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Abstract

Data augmentation is vital for object detection tasks that
require expensive bounding box annotations. Recent suc-
cesses in diffusion models have inspired the use of diffusion-
based synthetic images for data augmentation. However,
existing works have primarily focused on image classifi-
cation, and their applicability to boost object detection’s
performance remains unclear. To address this gap, we
propose a data augmentation pipeline based on control-
lable diffusion models and CLIP. Our approach involves
generating appropriate visual priors to control the genera-
tion of synthetic data and implementing post-filtering tech-
niques using category-calibrated CLIP scores. The evalua-
tion of our approach is conducted under few-shot settings in
MSCOCO, full PASCAL VOC dataset, and selected down-
stream datasets. We observe the performance increase us-
ing our augmentation pipeline. Specifically, the mAP im-
provement is +18.0%/+15.6%/+15.9% for COCO 5/10/30-
shot, +2.9% on full PASCAL VOC dataset, and +12.4% on
average for selected downstream datasets.

1. Introduction
End-to-end trained deep learning models are the main

workhorse behind state-of-the-art object detection meth-
ods [12, 35, 48]. A somewhat brute-force but effective
recipe for further performance enhancement is to simply
train these models with a larger and more diverse anno-
tated dataset. However, object detection requires not only
labels of the objects within each image but also accurate
bounding boxes that snugly encloses each object. This extra
work makes the curation of such datasets for training object-
detection models substantially more laborious and less cost-
effective than the image classification counterpart.

An alternative to annotating new datasets is data aug-
mentation which creates more training examples by boot-
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strapping an existing dataset. Traditional data augmenta-
tion for object detection involves rotation, scaling, flipping
and other manipulation of each image which encourages the
model to learn more invariant features hence improving the
robustness of the trained model. More advanced augmen-
tation techniques involves image erasing methods (random
erasing [52], GridMask [6], FenceMask [22], Cutout [8],
etc.), image mix methods (Mosaic [12], Mixup [47], Cut-
Mix [46], etc.), or copy-paste methods that replicate im-
age samples [13]. Even more advanced data-augmentation
methods are generative — they leverage the recent advances
in generative models such as CLIP and stable diffusion
models [15, 32, 36, 41] to create synthetic training images.

Intuitively, generative data-augmentation adds diversity,
realism and novel visual features in the augmented ex-
amples. These are impossible with non-generative data-
augmentation methods. Not surprisingly, they result in ma-
jor performance gains in downstream vision tasks [1,14,23,
38, 39, 53].

However, unlike traditional data-augmentation methods
where the bounding box annotations can be calculated in a
straightforward manner, it is unclear how to perform gener-
ative data-augmentation with bounding box labels. For this
reason, all aforementioned work that utilize generative data-
augmentation are restricted to image classification tasks.
Admittedly, there are specialized generative models trained
to generate data with bounding boxes: (1) layout-to-image
models [7, 17, 50] usually requires a dense bounding box
distribution for training and does not apply to object detec-
tion tasks [5]. While [5] presented its performance for data
augmentation on a downstream object detection dataset [2],
we are not able to find their code for more experiments,
nor compare on that dataset [2] due to the license restric-
tion. (2) copy-paste with diffusion models [11, 51] gener-
ate images of target objects guided by text only on a plain
diffusion model and utilize extra off-the-shelf segmentation
models [26,27,29,30,42] to cut the objects off and paste to
a real image. Thus the data generated is less realistic [5].
Note that all aforementioned methods require training on
object detection or segmentation datasets.
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Figure 1. The data augmentation pipeline for object detection based on controllable diffusion model: 1. Generate visual priors 2. Construct
prompts for the whole image and for each bounding boxes 3. Generate synthetic data via the controllable diffusion model 4. Compute
category-calibrated CLIP rank and perform post filtering.

In this paper, we address the following natural question:
Can we perform generative data augmentation for

object detection via diffusion models with more fine-
grained control and without human annotations?

Our first idea is to specify a bounding box and then used
diffusion-based inpainting approaches [36, 45] to generate
the object within. In this way, we have both the object and
its bounding box. A minor caveat is that the object might
not fill the bounding box tightly. We will evaluate this ap-
proach as a baseline.

Our second — arguably more interesting — idea com-
bines controllable diffusion models for guided text-to-
image generation [49] with visual priors such as HED
boundary [44], semantic segmentation masks [21] that we
obtain from each image of the original annotated dataset.
The generated image thus inherits the high quality bound-
ing box annotation but with different style, lighting, or even
completely new objects inside. We also propose a novel
category-calibrated CLIP scores [31] to filter out those im-
ages where the object inside the bounding box is not com-
patible with the prompt. Further performance gains were
obtained by integrating our first idea that uses inpainting
based methods into our pipeline.An illustration of our pro-
posed method is shown Figure 1.

To evaluate the effectiveness of our approach, we con-
duct extensive experiments under both few-shot settings
with the MSCOCO [24] dataset, standard settings with
the PASCAL VOC [9] dataset, and several downstream

datasets [16, 19, 37, 40]. The few-shot settings reflect sce-
narios with limited annotated data, while the full data set-
tings represent the training scenarios with ample annota-
tions. Our comprehensive evaluation aims to showcase the
versatility and robustness of our approach across different
data regimes.

Summary of results. Our main contributions are:

• Designing a simple but effective method to generate
synthetic image with high quality bounding boxes an-
notation using a carefully controlled diffusion model.

• Automatic data-quality control by filtering with a
category-calibrated CLIP scores.

• Integrating an inpainting method [45] into our pipeline
to further improve the detector’s performance.

• Systematic evaluation of our method in both few-shot
and full data settings. Improve the YOLOX detector’s
mAP result by +18.0%/+15.6%/+15.9% for COCO
5/10/30-shot, +2.9% for full PASCAL VOC dataset,
and +12.4% on average for downstream datasets.

Related work: The idea of generative data augmentation
originates from [1, 14, 23, 38, 39, 53], but their methods are
restricted to classification tasks. While copy-paste methods
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and layout-to-image methods require off-the-shelf segmen-
tation models or training on data with dense bounding box
layouts, we aim to perform data augmentation for object
detection efficiently via controllable diffusion model while
no human curated annotations is needed. The resulting
object detection model significantly advances the existing
state-of-the-art in the few-show setting. The main compo-
nents of our method leverages the exciting recent advances
in generative AI [31, 36, 41, 49], especially the larger foun-
dation models trained with multi-modal image-text corpora
[31, 36, 49]. We emphasize that neither controllable diffu-
sion models [49] nor CLIP scores [31] are new, but the ap-
plication of them for generating synthetic images that come
with high-quality bounding box annotations as well as the
use of these images to enhance object detection are new to
this paper.

2. Method

In this section, we break down the key components of
our proposed image data augmentation pipeline for object
detection.

This pipeline consists of (1) A visual prior generator; (2)
A prompt constructor; (3) A controllable diffusion model;
(4) A post filter with category-calibrated CLIP [31] rank.
Figure 1 illustrates how different components coordinate
and generate the synthetic data for object detection. Below
we will describe each component in details.

2.1. Prior Extractor

Given a set of N image-annotation pairs (xi, yi)
N
i=1 for

training, with ground truth categories c ∈ C, we randomly
sample M image-annotation pairs, and then perform regu-
lar data transforms on the image and the annotation. Then
we use visual prior extractor to get the M “visual prior”-
annotation pairs (vj , ŷj)Mj=1, where each vj is of pixel size
512x512. Our default visual prior extractor is HED edge
detector [44] to balance the visual diversity and bounding
box quality. In Section 4.7, we discuss using other visual
prior extractors, such as Canny edge detector [3] for bet-
ter bounding box quality, segmentation mask [21] for better
visual diversity.

2.2. Prompt Construction

We then construct the prompt pj based on each annota-
tion ŷj . Annotation is composed of one or several “bound-
ing box”-category pairs. Our default strategy is to take all
the category labels in ŷj , concatenating them in a sentence,
seperated by comma. We also explored several other strate-
gies for prompt construction, and found that the default one
is simple yet effective. More details are discussed in Sec-
tion 4.3.

Figure 2. Structure of the controllable diffusion model. ZT is the
latent representation at time T of a latent diffusion model [36].
Weights of blue blocks are frozen and only weights of red blocks
are updated during training. Red lines are the paths that gradients
flow.

2.3. Controllable Diffusion Model

The controllable diffusion model follows [49] and is
shown in Figure 2, where we keep two copies of the pre-
trained diffusion model, one with all parameters frozen, and
the other with only encoder blocks and a middle block, con-
necting with the skip connections and the middle layer of
the frozen copy by 1x1 convolutions initialized with zero.
Note that since we use the visual prior to force the structure
of the synthetic image, the annotation ŷj can still be used as
ground truth. Thus given the prompt, we can use control-
lable diffusion model F to generate synthetic images for
each (vj , pj) pair: x̂j = F (vj , pj), and thus get M syn-
thetic image-annotation pair (x̂j , ŷj).

2.4. Post Filter with Category-Calibrated CLIP
Rank

For each annotation ŷj , it contains some “bounding
box”-label pairs (bkj , l

k
j )k=1,2,,.... We cropped x̂j with the

bounding box bkj to get image content inside the bound-
ing box x̂k

j , and use CLIP [31] to compute the similarity
score: skj = CLIP (x̂k

j , p
k
j ), where pkj is the text prompt

constructed based on the label lkj .
Then we collect similarity scores for all bounding boxes

in all annotations ŷj for each category: Bc∈C . And for each
bounding box label pairs (bkj , l

k
j ), we compute rkj : the de-

scending order rank of bkj in Blkj
. Then we compute the rank

score Rj for the synthetic data pair (x̂j , ŷj) by averaging all
the rbkj in the annotation ŷj .

For post filtering, we define the filtering ratio as γ, and
we keep top γM synthetic data pairs ranked by Rj . And we
define the augmentation ratio α as the number of synthetic
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5 shot 10 shot 30 shot
mAP AP50 mAP AP50 mAP AP50

YOLOX-S 5.0 10.1 9.6 18.1 14.2 26.7
+ SDInpaint 5.3 11.1 10.6 19.9 14.6 26.4

+ PbE 5.5 11.4 9.8 18.9 14.7 26.5
+ Ours 5.9 (+18.0%) 11.4 (+12.8%) 11.1 (+15.6%) 20.6 (+13.8%) 15.9 (+12.0%) 27.8 (+4.1%)

DINO-SwinL 18.6 26.0 24.3 33.7 35.8 49.5
+ Ours 20.3 (+9.1%) 28.1 (+8.1%) 26.0 (+7.0%) 36.8 (+9.2%) 35.0 (-2.2%) 48.8 (-1.4%)

Table 1. We evaluate our data augmentation approach with a one-stage lightweight detector YOLOX-S [12] and a high performance
transformer based detector DINO-SwinL [48] on COCO under 5/10/30-shot, and report the improvement on mAP and AP50 metrics.

images over real images: α = γM
N .

3. Main Results
In this section, we conduct our experiments under few

shot settings on COCO [24] dataset, and standard settings
with full data used for training on PASCAL VOC [9] and
other selected downstream datasets [16,19,40] to verify the
effectiveness of the proposed pipeline on different domains.

For object detectors, we choose YOLOX [12] for ex-
tensive experiments due to efficiency concerns. It extends
[33, 34] by introducing a series of optimizations such as
Mosaic and Mixup augmentation, Decoupled Head, and
SimOTA, to enhance both speed and accuracy, and achieves
SOTA detection accuracy among one-stage detectors while
maintaining real-time inference speeds. We also include re-
sults for DINO [48] to show our improvement on SOTA de-
tectors. DINO [48] is based on further previous transformer
based detectors [4, 20, 25] and adds contrastive denoising,
mixed query selection with dynamic anchors and static con-
tent queries to further improve the performance and reduce
time for convergence.

3.1. Experiment Settings

Our default setting for synthetic data generation is to use
filtering ratio γ = 30%, augmentation ratio α = 1, syn-
thetic image size of 512x512, DDIM sampler [41] with 50
steps and guidance scale of 9.0, and HED edges [44] as vi-
sual prior.

For YOLOX-S [12] detector, we use SGD optimizer
with batch size of 64, learning rate of 1e-2, momentum of
0.9, weight decay of 5e-4, and 200 epochs for pre-training.
Same optimization but with learning rate of 5e-3, backbone
frozen, and 20k iterations for finetuning.

For DINO-SwinL [48] detector, we use AdamW opti-
mizer with batch size of 16, learning rate of 1e-4, weight
decay of 1e-4, and 36 epochs for base training. Same opti-
mizer but with backbone frozen and 10k iterations for fine-
tuning.

We report both COCO-standard mAP and VOC-standard
AP50 for comparison, and also include AP75, mAP-small,

mAP-medium, mAP-large as a supplement in some experi-
ments. All experiments are conducted with random seeds
set to 1 on an AWS EC2 p3dn.24xlarge server with 8x
V100(32G) GPUs.

3.2. Few Shot

We first evaluate our data augmentation pipeline un-
der Few-Shot Object Detection (FSOD) setting on COCO
dataset [24]. FSOD is an emerging and challenging area
in computer vision that addresses the problem of detect-
ing objects in images with very limited labeled training
data [10, 18, 43]. It explores the scenario where the model
needs to generalize to novel objects it has never seen during
pretraining, given only a few examples of each new class.

It comprises 80 object categories divided into 60 base
categories and 20 novel categories that are identical to the
20 classes in PASCAL VOC dataset [9]. The base cate-
gory data from the COCO [24] training sets are used to pre-
train the model. To simulate the few-shot scenario, K-shot
instances (where K = 5, 10, or 30) are randomly sampled
from the previously unseen novel classes. We are skipping
the 1/3 shot because the results with this number of shots
suffer from very high variance as shown in [43].

As shown in Table 1, we compared our method with
baseline (base training + few shot finetuning [43]) on
YOLOX-S [12] and DINO-SwinL [48] on COCO [24] with
5/10/30 shots. We also extended our analysis to include
a comparison with the inpainting Stable Diffusion (SDIn-
paint) [36] and Paint-by-Example (PbE) [45], where we
randomly sample and mask a bounding box and perform
inpainting to produce a synthetic image.

We notice that as the number of available shots increases,
the improvement of inpainting methods significantly di-
minishes. This is because when the data size is limited,
synthetic objects with loosely fitting bounding boxes can
still yield favorable results for the model. However, as
the amount of real data grows, the accuracy of the ground
truth bounding box becomes crucial, and the loose bound-
ing boxes in synthetic data may even cause a performance
degrade: there is a drop in AP50 under 30-shot for SDIn-
paint [36] and PbE [45].
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Figure 3. We evaluate our approach on full PASCAL VOC dataset,
and show the performance improvement with YOLOX-S.

As we are using visual priors to supervise the genera-
tion in our approach, it constantly outputs precise bound-
ing boxes. Though it may sacrifice the diversity of the ob-
ject appearance, it still generally outperforms baseline by
a large margin on both YOLOX [12], a one-stage light-
weight detector, and DINO [48], a transformer based high-
performance detector.

3.3. PASCAL VOC Dataset

We evaluate the performance on full PASCAL VOC
dataset [9]. We show that our approach is able to boost
the performance of the detector even with ample anno-
tations. The result is shown in Figure3, where we use
VOC0712trainval [9] to train YOLOX-S [12] with SGD for
300 epochs with learning rate of 0.01, Nesterov momen-
tum of 0.9, and weight decay of 0.0005, and evaluate on
VOC07 [9] test set. YOLOX-S has a significant improve-
ment with our augmentation: mAP +1.2, mAP50 +0.8, and
mAP75 +1.4.

3.4. Downstream Object Detection Tasks

Using the same detector settings, we further evaluate the
performance on a few downstream object detection datasets
selected from [16, 19, 37, 40] (due to license issues we can-
not cover all) to prove the generalization capability of our
appoach. The result is shown in Table 2. In general our
approach improves the detector’s performance by a large
margin.

4. Discussion and Analysis
We further evaluate our proposed data augmentation

pipeline to answer the following questions:

1. How important is our post filtering with category-
calibrated CLIP rank?

2. What is an appropriate augmentation ratio?

mAP AP50
YOLOX-S +Ours YOLOX-S +Ours

Watercolor [16] 11.6 16.5 26.2 35.7
Raccoon [19] 22.8 37.5 70.1 78.8
Thermal [19] 61.0 72.2 89.6 94.0
Plantdoc [40] 39.8 38.6 54.0 53.4
deepfruits [37] 57.6 51.5 87.2 80.0

comic [16] 10.1 12.0 22.2 26.2
Avg. 33.8 38.0 58.2 61.4

Table 2. We evaluate our approach on several downstream datasets
in some interesting domains without any finetuning or adaptation
for the diffusion model.

3. How should we construct the prompts?

4. Does it work well with other augmentations?

5. Given sufficient synthetic data, do we still need real
data for training?

6. Is is possible to combine inpainting methods with our
approach?

7. How does other type of visual priors work?

4.1. Post Filtering is Necessary

5 shot 10 shot 30 shot
mAP AP50 mAP AP50 mAP AP50

no filter 5.2 10.7 10.5 19.9 15.0 26.4
50% 5.8 11.4 11.0 20.3 15.3 27.0
30% 5.9 11.4 11.1 20.6 15.9 27.8
20% 5.5 10.8 10.4 19.4 15.8 27.8
10% 4.5 9.4 10.5 19.2 15.4 26.8

Table 3. Results of YOLOX-S on COCO dataset under 5/10/30-
shot setting with different filtering ratio γ. ”no filter” refers to
performance without post filtering. Note the data volumes after
post filtering are fixed.

We investigate how different post-filtering ratios affect
the performance of the augmentation. As shown in Ta-
ble 3, we generate synthetic images with the same hyperpa-
rameters and same random seeds, and apply different post-
filtering ratios, while making sure the augmentation ratios
after post-filtering are the same, i.e. α = 1. And report the
mAP and AP50 for 3/5/10 shot on COCO. We notice that
after post filtering the performance is generally better than
unfiltered data. Especially when the filtering ratio is 30%,
it outperforms unfiltered data by a large margin: +13.5%
mAP for 5 shot, +5.7% mAP for 10 shot, +6.0% mAP for
30 shot.

But we also notice that when the filtering ratio is further
lower, the performance drops, which contradicts the intu-
ition that when the ratio is lower, the synthetic data qual-
ity should be better, and thus, the improvement should be
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Figure 4. Distribution of real data and synthetic data with different
filtering ratio γ under 30-shot.

larger. Figure 4 shows the distribution of real data and syn-
thetic data of different filtering ratios and explains this well.
When the filtering ratio is too low, synthetic data from some
”bad” real image disappear, and the synthetic images are
mostly crowded around a few ”good” real images, and sacri-
ficing excessive generalization that cannot be compensated
for by higher data quality.

4.2. Choose A Moderate Augmentation Ratio

After we produced high quality synthetic data, a criti-
cal question arises: how much synthetic data should be uti-
lized? What should be a good value for the augmentation
ratio α?

Figure 5 presents the ablation study on the choice of dif-
ferent augmentation ratio used during training. Observa-
tions reveal that optimal performance is generally achieved
when 1 ≤ α ≤ 4. To balance performance and efficiency,
the default augmentation ratio is set to α = 1 in all other
sections of this work.

Intuitively, it is commonly perceived that an increased
volume of data correlates positively with enhanced perfor-
mance. But we notice that when augmentation ratio goes
further larger, the performance drops. Reason behind this
is also related to domain shifts, similar to the findings in
Section 4.1. Since we do not adapt the diffusion model to
target object detection data domain, the domain gap exists,
mostly in image styles, between the synthetic and real im-
ages. The introduction of an excessive amount of synthetic
data changes the overall data distribution, thereby poten-
tially confuse the object detector.

4.3. Simple Prompts Work Well

Previous diffusion based data augmentation work mostly
involves only one category per prompt, for exam-
ple, [51] using a fixed prompt “a photo of a single

Figure 5. Ablation study on different augmentation ratios under
5/10/30-shot settings. We observe that optimal performance is
generally achieved when 1 ≤ α ≤ 4.

⟨category name⟩”, [11] using a mix of six fixed patterns,
and [1] simply using the category name. In our case, a
prompt with multiple category names are required, so we
extend previous methods to explore different ways of con-
structing a prompt based as described in Table 4, where
“concatenat” refers to simply concatenate category name
of all bounding boxes separated by comma with duplica-
tion, “and” referring to use the word ”and” for separation,
“shuffledset” referring to use the category names in a ran-
dom order separated by comma with duplication removed,
“shuffledsetand” referring to further use “and” for separa-
tion, “img” referring to add “An image of” at the beginning
of the concatenated sentence, and “mix” referring to use a
mix of all above strategies with random selections.

And we show the result in Figure 6. It turns out that sim-
ply concatenating all the category names, either separated
by comma or word ”and”, works constantly well. While
adding more strategies causes a decrease in the robustness.

Inspired by this finding, we further experiment on adding
additional prompt keywords that may increase the visual
quality of the synthetic images [28]. We used the pro-
posed best prompts, the prompts with top-15 frequency in
[28] comparing with no additional prompts. Synthetic im-
age samples are show in Figure 7 and evaluation results on
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Figure 6. We show the 5/10/30-shot performance for different
prompt construction strategies. Each color represents a strategy
as shown at top left corner. And circles, squares, and diamonds
shape represent 5/10/30-shot respectively.

COCO 10-shot are shown in Table 5.

prompt
concatenate “A, A, B, C, ...”

and “A and A and B and C ...”
shuffledset “B, C, A, ...”

shuffledsetand “C and A and B...”
img “An image of A, A, B, C, ...”
mix A mix of strategies above

Table 4. Different prompt construction strategies. A, B, C are
category names of objects in the image. Note that one image may
have multiple objects of a same category.

mAP AP50 AP75 mAP-s mAP-m mAP-l
None 11.1 20.6 10.5 3.2 9.8 17.3

BestPrompt 10.4 18.8 10.2 3.1 8.4 16.3
Top15Prompt 10.4 19.3 9.7 3.0 8.4 16.3

Table 5. Using visual enhancement prompts from [28] for data
generation does not further improve the detector’s performance.

4.4. Works Well With Other Augmentations

We explore the combination of our approach and other
data augmentations and compare the results. Specifically,
we test on YOLOX-S with and without mosaic augmenta-
tion [12], and on DINO-SwinL with and without random
choice resizing [48]. The result is shown in Figure 8. We
observe that our approach remains consistent irrespective of
the presence of additional data augmentations.

4.5. Real Data is Important

We compare the results of mixing all synthetic data with
different percentages of real data in VOC dataset [9] in Ta-
ble 7. We use the percentages of 0%, 1%, 10%, 50%,
and 100%, and report the mAP, AP50, AP75, and mAP-
small/medium/large metrics. It shows that mAP grows from

Figure 7. Synthetic images with guidance of different additional
prompts.

Figure 8. We evaluate on YOLOX-S and DINO with and without
other augmentations.
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mAP AP50 AP75 mAP-s mAP-m mAP-l
PbE 8.8 17.7 7.9 2.9 7.0 13.7

PbE + HED 9.4 19.1 8.2 2.6 7.5 14.5
PbE + 30%PF 11.1 20.9 10.4 3.1 8.8 17.5

PbE + HED + 30%PF 11.0 21.1 10.4 3.2 9.7 16.7
PbE(less) + HED(more) + 30%PF 11.2 21.0 10.8 3.2 9.9 17.0

Table 6. We further integrate PbE with different approaches and notice an improvement while we generate a few PbE data, then more data
controlled by HED and filtered at a ratio of 30%.

22.6 to 52.5 as real data percentage rises fro 0% to 100%.
Thus the detector’s performance is heavily relied on the
amount of real data. This suggests that our approach should
be used as an enrichment but cannot replace real data.

mAP AP50 AP75 mAP-s mAP-m mAP-l
0% 22.6 43.6 21.0 3.0 12.0 29.1
1% 26.3 49.6 25.4 5.3 15.4 32.9
10% 31.9 57.1 31.9 7.2 19.7 39.3
50% 43.0 70.5 46.1 14.9 31.0 50.4

100% 52.5 77.1 58.1 16.7 38.8 61.0

Table 7. Detection results on PASCAL VOC [9] dataset with dif-
ferent percentage of real data for training. There is a significant
drop as real data become less.

4.6. Integration of Inpainting

Inpainting method can introduce more object varieties to
the data due to its large scale pretraining on as much as bil-
lions of image-caption pairs [36]. However, currently it is
infeasible to enforce the inpainting algorithm draw an ob-
ject to fill the bounding box, which causes the box not tight
enough and thus introduces noise to training data. In Sec-
tion 3.2, we present how our approach outperforms inpaint-
ing methods on COCO dataset [24] under few shot settings.
Here we futher explore the possibility to integrate inpainting
method into our pipeline to further increase performance.

We experiment on COCO dataset under 10-shot setting
on integrating inpainting method PbE [45] into our ap-
proach. And we show in Table 6 that (1) PbE: Using PbE
alone cannot improve the detector’s performance. (2) PbE +
Ours: Adding synthetic images from our approach can fur-
ther improve PbE’s performance, and beats real data only
in AP50 by +1.0, but got -0.1 in mAP. (3) PbE + 30%PF:
Using PbE with 30% post filtering with category-calibrated
clip scores increase the performance by a large margin.
(4) PbE + Ours + 30%PF: Adding synthetic images from
our approach and post filtering can help the model perform
better at detecting small/medium objects. (5) PbE(less) +
Ours(more) + 30%PF: Decreasing the amount of synthetic
data from PbE and increasing synthetic data from ours while
keeping the total synthetic data amount unchanged reach the
best performance for augmentation.

4.7. Other Visual Priors

We compare using different visual priors, i.e. HED
edge [44], canny edge [3], segmentation mask generated by
Uniformer [21], and Scribble generated with HED [44,49].
We compare those method on COCO under few shot set-
tings and the result is shown in Table 8. Comparing with
HED edge, Canny edge is less robust due to it is more vul-
nerable to noises, although it outperforms HED edge on
mAP in 10-shot, it generally produces synthetic data with
lower quality and has inferior performance. While mask
and scribble visual prior produce more diverse object ap-
pearance, they also suffer from more synthetic features.
Note that only Uniformer [21] that generates mask visual
priors is trained on segmentation datasets.

5-shot 10-shot 30-shot
mAP AP50 mAP AP50 mAP AP50

Canny 5.2 10.6 11.2 20.4 14.0 25.4
HED 5.9 11.4 11.1 20.6 15.9 27.8

Uniformer 5.2 10.8 11.5 20.9 14.3 25.5
Scribble 5.1 10.6 9.7 18.5 13.9 24.7

Table 8. We compare the augmentation results controlled by dif-
ferent visual priors. From top to down the control of visual priors
turns from fine to coarse.

5. Conclusion
We introduce a novel data augmentation approach de-

signed for object detection tasks based on controllable dif-
fusion model and CLIP. Our evaluations are conducted on
COCO datasets under few-shot settings, full PASCAL VOC
dataset, and downstream object detection datasets. The re-
sults demonstrate that our approach significantly enhances
the performance of object detectors.

We delve into various interesting questions of our
methodology, and further show that the integration of in-
painting methods further elevates its effectiveness. Given
the synergy observed between our approach and other data
augmentation techniques, we note that our method can be
combined with other data augmentation methods to further
increase the performance. We hope this can be a strong
baseline for future work.
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