com-
plications of diabetes as it affects eyesight and may cause

blindness [29, 49]. People who have had diabetes for many
years (more than 15) are most probably suffering from di-
abetic retinopathy, but the early detection of this complica-
tion helps a lot in avoiding its development to severe lev-
els [48] [2]. Diabetic Macular edema is another danger-
ous complication [6] which represents a sign of diabetic
retinopathy evolution to the worst levels. Fundus images
have proved high accuracy in allowing ophthalmologists to
detect the presence of DR in addition to its severity level
and the presence of DME [15, 54].

According to the proposed international clinical diabetic
retinopathy disease severity scales (PIRC), fundus images
are graded from 0 to 4 as follows:{ R0: no DR, R1: mild
DR, R2: moderate DR, R3: severe DR and R4: proliferative
DR}

We can also classify the DR cases into referable (RDR)
and non-referable (NRDR) where referable cases are the
cases that need to visit the doctor. These are the cases
with classes R2, R3, and R4 on the PIRC scale. Moreover,
the cases can be classified into vision-threatening and non-
vision-threatening DR where the vision-threatening class
includes DR levels R3 and R4. These cases may need ur-
gent surgery to avoid eyesight loss [49]. Also, the detection
of the presence of diabetic macular edema is an important
sign that the patient needs to visit the doctor.

Deep learning-based models are widely used in the DR
classification problem from fundus images [3,28,66]. They
are mostly employed in screening programs to help in the
early detection and regular follow-up of DR for diabetes
patients. The screening program may be automated where
the patient is directed to an ophthalmic clinic if classi-
fied as having referable DR by the model. It also may be
semi-automated where the fundus image, classified by the
model as referable, is manually reclassified by a human
grader [59]. In both cases, if the patient is classified by
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the model as having non-referable DR, he will redo the test
after 6 months or a year. These programs save much time
for the ophthalmologists which they were wasting on exam-
ining the non-referable DR cases that do not need medical
intervention.

With millions of our population suffering from diabetes,
it is important to develop a DR screening program. We
can use publicly available DR classification datasets such as
EyePacs and APTOS datasets which were released in 2015
and 2019 respectively and available on the Kaggle website
to train our classification models. Unfortunately, the classi-
fication accuracy degrades noticeably when a model is used
to classify fundus images from different ethnic groups than
that of the training data. This may happen due to various
factors such as the difference in the data distribution which
will be shown as a crucial factor but not the only one in
our results. The difference in the used fundus camera is
also a factor in addition to biological differences as men-
tioned in [49]. To our knowledge, there is no available large
DR classification dataset collected from Egypt. So, we col-
lected a new dataset which is graded according to the DR
PIRC scale and also for the presence or absence of DME.

This paper studied several dimensions to reach a com-
plete pipeline for training the deep learning models needed
in a DR screening program. The prevalence of DR in pa-
tients with diabetes in Egypt has been studied in [14]. Our
contributions can be summarized as follows:

• Collect the DR10K dataset, grade it for DR and DME
classification, and analyze it.

• Fine-tune best models trained using publicly available
DR datasets on the DR10K dataset to classify DR and
DME, achieving an accuracy of 89.51% in the 5-class
DR classification.

• Using weakly labeled optic-disc centered images to
augment the data of macula centered ones, achieving a
better performance of 89.86% in the 5-class accuracy.

• Apply regression score thresholding to improve the
classification results on the three binary problems:
DME, DR referability, and DR vision threatening. Re-
gression score thresholding shows great improvement
in binary problems with respect to sensitivity.

2. Related Work
Convolutional Neural Networks (CNN) [30] are consid-

ered a breakthrough in image processing. It has the ability
to learn different features starting from low level and go-
ing to mid-level and high-level complex features. Hence, it
was indulged in many applications such as in image classi-
fication [32], age and gender estimation [33], image recog-
nition [41], image segmentation [20, 34, 65], object detec-
tion [11] and video segmentation [37]. Many attempts have
been done to interpret the learned features in these different
problems [13, 51]

Semi-supervised learning or weakly supervised learn-
ing [69] is widely used to solve the problem of the lack
of large annotated datasets for various machine learning
problems including computer vision [16, 38, 42, 68]. Yalniz
et al. [67] proposed a pipeline based on a teacher-student
paradigm to allow the use of a billion of unlabelled images
to enhance the performance of different CNN architectures
achieving 81.2% top-1 accuracy on Imagenet using vanilla
ResNet-50. Weak supervision helps especially in solving
some highlighted challenges in medical field problems such
as the high cost and effort of data annotation and the class
imbalance [21, 23, 45].

Deep learning [31] has shown much potential in solving
several problems in the field of computer vision, especially
in the medical field. There have been attempts to detect
many types of cancer such as breast cancer [39], skin can-
cer [7], and brain tumor classification [10]. One of these
applications is eye disease classification such as glaucoma
detection [64]. Diabetic retinopathy is one of those criti-
cal diseases. Many attempts to solve the diabetic retinopa-
thy classification problem have been made. [50,61,62] used
Inception-v3 [57] architecture to build classifiers for dia-
betic retinopathy and macular edema. Wang et al. [63] pro-
posed two convolutional neural network structures and used
regression activation maps to localize features that are dis-
criminative and that contribute to the classification result.
More recent works [25, 55] employed vision transformers
in DR classification.

Classifiers were also built to detect diabetic macular
edema in [8]. They used an ensemble of AlexNet [27],
VGGNet [53], and GoogleNet [56]. In [61] they used an
Inception-v3 [57] model to predict DME and predict a sub-
retinal and an intraretinal fluid presence in a multi-task man-
ner. They trained the model on fundus images while the
labels were extracted from their OCT counterpart. The
model showed better results than manual grading and they
proved the model extracted DME-related features mainly
from the optic disk when training using crops of the image.
Also, [24] used vision transformer-based models to effec-
tively classify DME from OCT images.

Due to diabetic retinopathy’s dangerous consequences,
many countries have launched screening programs to aid
in the early detection and tracking of patient’s history and
treatment [43]. In Portugal, they achieved a sensitivity of
95.8% and a specificity of 63.2% in the pre-deep learn-
ing era [40]. Singapore had the first nationwide screen-
ing program launched in the 1990s that uses fundus im-
ages. There were later attempts to use the fundus im-
ages for developing AI models that can detect multiple
eye diseases like diabetic retinopathy, glaucoma, and age-
related macular-edema (AMD) [60]. They worked on the
DR referability problem and achieved 93.6%, 90.5%, and
91.6% for the AUC, sensitivity, and specificity respectively.
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They also reached 95.8%, 100%, and 91.1% for vision-
threatening problem’s AUC, sensitivity, and specificity re-
spectively. Recently, Thailand also launched its DR screen-
ing program [46].Inspired by these attempts, we developed
our own system.

3. DR10K Dataset
The first phase is to collect fundus images from diabetes

patients. For each patient’s eye, we collect both the macula-
centered and the optic-disc-centered fundus images. This
dataset (macula-centered) is then graded by ophthalmolo-
gists with PIRC scale grades for Diabetic Retinopathy and
for DME existence. More details about the data collection
and annotation system can be found in [4]

3.1. Data Distributions

We will show the dataset distribution with respect to
gradability, DR levels, and referable DME.

3.1.1 Gradability

We collected 11,109 exams. The exams consist of either left
or right fundus images of the patient or both. 87% of the
images are gradable for both left and right eyes. Ungrad-
able left-eye images in the dataset represent less than 5%
of the total left-eye images. The same percentage holds for
the right images. Also, we notice that 1825 exams have
the image of only one eye and the other eye’s image could
not be captured which represents 16.4% of the whole ex-
ams. Finally, in total, we have 19,378 gradable images and
1,009 ungradable images. Our analysis shows also that only
10,811 exams have at least one gradable eye image. So, the
other 298 exams are excluded from the rest of the analysis.

3.1.2 Diabetic Retinopathy Levels (DR-Levels)

For the remaining 19,378 images of 10,811 patients, we
show the distribution of the DR levels in figure 2 and we
show examples of our dataset in figure 1.

3.1.3 Diabetic Macular Edema (DME-Referability)

For the remaining 19,378 images of 10,811 patients, we
show the distribution of the DME referability condition in
table 1.

Eyes Number Patient Worst Eye

Non-referable DME 16397 (84.62 %) 8654 (80.05 %)
Referable DME 2981 (15.38 %) 2157 (19.95 %)

Table 1. Left column shows the number of eyes (right + left)
graded as having DME or not. Right column shows the number
of patients whose worst eye was graded as having DME or not.

3.2. Grader Variability

For each image, there were three graders and an adjudi-
cator for the conflicts. In this section, we study the variabil-
ity of the ophthalmologists’ grades for the collected data.
The aim of this study is to establish confidence in the grad-
ing procedure described in [4]. It is also to show the human
grader baseline for the different classification tasks that are
addressed. Establishing human-level metrics is a common
practice while providing new datasets. The human perfor-
mance was measured on medical datasets such as CheX-
pert [22] and on DR and DME datasets as in [59] and [61].

We started with 19,378 gradable images. Out of these
images, we found that the three graders agreed on the grad-
ability of 18,248 of them. In 995 images there were two
graders in agreement and the adjudicator agreed with them.
In 135 images there were two graders in agreement but
the adjudicator disagreed with them (agreed with the third
grader).

In the following, we will study the variability in the DR
level with respect to the 18,248 images that were agreed on
their gradability earlier. Table 2 shows that only 71.83%
of the images did not need any adjudication. This observa-
tion confirms that depending on one ophthalmologist is not
sufficient for DR classification and dataset annotation. In
table 3, we show the graders’ variability in the two binary
problems of Referable DR and DR vision-threatening.

We establish the human grader baselines based on two
approaches. In both approaches, the ground truth is consid-
ered an adjudicated grade. In the first approach, we contrast
the ground truth against individual grading by the graders.
In the second approach, we contrast the majority voting of
the three graders to the ground truth. In table 4 we observe
that the majority voting of the ophthalmologists produced
much higher metrics. This observation hints to us to apply
ensemble methods in our models that will be presented in 5.

4. Datasets and Splits Distributions
Training deep learning models requires a large amount

of data. Usually, the performance of the model improves as
the data amount increases. As the number of images in our
new dataset is 19,378, which is relatively small, the model’s
training will suffer. So, inspired by previous work [17, 44]
we used two publicly available datasets. We provide a table
showing a comprehensive comparison between all the used
datasets and a figure showing the DR levels distribution of
the two public datasets in [5].

4.1. Kaggle Dataset

We downloaded a very large dataset from the Kaggle
website. It is a combination of the data provided in two
competitions, the first was held in 2015 during which the
data is provided by EyePacs. The second is held in 2019
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Figure 1. Examples of DR10K starting from grade 0 on the left to grade 4 on the right.

3 Agreed(R) 2 Agreed (R) 2 Agreed (W) 2 Agreed (W) 3 Disag. 3 Disag. Total
1 Disag. (W) 1 Disag. (R) 1 Disag. (W) 1 (R) 3 (W)

R0 11372 1402 650 2 8 0 13434 (73.62 %)
R1 1054 792 492 20 13 0 2371 (12.99 %)
R2 164 426 340 25 22 0 977 (5.35 %)
R3 160 378 150 14 18 0 720 (3.95 %)
R4 358 244 111 17 16 0 746 (4.09 %)
Total 13108 (71.83 %) 3242 (17.77 %) 1743 (9.55 %) 78 (0.43 %) 77 (0.42 %) 0 (0 %) 18248

Table 2. Graders’ agreement percentages for DR levels.

3 agreed (R) 3 agreed (W) 2 agreed (R) 2 agreed (W)
1 disagreed (W) 1 disagreed (R)

NRDR 15259 9 321 216
RDR 1653 1 534 255
Total 16912 10 855 471
Percent 92.68 % 0.05 % 4.69 % 2.58 %
NVT 16344 4 221 213
VT 802 15 485 164
Total 17146 19 706 377
Percent 93.96 % 0.1 % 3.87 % 2.07 %

Table 3. Grader’s agreement percentages for binary DR problems.

Individual Grading Majority Voting
Human Accuracy 87 % 89.87 %
Human QWK 90.25 % 92.95 %
Human Binary Referability Accuracy 96.66 % 97.36 %
Human Binary Referability Specificity 98.35 % 98.58 %
Human Binary Referability Sensitivity 85.71 % 89.48 %
Human Binary VT Accuracy 97.23 % 97.82 %
Human Binary VT Specificity 98.69 % 98.66 %
Human Binary VT Sensitivity 80.49 % 88.27 %

Table 4. Human graders annotation performance metrics.

Figure 2. Per level DR10K dataset distribution

Train Validation Test
Non ME 11715 (84.37%) 1552 (84.72%) 3130 (85.52%)
ME 2171 (15.63%) 280 (15.28%) 530 (14.48%)
Total 13886 1832 3660

Table 5. DME referabilty on DR10K dataset splits distribution

in which the data is provided by Aptos. The whole dataset
is composed of 92,363 retinal images each labeled for DR
severity from 0 to 4 according to the PIRC scale. We split
the Kaggle data into three splits train, validation, and test.

The test split is the public test set of the 2015 EyePacs com-
petition. The train and validation splits are randomly sam-
pled from the mix of the rest of the Kaggle data so as to
keep the distribution of each of them similar to that of the
whole dataset.

4.2. Messidor-2

We also used the publicly available Messidor-2 dataset
[9] and [1] as additional testing data to prove the general-
ization of our model’s performance.

4.3. DR10K

Finally, our dataset is split randomly into train, valida-
tion, and test splits. The splitting is done to keep the distri-
bution of each split similar to the original distribution of the
dataset shown in figure 2. Also, during splitting each pa-
tient’s two eye images are included in the same split to keep
the three splits independent. For DME existence classifica-
tion, we used the same three splits that we acquired when
splitting based on the DR distribution. In table 5, we show
the distribution of the splits with respect to DME existence.

5. Approach
Our training process is supposed to train DR classifica-

tion models using the larger Kaggle dataset then test it on
Messidor-2 to prove generalization and finally fine-tune it
on our Egyptian dataset to perform better on its scope. We
will also fine-tune DR Kaggle-trained models on the DME
labeled data to classify the DME existence.

5.1. Transfer Learning

Inception-V3 [57], DenseNet [19], MobileNetV2 [52],
ResNet [18], ViT [12], Swin [35], ConvNeXt [36] and Effi-
cientNet [58] are different deep architectures that achieved
state-of-the-art results on ImageNet. Each one of our mod-
els is composed of one of these architectures pre-trained on
ImageNet as a backbone with its last output layer replaced
by one of our two classification blocks.
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For the DR grading problem, we tried two options for
the classification block the big classifier block and the small
classifier block. The big classifier block is composed of four
consecutive fully connected linear layers of sizes 1000, 500,
200, and 5 respectively. The small classifier block is com-
posed of 3 consecutive fully connected linear layers of sizes
768, 256, and 5 respectively. We used the ReLU nonlin-
earity layer after each one of these linear layers except after
the last layer where we used softmax. Moreover, we applied
dropout layers with a probability of 0.5 between each pair
of these linear layers during training. The complete archi-
tecture is shown in figure 3.

For the DME existence classification models, the last lin-
ear layer of the big classification block is replaced by a lin-
ear layer of size 1 instead of 5. Also, sigmoid nonlinearity
is applied after this layer instead of softmax.

5.1.1 Implementation Details

We list the important details of our training procedures to
ensure the reproducibility of the presented results.

• Any black borders or camera watermarks are removed
from the fundus image before using it at any stage.

• We used Adam optimizer with weight decay of 4e-5,
batch size of 32, 4 V100 GPUs, and tried the learning
rates 5e-4, 1e-4, 5e-5, and 1e-5 choosing between them
based on validation performance.

• The loss function is the cross entropy for DR models
and the binary cross-entropy for DME existence ones.

• The images are resized to 880x880 then we apply aug-
mentation techniques of random-resized-crop to a size
of 768x768 (these sizes are fixed in all training phases
except for ViT and Swin models where we resize to
440x440 then crop to 384x384). Horizontal and verti-
cal flipping are also applied with a probability of 0.5.

• During the validation and testing stages the image is
resized to 880x880 (440 for ViT and Swin) and a size
of 768x768 (384 for ViT and Swin) is center cropped.

• During the 3 stages, ImageNet normalization is applied
to the image.

• We trained our models for 100 epochs and chose the
best-performing epoch on the validation set to be our
experiment output model.

5.1.2 Baseline Models

To apply transfer learning to our classification problems, we
employed several baseline models.

• EfficientNet-b7 and EfficientNet-b5 models pre-
trained on ImageNet with the advprop [58] enabled.

• Inception-v3 model with auxiliary logits [57] disabled.
• Densenet-161 model.
• MobileNet-V2 model.
• ResNet152 model.

• ViT model with image size 384.
• Swin Transformer model with image size 384.
• ConvNeXt model.
• Ensemble of three different Architectures.
• Ensemble of three EfficientNet models.

5.1.3 Regression Score Binary Thresholding

Converting the classification probabilities to a regression
score can be done easily in problems where the classes are
meaningful levels such as five-class DR classification using
the following equation 1

S = Σ4
c=0 c · pc (1)

Where S is the regression score, c is the DR class ranges
from 0 to 4 and pc is the classifier’s estimated probability of
class c [26]. This score ranges from 0 to 4 and we can use it
to classify referability and vision-threatening by looking for
the best threshold over the validation set. We will choose a
referability threshold and a vision-threatening threshold for
each model and ensemble.

The choice of threshold introduces a trade-off between
specificity and sensitivity. Since its value is directly pro-
portional to the specificity and inversely proportional to the
sensitivity. To guarantee the balance between them, we
chose the threshold that achieves the highest harmonic mean
of both of them on the validation data. We tried all the
thresholds ranging from 0.05 to 3.95 with step 0.05. The
chosen threshold is then tested on the appropriate test splits.

5.2. Augmentation using Weakly Labeled Data

After producing the results using our first approach, we
looked for a way to get use of the optic-disc-centered im-
ages. The intuition behind that is to introduce a new view of
the fundus data so that the model can learn to capture better
features that aid it in the classification task. The optic-disc
images can happen to have better quality or have some more
clear features (lesions) that relate to the grade given to the
eye.

The way we chose to integrate the optic-disc-centered
in the training is by transferring the labels of the macula
images to their corresponding optic-disc-centered images.
In this case, we have a new weakly labeled dataset. This
data is then added to the macula data to produce a new one
of double the size (macula and optic-disc dataset). The label
transfer procedure occurred in both DR and DME problems.

This dataset is then used in fine-tuning. Fine-tuning
starts with the kaggle-trained checkpoints. We only inves-
tigated the best models according to the baseline results,
hence we only fine-tuned the EfficientNet architecture on
both DR and DME problems. The same preprocessing steps
as well as the regression score thresholding technique were
conducted.
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Figure 3. Our neural network architecture; In configuration A we only feed the macula-centered images to the network for fine-tuning,
while in configuration B we feed the macula and the weakly labeled optic-disc centered images.

6. Results

6.1. Results on External Datasets

The baseline models are first trained on the Kaggle
training dataset, and evaluated on the Kaggle test set and
Messidor-2. The aim is to use the models with the best re-
sults for fine-tuning DR10K. We found that the ensemble of
three EfficientNet models is doing the best. Also, the best
standalone model has the EfficientNet backbone. Detailed
results are shown in [5]. Hence, only EfficientNet models
are fine-tuned.

6.2. Results on DR10K Dataset

6.2.1 Results for DR

In table 6 we compare three alternatives for the five-class
grading problem. We examine the best models on the Kag-
gle dataset against the test set of the DR10K dataset. We
also examine the option of training EfficientNet models
from scratch on the training set of DR10K. We examine the
option of fine-tuning the best models we obtained earlier on
the training set of DR10K. The results show that the models
that are trained from scratch on DR10K or fine-tuned per-
formed much better than evaluating the models trained on
Kaggle directly. Moreover, we sampled a subset from the
DR10K test split similar in distribution to the Kaggle test
split and tested the Kaggle-trained models on it. The re-
sults are better than direct testing on DR10K distribution
but still worse than models trained from scratch or fine-
tuned on DR10K. This proves that the data distribution is
an important factor leading to performance degradation but
is not the only one. This shows the importance of gather-
ing Egyptian data for the screening program to reflect the
local distribution, used fundus camera, and ethnic biologi-
cal features. The importance of fine-tuning is also evident
since the fine-tuned models on DR10K perform better than
the models trained from scratch. Also, the best result we
achieved exceeds the human baseline for individual grad-
ing. The effect of augmentation using weakly labeled data
is also evident in the standalone and the ensemble of mod-
els.

Accuracy QWK

Kaggle Trained

Eff-b5 -small+ lr 1e-4 79.78 78.89
Eff-b7 -small+ lr 5e-5 78.55 77.25
Eff-b7-big+ lr 1e-4 81.12 81.3
Ensemble of 3 EfficientNet models 80.85 81.61

Kaggle Trained Tested on Distribution Similar to Kaggle

Eff-b5 -small+ lr 1e-4 84 82.64
Eff-b7 -small+ lr 5e-5 80.85 76.73
Eff-b7-big+ lr 1e-4 86.07 83.74

Trained From Scratch on DR10K

Eff-b5 -small+ lr 1e-4 88.28 89.69
Eff-b7 -small+ lr 5e-5 88.47 89.42
Eff-b7-big+ lr 1e-4 87.76 88.66
Ensemble of 3 EfficientNet models 88.99 90.06

DR10K Fine Tuned

Eff-b5 -small+ lr 1e-4 88.88 89.82
Eff-b7 -small+ lr 5e-5 89.23 89.91
Eff-b7-big+ lr 1e-4 89.21 89.7
Ensemble of 3 EfficientNet models 89.51 90.23

DR10K Fine Tuned with optic-disc

Eff-b7 -big+ lr 1e-5 89.51 89.33
Eff-b7 -big+ lr 5e-5 88.83 90.09
Eff-b7 -big+ lr 5e-4 88.77 90.16
Ensemble of 3 EfficientNet models 89.86 91.3

Table 6. Five-Class DR Classification Performance on DR10K.

As for the binary problems and the use of the regression
score thresholding technique, the results are shown in ta-
bles 7 and 8. We observe that the fine-tuned models on
the DR10K training are performing much better than the
other alternatives except for the models trained on the ex-
tended data with optic-disc images. One of these models
has beaten all standalone macula fine-tuned models and has
achieved a comparable performance to the macula ensemble
for the referability problem. Also, the ensemble of models
fine-tuned with the extended data outperforms the ensemble
of fine-tuned models on the macula in most of the metrics
for the vision-threatening problem.

6.2.2 Results for DME referability

We compare three scenarios for the DME binary problem.
We examine training EfficientNet models from scratch (pre-
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Thr. Acc. Sens. Spec. H-Mean AUC

Kaggle Trained

Eff-b5-small + lr 1e-4 0.7 87.57 96.72 86.26 91.19 96.75
Eff-b7-small + lr 5e-5 0.6 83.06 98.91 80.8 88.94 97.29
Eff-b7-big + lr 1e-4 0.55 85.96 98.91 84.11 90.91 97.9
Ensemble of 3 models 0.7 86.34 98.69 84.58 91.09 97.84

DR10K Trained From Scratch

Eff-b5-small + lr 1e-4 1.15 94.97 96.06 94.82 95.44 98.88
Eff-b7small + lr 5e-5 1 93.17 96.72 92.66 94.65 98.98
Eff-b7-big + lr 1e-4 1.05 95.03 94.97 95.04 95 98.76
Ensemble of 3 models 1.05 94.02 97.16 93.57 95.33 99.12

DR10K Fine Tuned

Eff-b5-small + lr 1e-4 1.05 95.25 97.16 94.97 96.05 99.16
Eff-b7-small + lr 5e-5 1.1 95.19 95.4 95.16 95.28 99.18
Eff-b7-big + lr 1e-4 1.1 94.32 96.5 94.01 95.24 99.17
Ensemble of 3 models 1.15 95.79 96.94 95.63 96.28 99.41

DR10K Fine Tuned with optic-disc

Eff-b7 -big+ lr 1e-5 1.1 94.26 97.16 93.85 95.47 99.22
Eff-b7 -big+ lr 5e-5 1.05 94.51 96.28 94.26 95.26 99.12
Eff-b7 -big+ lr 5e-4 1.15 95.44 97.16 95.19 96.16 99.28
Ensemble of 3 models 1.1 94.59 97.59 94.16 95.85 99.36

Table 7. DR Referability Classification Performance on DR10K.

Thr. Acc Sens. Spec. H-Mean AUC

Kaggle Trained

Eff-b5 small + lr 1e-4 2 91.91 85.46 92.45 88.82 95.94
Eff-b7 small + lr 5e-5 2.05 91.17 92.2 91.09 91.64 96.87
Eff-b7 big + lr 1e-4 1.9 91.17 91.49 91.15 91.32 97.12
Ensemble of 3 models 2 92.19 90.07 92.36 91.2 97.22

DR10K Trained From Scratch

Eff-b5 small + lr 1e-4 1.75 94.62 95.74 94.52 95.13 98.5
Eff-b7 small + lr 5e-5 1.45 94.02 94.33 93.99 94.16 98.4
Eff-b7 big + lr 1e-4 1.7 94.13 93.26 94.2 93.73 98.34
Ensemble of 3 models 1.65 94.48 94.33 94.49 94.41 98.69

DR10K Fine Tuned

Eff-b5 small + lr 1e-4 1.55 94.89 94.33 94.94 94.63 98.68
Eff-b7 small + lr 5e-5 1.6 95.03 93.26 95.17 94.21 98.6
Eff-b7 big + lr 1e-4 1.9 95.96 96.35 95.93 96.14 98.46
Ensemble of 3 models 1.55 94.64 95.39 94.58 94.98 98.87

DR10K Fine Tuned with optic-disc

Eff-b7 -big+ lr 1e-5 1.75 95.38 91.13 95.74 93.38 98.73
Eff-b7 -big+ lr 5e-5 1.55 94.37 93.97 94.4 94.19 98.75
Eff-b7 -big+ lr 5e-4 1.6 94.56 97.16 94.35 95.73 98.79
Ensemble of 3 models 1.5 93.83 96.45 93.61 95.01 98.92

Table 8. DR Vision-Threatening Classification Performance on
DR10K.

trained only on ImageNet) using DR10K. We also exam-
ine the transfer learning from the DR problem to the DME,
we assumed the similarity between features can help in the
DME training. We used the models trained on the Kaggle
Dataset for DR as the starting models for the fine-tuning
step. We also used the optic-disc extended data in the DME
fine-tuning. We can find in tables 9 and 10 that the re-
sults are comparable yet the models trained from scratch
performed slightly better.

We can notice that regression score thresholding has a

great impact on preserving the balance between sensitivity
and specificity for this problem. So, we report the results of
the extended dataset following this technique and we notice
that ensemble accuracy outperforms other techniques.

Acc. Sens. Spec. H-Mean AUC

DR10K Trained From Scratch

Eff-b5-small + lr 1e-4 94.43 91.89 94.86 93.35 98.58
Eff-b7-small + lr 5e-5 95.41 85.66 97.06 91 98.57
Eff-b7-big + lr 1e-4 95.46 87.92 96.74 92.12 95.46
Ensemble of 3 models 95.74 90.19 96.68 93.32 98.83

DR10K Fine Tuned

Eff-b5-small + lr 1e-4 94.75 88.11 95.88 91.83 98.31
Eff-b7-small + lr 5e-5 95.44 85.66 97.09 91.02 98.55
Eff-b7-big + lr 1e-4 95 87.55 96.26 91.7 98.65
Ensemble of 3 models 95.33 87.55 96.65 91.87 98.77

Table 9. DME Existence Classification Performance on DR10K.

Thr. Acc. Sens. Spec. H-Mean

DR10K Trained From Scratch

Eff-b5-small + lr 1e-4 0.3 92.9 95.28 92.49 93.86
Eff-b7-small + lr 5e-5 0.1 92.21 96.79 91.44 94.03
Eff-b7-big + lr 1e-4 0.1 94.43 93.4 94.6 93.99
Ensemble of 3 models 0.3 94.48 94.34 94.5 94.41

DR10K Fine Tuned

Eff-b5-small + lr 1e-4 0.25 92.95 95.47 92.52 93.97
Eff-b7-small + lr 5e-5 0.05 93.42 96.04 92.97 94.48
Eff-b7-big + lr 1e-4 0.1 92.76 97.36 91.98 94.59
Ensemble of 3 models 0.25 94.67 95.85 94.47 95.15

DR10K Fine Tuned with optic-disc

Eff-b7 -big+ lr 1e-4 0.251 92.9 95.09 92.52 93.78
Eff-b7 -big+ lr 5e-5 0.151 93.52 95.47 93.19 94.31
Eff-b7 -big+ lr 5e-4 0.201 93.63 92.83 93.77 93.29
Ensemble of 3 models 0.351 94.92 91.7 95.46 93.54

Table 10. DME Existence Classification Performance using Re-
gression Score Thresholding on DR10K.

7. Discussion
We will discuss some of the findings that we found to be

crucial through our experiments. Then, we will highlight
our proposed DR and DME screening pipeline steps.

7.1. Findings

• When using deep learning models, transfer learning is
crucial to compensate for the fact that the data collec-
tion process is expensive. For certain problems like
ours, fine-tuning on local data is also essential. This
was shown when we tested Kaggle-trained models on
our Egyptian data and the performance degraded dras-
tically 6. This is quantitative proof for the assumptions
made by previous work in [49] that the DR classifica-
tion performance degrades when the used models are
trained on different ethnicity data.
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Figure 4. Pipeline for establishing a deep learning-based system
for DR and DME screening programs.

• In the DME referability classification, the training
from scratch using Egyptian data seems to work fine as
shown in table 9. This is different from what happened
on the DR classification task where fine-tuning Kag-
gle models worked better. We can observe that for the
DME existence problem, the percentage of the minor
positive class of the dataset is more than 15%. On the
other hand, the minor classes 3 and 4 of the DR clas-
sification problem represent only 3.77% and 4.22% of
the whole data respectively. We hypothesize that this
difference in the class imbalance degree may be the
main reason that leads to the performance difference
when training from scratch in each problem.
The results after applying regression score threshold-
ing shown in table 10, show that the fine-tuned models
slightly outperformed the models trained from scratch.
This means that the transfer learning process from DR
to DME succeeds and helps in enhancing the DME ex-
istence classification performance.

• It is crucial to achieve high sensitivity and harmonic
mean in our binary classification problems. The im-
portance of these binary problems arises from the fact
that they determine the system decision for the pa-
tient. Since the collection of more positive data is time-
consuming process, we applied the regression score
thresholding technique. This technique improved the
sensitivity significantly while preserving high speci-
ficity. This effect is shown in tables 7, 8, and 10.

7.2. Pipeline

Based on our observations we propose a complete
pipeline for training the models needed in the DR screen-

ing program. The pipeline steps are as follows:
1. Train DR classification models using Kaggle dataset.
2. Test the Kaggle-trained models using the Messidor-2

dataset as a generalization proof.
3. Collect a local small finetuning dataset including both

macula and optic-disk-centered images for each eye.
4. Annotate the local dataset for both DR levels and DME

existence using the macula-centered images.
5. Propagate the labels of macula-centered images to the

corresponding optic-disk-centered ones.
6. Fine-tune Kaggle-trained models using the full local

dataset for DR classification.
7. Apply transfer learning technique by fine-tuning DR

Kaggle-trained models for DME existence classifica-
tion using the full local dataset.

8. Apply binary thresholding technique to enhance the
performance in the three binary problems (referability,
vision-threatening, and DME referabiltiy).

Figure 4 shows all our experimented alternatives high-
lighting in green the best-chosen pipeline steps that
achieved our state-of-the-art results.

8. Conclusion

The paper proposes a complete pipeline that enables
training the models needed for the DR regular screening
program to achieve state-of-the-art results taking into con-
sideration both the time and cost factors. We succeeded in
achieving a good performance using the publicly available
Kaggle dataset. The Kaggle-trained models are proved to
be generalizable achieving good results on the Messidor-2
dataset reaching a 5 class accuracy of 83.6% and QWK of
90.06%. We collected our new Egyptian dataset and anno-
tated it for both DR levels and DME referability. We pro-
vide a full analysis of this dataset showing all their insights
and highlighting the human ophthalmologists’ classification
performance in the graders’ variability subsection.

We compared different training methods and discussed
the reasons behind their performance. We enhanced the
training with the extended dataset of optic-disc centered im-
ages and it succeded in outperforming our previous methods
in DR. It achieved a comparable performance in the DME
problem. Our introduced complete pipeline can represent a
road map for any developing country.
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