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Abstract

Federated learning reduces the risk of information leak-
age, but remains vulnerable to attack. We show that well-
mixed gradients provide numerical resistance to gradient
inversion in neural networks. For example, we can enhance
mixing gradients in a batch by choosing an appropriate loss
function and drawing identical labels, and we support this
with an approximate solution of batch inversion for linear
layers. These simple architecture choices show no degrada-
tion to classification performance as opposed to noise per-
turbation defense. To accurately assess data recovery, we
propose to use a variation distance metric for information
leakage in images, derived from total variation. In contrast
to Mean Squared Error or Structural Similarity Index met-
rics, it provides a continuous metric for information recov-
ery. Finally, our empirical results of information recovery
from various inversion attacks and training performance
supports our defense strategies. These simple architecture
choices found to be also useful for practical size of convo-
lutional neural networks but depends on their size. We hope
this work will trigger further defense studies using gradient
mixing, towards achieving a trustful federation policy.

1. Introduction

Federated learning (FL) is a privacy preserving tech-
nique that enables distributed nodes to contribute to the
training of a machine learning model [19, 13]. The promises
of FL are significant and have wide applicability in indus-
try [2]. For example, it is possible for hospitals to collabo-
rate on training a centralised model around the globe, with-
out sharing or moving the actual private patient information
across institutions [22, 26]. As it potentially protects sensi-
tive data, it can better align with data protection regulations
such as GDPR [6]. For example, FL has been already ap-
plied to prediction of treatment side effects in medicine [12]
or for deployment in smartphones devices [3, 14, 15, 18].
Given the potential impact of FL, its privacy has been crit-

ically studied and challenged [21]. A standard FL con-
figuration is typically achieved with a central aggregator
node which exchanges gradients for training a centralised
model. At each training step (t), a client node receives
neural network model weights, F (Wt), from an aggrega-
tor server and calculates loss (l) with a local data xt,b,yt,b

in a batch, B, which generates gradients with respect to the
model weights:

∆Wt = − γ

B

∑
b<B

∂l(F (xt,b,yt,b))

∂Wt
(1)

The gradients are typically averaged in the server with a
rate, γ. The gradients, ∆Wt, shared by the client can expose
the client to a potential inversion attack instigated by a mali-
cious eavesdropper. The inversion attacks have shown to be
surprisingly successful in many pioneer studies [36, 8, 38].
This compromised privacy prevents federated learning from
becoming a fully trustful framework for distributed train-
ing. Whilst differential privacy is extensively used for FL
defense, in this work, we identify conditions under which
privacy can be attained with confidence against inversion
attacks, without introducing noise or masking gradients by
pruning, which often leads to a degradation on model ac-
curacy [33, 30, 21]. Through our analysis, we demonstrate
how mixing of gradients within the batch is an effective de-
fense strategy to counteract gradient inversion attacks of the
vulnerable dense layer and without degradation of training
performance. In more detail, our contributions in this paper
are:

• Inversion of batch, label distribution and loss func-
tion: we revisit the linear dense layer, but as opposed
to previous works [38, 36, 1], here we discuss it in a
batch. We show the direct inversion of a full and large
batch without an optimisation-based gradient attack at
all. In this context, we show the effect of mixing gra-
dients in comparison to noise injection.

• Strategy for better privacy: resulting from the above
study, we show empirical evaluation of how simple de-
sign changes to NN are useful against recovery attack.
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In contrast to existing defense mechanisms, our train-
ing requires no noise, and show no performance degra-
dation in commonly used benchmark tests.

• Absolute Variation Distance: Metrics such as mean
squared error between the ground-truth and recovered
data are inadequate for measuring partial leakage of
information from noisy images. We use a metric which
is a variant of total variation metric [27]. This metric
is shown to be effective for evaluating a defense policy
using information leakage in FL.

2. Related Work
Despite the compelling promises for privacy in FL, there

is a body of work that present eavesdropping attacks on dis-
tributed machine learning systems to compromise data pri-
vacy [1, 8, 34, 38, 20, 29, 31], necessitating a better under-
standing on defense mechanisms to generate a trustful fed-
eration policy. Our study hence, is mostly related to attacks
on exchange gradients or weights to communicate training
of a neural network model. Early works studied techniques
for extracting metadata about the private data, for example,
membership attacks have been proposed in which a classi-
fier is trained to identify whether a specific data-point has
been used to train a model [29]. Property attacks are an-
other attack variant in this direction where properties of a
batch are exposed [20], such as the presence of a person in
a photograph or its age. In both cases, actual data-points are
not extracted from the gradient information.

Later studies, led by [38] and followed by many others,
e.g. [36, 8, 34, 37], showed how it is possible to extract
the actual data by inverting the gradients communicated by
clients in a federation. For example, it was shown that it
is possible to extract data at a pixel-level granularity with
remarkable clarity [34, 25]. Bayes framework enables im-
proving priors to various input data distributions in order
to pass several defenses [1]. Specifically here we support
our proposed defense to the well approximated Bayes form
for image reconstruction [25, 1, 8, 23]. Generative mod-
els priors attacks, such pre-trained GAN based attacks are
shown to provide realistic and accurate images by construc-
tion. For example, ’GIAS’ attack [35] trains a generative
model prior interactively, showing improvements for sev-
eral image databases. Here we consider even minimal in-
formation recovery as a successful attack, and the accuracy
improvements are not in the scope of this work. Hence in
this study, we assessed mixing gradients defense strategy on
the general benchmark attacks mentioned above.

Overall, less attention is dedicated for defense of those
inversion attacks. However mechanisms to enhance privacy
have been proposed with a range of effectiveness [23, 10],
including gradient pruning, noise injection to the gradi-
ents [38, 33, 30] and blending methods of training images

applied online by the client nodes [11, 5]. A very practi-
cal security protocol that minimise the risk of inversion is
the secure aggregation protocols [4], for multi-party com-
puting, where blending random vectors are added and sub-
tracted between pair clients’ gradients. This effective proto-
col is valid when large number of clients participating and
sending valid gradients. Hence, exploring new privacy pre-
serving approaches is still crucial for achieving trust-able
FL setups. In this paper, we propose a defense strategy
that utilises the properties of a batch in the client, to max-
imise gradient mixing. We analyse gradient mixing as a
lightweight defense strategy for further counteracting gra-
dient inversion attacks. The rest of the paper is structured
as follows. We show for linear layers in a NN classifier, how
several conditions in the architecture affect gradients mix-
ing and data recovery. We investigate our approach using di-
rect inversion for the batch and compare it to noise injection.
Then, we describe an experimental framework for evaluat-
ing inversion attack by introducing the Absolute Variation
Distance as a measure for successful attack. Lastly, we sup-
port the defense strategy of mixing gradients in the exper-
imental results section, for linear-layers and typical CNN
architecture with variable increasing size.

3. Gradient mixing as a batch defense strategy
The high vulnerability for recovering vector information

from a dense linear layer is well known and described sev-
eral time previously [36, 24, 8, 38], but here we show the
direct inversion of gradients of information from the full
batch, allowing to examine the conditions for well mixing
as a defense, and compare it to noise injection.

3.1. Direct inversion of a full batch

We simplify our analysis of deep linear network to one
hidden dense linear layer containing input and output vec-
tors, (x = (o1, o2, ...on),o = (o1, o2, ...oC)), where, oj =∑n

i wijxi + bj . Note that it is enough to examine one dense
linear layer as x can be inverted from a known oj for any
hidden linear layers using back-propagation. A typical clas-
sification architecture uses softmax, pk = eok∑

j eoj
, followed

by cross-entropy to obtain the loss:

l(p, y) = −
C∑
k

yk log pk (2)

where, C is the number of classes/categories. The derivative
of pk with respect to each oj :

∂pk
∂oj

=

{
pk(1− pj), k = j

−pkpj , k ̸= j.
(3)

where the set of the loss equations is then obtained:

∂l

∂wi,j=k
=

∂l

∂pk

∂pk
∂oj

xi = (pj − yj)xi (4)
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and:
∂l

∂bj=k
= pj − yj (5)

Specifically, this is a case of a single input batch, B = 1, as
also discussed by [24, 38]. The number of gradient equa-
tions are nC+C with an extra C equations for weights (for
each j) whilst the unknowns are n+C. For example xi can
be found immediately from any j, using ∂l

∂wij=k
/ ∂l
∂bj=k

=

xi. However, when the batch size is larger than one, the
client would only share the averaged information:

∂lB

∂wB
i,j=k

=
1

B

∑
m∈[1,B]

(pmj − ymj )xm
i (6)

∂lB

∂bBj=k

=
1

B

∑
m∈[1,B]

pmj − ymj (7)

As no additional gradients are shared, the number of
unknowns, B(n + C) can exceed the gradients equations
number nC + C, and there will be no unique solution to
solve the set of equations. Even in the case that a unique
solution exists, numerical optimisation can be challenging.
However, in the scenario in which softmax is followed by
cross entropy, we can show that an accurate direct solu-
tion is found in many cases even for B ≫ 1, due to the
de-mixing property across the batch. In an untrained, ran-
domised weights model, the first order expected value of
⟨pmj − ymj ⟩, is positive but close to zero for a non-target
instance (j ̸= c) and close to −1 for the instance target
(j = c), where c is the target index. This is because we
can show that the expected value, ⟨pj(oj)⟩ can be grossly
estimated as pj(E(oj)) for the first order of Taylor expan-
sion [7]. This results in ⟨pj⟩ to be inversely proportional
to the number of classes C. Subsequently, in a batch that
contains unique labels, cm ̸= c1...B , Eq. 6-7 estimates:

∂wB
i,j

∂bBj
≈

(⟨pmj=c⟩ − 1)x
m(j=c)
i + ⟨pmj ̸=c⟩

∑
x
m(j ̸=c)
i

(⟨pmj=c⟩ − 1) + (B − 1)⟨pmj ̸=c⟩

≈
(⟨pmj=c⟩ − 1)x

m(j=c)
i

(⟨pmj=c⟩ − 1)
= x

m(j=c)
i (8)

This approximation shows that the de-mixing of the gra-
dients for each vector enables a direct estimate of the input
layer for any vector m in the batch once we pick j = c. The
error of this estimation can be very low for large C. It is
clearly seen here with the two most popular data-sets used
for studying such inversion attacks, the MNIST with small
number of equations C and LFW with large C (C ≫ B).

Figure 1(a)-(c) shows our estimates to direct invert the
input of a dense layer from a vector batch, and the ability to
infer all inputs of a batch in a dense layer. It supports that
inverting the 2-8 vectors of a batch is possible with a very

(a) (b)

(c)

Figure 1: Log error on direct inversion for linear dense layer clas-
sification, calculate from Eq. (8) in 2 histograms for an untrained
model. The case of drawing similar labels (red), and drawing
unique labels in the batch (blue). (a) for MNIST (C=10), (b) for
LFW dataset (C=5749), and (c) for batch size of 8 drawing unique
labels, comparing LFW (blue) and MNIST (red).

small error, as long as labels are unique. In the case of the
LFW dataset, due to the large C, the error is inversely pro-
portional to C, so the two vectors in the batch are recovered
for all random samples tested with a very low error. This
low error is obtained so long as the vectors have a unique
class, given C ≫ B, which is the case for the LFW classifi-
cation network with much larger batch sizes (e.g. B ≫ 8).

The de-mixing property of cross-entropy is not only
helpful for estimating input without numerical optimisation,
but also allows simple numerical convergence as the set
of equations to solve contains independent solution when
a unique x

m(j=c)
i contributes to the gradients, as inferred

from Eq. (8). Yet, once we draw similar labels in the batch
the recovery of data exhibits a large error, and the error is
within the order of magnitude of the information. This mix-
ing of gradients can serve as a strategy to increase privacy
in FL against direct inversion without adding noise, and our
empirical results later support that this strategy is also ef-
fective against numerical optimisation attacks.

Following this insight, we can also consider changing
the objective function to mix the gradients. Instead of us-
ing cross-entropy loss (CEL), it is possible to use the mean
squared loss (MSE), l2(o, y) = −

∑C
k (yk − ok)

2. This
is not a typical choice for a classification task, but perfor-
mance results show later that there an unnoticeable degra-
dation in classification performance when using MSE in-
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stead of CEL in typical benchmark setups used in inversion
attacks studies. On the contrary, there is a large gain in pri-
vacy by the high mixing of gradients on the dense layer. The
gradients are calculated on a dense layer using mean square
estimation (for simplicity here, with no softmax):

∂l2
∂wi,j=k

=
∂l2
∂ok

∂ok
∂wi

= −2(oj − yj)xi (9)

and
∂l2

∂bj=k
= −2(oj − yj) (10)

Here oj can take positive or negative values and generally
within the order of y, for j = c or j ̸= c, hence the average
of a batch will mix the gradients. Note that we can also use
softmax, followed by MSE and the gradients will obtain a
strong mixing, but with a less trivial gradient expression.
We show in figure 2 a sample of results for the error on
the direct inversion of a batch. We observe that the error
on estimation of any vector using ∂w

∂b is not negligible, and
sufficiently large even in batch size of 2 and more distinctive
in batch size of 8.

(a) (b)

Figure 2: The error on direct inversion of a linear dense layer in a
batch, calculated from the approx. in Eq. (8) for two histograms of
an untrained model. The case of MSE objective loss function (red
histogram) compared to the CEL as generally used. (a) shows the
result of batch size of 2, and (b) for batch size of 8.

We see here that potentially drawing input with similar
labels and adjusting the loss function to increase mixing of
gradients are strategies that counter the recovery of input
from dense layers. In fact, we can compare our result to the
effectiveness of injecting noise to gradients as a defense,
given the wide application of differential privacy. We add a
Gaussian noise term for gradients in a linear layer, ∂l

∂wi,j
+

ζi,j ,
∂l
∂bj

+ ζj .
Figure 3 shows the results from addition of noise at var-

ious standard deviations. We find that small contamina-
tion of noise does not protect at all, against inversion and
also the error is in the order of the noise, and given that,
we are required the noise to be in the order of the weights
(std > 0.01, when weights initialised uniformly between
(−0.5, 0.5)). The addition of such a noise will affect the

training drastically. In fact, this exercise shows that our gra-
dient mixing strategies can be as effective as the addition of
a large noise term, but without the loss of training perfor-
mance as we show later.

Next, to further support mixing gradients strategy, we
carry out an analysis of widely used, state of the art inver-
sion attacks that uses numerical optimisation. We do this
by firstly analysing inversion attack success in a dense layer
model, and then show its validity for a typically explored
CNN for inversion attack and the limitation of this strategy
with increasing CNN size.

(a) (b)

Figure 3: The error from direct inversion by adding Gaussian noise
to gradients and biases at various standard deviations. Histogram
(a) for MNIST dataset and histogram (b) for LFW dataset.

4. Experimental framework
In this section we detail the experimental framework we

use to evaluate our gradient de-mixing strategies. In our ex-
periments we explore the privacy of the input data with two
representative networks, the first, a single dense layer and a
standard LeNET convolutional neural network (CNN) [16].
We analyse the impact of different loss functions and label
distributions by varying the batch sizes and the number of
filters. This empirical study explores the limit of the mixing
gradient strategy for varying conditions, especially in larger
convolutional network. For example, we demonstrate how
it may help a practitioner to leverage a greater number of
filters and a lower size of batch.

4.1. Inversion Attack Optimisation Algorithms

The gradient inversion attack is carried out by choos-
ing x′

t,y
′
t on a proxy model, F ′(x′

t,y
′
t), and finding ∆W ′

t

which minimises an objective function M∆Wt. A typical
objective can be the norm of the gradients’ difference:

gl2(x′
t,y

′
t) = min||∆W ′

t −∆Wt|| (11)

This solution searches for a model F ′(x′
t,y

′
t) that matches

the size of the gradient vector observed by the client. Al-
though further empirical studies have found the cosine dis-
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Table 1: Types of gradient inversion attacks employed to evaluate our proposed defense strategy.

Attack Name Main Objective Function Description
2-norm gl2 (11) Euclidean distance and initial label determination [34].
Angle & var gang + TV (12) [8, 1] proposed to leverage cosine similarity, total variation (TV) and initial label determination.
Angle & var & Orth regulators gang + TV + Orth Cosine distance with orthogonal regulator for the input + initial label determination [24, 34].

tance to provide better convergence results [8]:

gang(x′
t,y

′
t) = min 1− ⟨∆W ′

t ,∆Wt⟩
||∆W ′

t || · ||∆Wt||
(12)

Various regularisation terms were shown to improve conver-
gence. For example, regularisation that penalises high vari-
ations in the input images and constrains the search to high-
fidelity images and de-noised solutions [8, 34]. In batch, the
orthogonality [24] between input vectors in the batch has
been shown to bias the search towards different vectors in
the batch. Additionally, it has been found that determining
the label from the gradients is important for initialisation of
the numerical optimisation [34]. We have also seen in the
literature various type of attacks that provide improvements
in image fidelity, or training convergence. Since no work
so far is focused on enforcing the leakage of minimal infor-
mation, here we apply various types of attacks and regular-
isation terms to provide a comprehensive analysis without
any prior assumption on the performance of the attack. As
summarised in Table 1, we utilise both the Euclidean dis-
tance and cosine similarity objective functions proposed by
recent prior works [38, 8] with a selection of popular reg-
ularisation functions. We also determine labels from the
negative gradients distributions prior to the optimisation as
also previously suggested [36, 34]. However here we stress
that this is only possible when C ≫ B but not necessarily
true when B is comparable to C. This is due to the fact that
pmj (see Eq. (4)) can obtain significant positive values for
certain j when C is small, and can even result in average
positive gradients when j = C. This for example occurs
in the MNIST dataset where C = 10 but will not be ob-
served in LFW with large C. In the case of the MSE loss,
we also cannot initialise the labels distribution directly from
the gradient sign, as oj is proportional to yj in Eq. (9) and
Eq. (10). Hence, we determine the initial label distribution,
but we still optimize the labels output using the optimizer
scheme in order to maximise the recovery of an MNIST at-
tack for a batch.

4.2. Criterion for Successful Attack

Many studies for improving attacks focus on fidelity of
recovery and rate of convergence, e.g. [25, 24, 34]. Our fo-
cus is the opposite, to determine if any information regard-
ing the data can be recovered. Therefore our criterion for a
successful attack is minimal information recovered for one
input vector in a batch that is distinguished from noise. The

(a)

(b)

Figure 4: Random recovered vectors pupolated in a table by their
recovery rates from MNIST (a) and LFW (b) datasets, column-
wise sorted via the abs. variation distance measure. The values
were scaled by dividing AVD (Eq. 13) with the distance between
the initial uniform noise input image, to a black image.

mean square error (MSE) and structural similarity index
measure (SSIM) [32] are typically used in inversion attacks
recovery of high fidelity and small changes between images.
We found that these metrics are not reliable and cannot be
used as indicator for information leakage in datasets such

3960



as MNIST where the information is sparse. We can show
this visible information in a random sample of recovered
vectors from attacks in figure 4(a). The MSE indicator is
not sufficient in the intermediate range where information
is visible but noisy, blended, or there are other patterns that
can significantly skew the results. A more suitable indica-
tor is to compare the spatial gradient of the recovered image
and source image:

AVD(vsource, vtarget) = ||(|∇vsourcex,y | − |∇vtargetx,y |)||
(13)

where ∇v = dv
dx + dv

dy is the pixel-wise gradient. The
variation distance metric allows to consider boundaries and
edges in images which are a common discriminator in visual
recognition, whilst the gradient of noise remains as noise. A
random sample of attack results after 550 iterations of op-
timisation are shown in figure 4. A qualitative assessment
of the results shows that recovery of data is more visible
as AVD decreases in a continuous manner. In contrast the
MSE metric for MNIST fluctuates drastically when the im-
age is not completely clear or a blend, and can obtain vari-
ous values similar or higher than the MSE for the pure noise
input. Using this qualitative observation, we can define a
threshold range between 0.6, where numbers are starting to
emerge, and beyond 0.8, where information, at least for hu-
man eyes, is not visible. For the LFW dataset (figure 4),
we see the same trend of good correlation between AVD
and the revealed information, but the MSE metric is also a
reasonable indicator as the images contain highly dense in-
formation. We use a similar range of threshold of 0.6, and
0.8 to indicate a successful recovery in our experiments. 1

4.3. Datasets and Attack Experiments

We conduct gradient inversion attack experiments on two
representative datasets, MNIST Handwritten Digit [17] and
Labelled Faces in the Wild (LFW) [9], to illustrate how our
proposed defense strategies successfully minimise informa-
tion leakage without performance degradation. These two
dataset are commonly used among researchers to study at-
tacks [38, 36, 20, 29]. For each experiment we carried out
10-20 trials for each of the 3 attacks presented in table 1.
We analyse the recovery rate, which is the percentage of
trials that lead to successful recovery. A successful recov-
ery is determined by a threshold for the AVD metric (in
MNIST) or MSE metric (in LFW) at the end of the every
trial. In terms of the optimisation scheme, we utilized the
standard optimisation scheme, LFBGS, with learning rate

1We note that using the variation by measuring the entropy, also yields
in a very compatible metric, but was not used in this study. In that case,
the relative information can be measured as:

∆Sav = −p0 log |∇vsourcex,y |/|∇vtargetx,y | (14)

Here p0 is used here to be the expected value of the initial input vector to
the attack, which in our case is uniform noise (0,1), so p0 = 0.5.

(lr) of 0.05 and 550 iterations for running a proxy model to
attack. We also carried out complementary tests with 1200
iterations, and lr of 0.025 to further showcase the validity of
our results. The analysis to support our results is available
in the supporting information.

To evaluate the performance of the neural networks we
trained the LeNET and dense layer models using an SGD
optimiser on the MNIST dataset for 60 epochs. We will
release the source code to reproduce these results upon ac-
ceptance of the paper.

5. Experimental Results
5.1. Single Dense Layer

A single layer attack is a valuable experiment to clearly
demonstrate our strategy in single or multi-linear-layers
model, such as in logistic regressions or NN models. As we
have shown earlier we can recover the data directly from
a batch without numerical optimisation. Here we explore
the results from an optimiser attacks on a simplified single
layer. In this case, we look at the MNIST dataset, with a
linear regression that can provide a practical model for pre-
diction. We explore different batch sizes, B=1, 2, 4, 6 using
the AVD metric with two thresholds to determine a success-
ful recovery. We calculate recovery rates for each experi-
ment strategy, MSE vs. CEL as loss function, both followed
by softmax and random drawing of labels vs. equal labels
in a batch.

Figure 5 shows that MSE and a batch of equal labels
provides very low recovery rates for batches of size 4 and
6. This result is observed for both threshold values 0.6 and
0.8. The additional value of using MSE with equal label-
ing is minor. The regular approach of using random data
in the batch with CEL is observed to be the most vulner-
able. The importance of these results can be justified by
looking at the training performance of these networks as
presented in figure 6. It is shown that performance has in
fact remained intact, even for MSE as an objective function
followed by softmax, which is not typically applied in clas-
sification tasks, and also for equal labels despite the pos-
sible diversification issue that this may raise 2. We note
that in the aggregation of a central model, we update the
model only after aggregation of the gradients from clients,
so the diversification of labels in the batch of equal labels
happens naturally. It therefore enables similar performance
to the random label. We also observe that the MSE loss
without softmax results in lower performance for a single
dense layer. However we obtained the opposite behaviour
for LeNET as we show next, so this discrepancy may be ad-
dressed by further optimisation through tuning the network
hyper-parameters.

2Hyper-parameters were not optimised and similar to all configura-
tions.
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Figure 5: Recovery rates (in percents) for MNIST dataset using
one linear dense layer. We preset the rate of recovery using the
AVD metric with threshold 0.6 (a), and 0.8 (b). The bars show
different mini-batch sizes, and the x-axis differentiates between
MSE loss function, CEL function and the cases of drawing random
and equal labels in CEL function.

Figure 6: Performance of MNIST in single net architecture sizes
at various strategies and at batch sizes 2, 4 and 6. The y-axis rep-
resents classification accuracy and the x-axis shows fraction of re-
covered images. The figure shows that recovery rate is high for
cross entropy, and either mixing the labels or using a different loss
function can reduce recovery rate without sacrificing the classifi-
cation accuracy.

5.2. Convolutional Neural Network

Results for the linear layer show the clear advantage of
maximising gradient mixing. Here we explore how this af-
fects attack success rate in a widely used convolutional neu-
ral network, LeNET [16] for image recognition and widely

used for testing inversion attacks [28, 36, 38, 8]. We show a
2D map of the recovery rates for attack experiments on dif-
ferent batch sizes and increasing number of channels to ex-
plore larger CNNs (up to double the filter size of LeNETs).
The results are presented in figure 7 for the MNIST and the
LFW dataset. The maps also show the boundaries for zero
recovery rates.

The trends in figure 7 show that gradient mixing over-
all provides a useful decrease in recovery rates that permit
a practitioner to deploy a larger model with data protec-
tion supported by the mixing of gradients. However it is
shown that with a much larger number of filters, the data
can be recovered by the convolutional layers due to large
number of equations compare to unknowns with increasing
number of filters. Hence defenses applied on wider mod-
els such as large Residual neural networks (a ResNet with
64-128 channels), will be more vulnerable. In general, the
network size effect has a similar challenge for all defense
strategies [24, 10]. In a further study, we intend to explore
the combination of mixing gradients and injecting minimal
noise as a combined strategy for enhancing privacy in large
models.

Figure 7: Analysis of recovery attack success rate in MNIST and
LFW with CNN model, LeNET architecture. The white dashed
line represents the boundary of zero rate success recovery.

Finally, we carry out a performance test for LeNET in
each strategy and with varying batch sizes and number of
channels for the MNIST dataset. We show the comparison
of the network performance against the recovery rates in
figure 8. Results show that performance is also kept rela-
tively intact allowing a clear benefit of privacy protection in
comparison to the typical CEL and random label selection.
Interestingly, in contrast to the single dense layer case, here
MSE with softmax performs less well than other networks.
Our results for CNN show the benefit of choosing strategies
for mixing gradients as, in many cases, the maximum batch
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size that can be used is limited (e.g. in distributed training
over clients with sparse data).

Figure 8: Performance of MNIST dataset on LeNET network ar-
chitecture with different channels and batch sizes and for various
gradient mixing strategies.

6. Conclusions

We have shown that by simple architecture choices, we
can prevent the recovery of data from widely used gradi-
ent inversion attacks. The choice of loss function and the
drawing of equal labels in a batch results in mixing of the
gradients in practical neural networks architectures. In fact,
without mixing gradients, it is possible to recover directly
all batch vectors due to the de-mixing nature of cross en-
tropy loss function. Our suggested strategies for mixing
gradients maintain network performance in certain setups,
which is in contrast to common methods that apply noise
to the gradients. Additionally, in practice, one could com-
bine the mixed gradients strategies further with noise or
other defense methods for better privacy. Finally, we have
shown that an absolute variation distance (AVD) metric is
able to measure the relative information recovered by gra-
dient inversion attacks. The metric, which is derived from
total variation, can distinguish information from noise for
datasets that have sparse information such as in the MNIST
dataset and will be explored further in future studies. We
hope that this work prompts the development of new strate-
gies towards achieving more trustful federated learning plat-
forms. Further work will also study the effect of more com-
plex architectures and larger models which are more chal-
lenging area of privacy preserving in distributed learning.
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