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Abstract

The recent works on Video Object Segmentation
achieved remarkable results by matching dense semantic
and instance-level features between the current and previ-
ous frames for long-time propagation. Nevertheless, global
feature matching ignores scene motion context, failing to
satisfy temporal consistency. Even though some methods
introduce local matching branch to achieve smooth prop-
agation, they fail to model complex appearance changes
due to the constraints of the local window. In this paper,
we present DeVOS (Deformable VOS), an architecture for
Video Object Segmentation that combines memory-based
matching with motion-guided propagation resulting in sta-
ble long-term modeling and strong temporal consistency.
For short-term local propagation, we propose a novel at-
tention mechanism ADVA (Adaptive Deformable Video At-
tention), allowing the adaption of similarity search region
to query-specific semantic features, which ensures robust
tracking of complex shape and scale changes. DeVOS em-
ploys an optical flow to obtain scene motion features which
are further injected to deformable attention as strong pri-
ors to learnable offsets. Our method achieves top-rank per-
formance on DAVIS 2017 val and test-dev (88.1%, 83.0%),
YouTube-VOS 2019 val (86.6%) while featuring consistent
run-time speed and stable memory consumption.

1. Introduction

Video Object Segmentation (VOS) is a fundamental task
of video understanding. In a semi-supervised approach, it is
formulated as the identification and segmentation of objects
through the video sequence given the ground truth annota-
tion masks for the first and, optionally, some other frames.

Previous VOS methods [1]–[5] focus on distilling the in-
formation from past frames into a feature memory storage
and then perform a dense memory matching to identify ob-
jects on the current frame. Some approaches [6]–[8] suggest

enhancing memory-based matching with mask propagation
to achieve smooth predictions and improve temporal consis-
tency. Yang et al. in their work “Associating Objects with
Transformers for Video Object Segmentation” (AOT) [9]
proposed using image attention mechanism [10] to perform
hierarchical propagation and matching, employing global
attention for memory readouts and local windowed atten-
tion for short-term propagation. In DeAOT [11], the archi-
tecture was further improved by decoupling processing of
visual and object information.

Recently, Wang, Chen, Wu, et al. in ISVOS [5] noticed
that existing methods suffer from performance degradation
in scenarios of substantial shape deformations and appear-
ance changes caused by camera and scene motion. The
authors propose to utilize instance discriminative features
while performing dense matching with the memory bank,
ensuring selecting of the correct object from past frames
and avoiding false positives. ISVOS achieves state-of-the-
art performance on most of the benchmarks, outperforming
the methods specifically designed for long-time videos, e.g.,
XMem [12] and AFB-URR [13] on the Long-time Video
dataset. However, the main research effort of the aforemen-
tioned approach lies in determining how to improve features
for matching without focusing on how exactly to perform
the matching.

The temporal evolution of an object’s appearance de-
pends on the semantic properties, i.e. rigidity. Thus it’s nat-
ural to adapt the similarity search region to specific seman-
tic features of the query point. Some existing implementa-
tions of matching logic construct a global affinity matrix be-
tween current and previous features and use similarity score
as a matching objective. STCN [2] and ISVOS [5] adopt
negative L2 distance for this purpose, treating all possible
search locations equally. XMem [12] proposes anisotropic
L2 similarity, allowing query-specific importance interpre-
tation. AOT [9] shrinks the search space by using windowed
cross-attention for short-term matching, while the query-
specific importance is assured by learnable relative posi-
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Figure 1. The process of matching features between the current and preceding frames is divided into two steps: flow-based displacement
adjustment and semantics-driven deformable attention

tion bias. In existing methods the query-specific adapta-
tion is limited to only tweaking importance over the query-
agnostic set of spatial locations (often limited to a region
around the spatial location of a query). In terms of handling
motion, global matching leads to degenerating of temporal-
spatial consistency, while windowed matching fails to cap-
ture rapid movement.

We argue that adapting similarity search region to spe-
cific query semantic properties is crucial to perform prop-
agation robust to appearance, scale, and shape change. To
further enhance the performance, we propose to decouple
motion and semantics during matching, adopting a global
scene displacement field as an initial offset of the search
region.

In this spirit, we present DeVOS, a novel architecture for
VOS introducing a new attention-based short-term match-
ing mechanism ADVA (Adaptive Deformable Video Atten-
tion). Inspired by Deformable DETR [14] and DAT [15],
we adopt multi-scale deformable cross-attention capable of
sampling search locations on the previous frame based on
motion and query-specific semantic features of the current
frame. More specifically, given some reference location,
we predict initial global offset using the scene motion fea-
tures, positioning the search region. Consequently, we use
corresponding query features to predict several local off-
sets, shaping the search region. Finally, keys and values are
sampled from predicted locations using the previous frame
and passed to multi-head attention. Comparing to previ-
ous methods, we present formulation of deformable cross-

attention for video-related tasks, while preserving efficient
query offset modelling. ADVA is described in details in
Sec. 3.1. Furthermore, we enhance the keys and queries of
the matched video frames with motion features to achieve
strong temporal consistency, which is described in details in
Sec. 3.2. The short-term and long-term memory matching
results are fused and passed to the decoder producing the
final propagated object mask. To obtain motion features a
generic optical flow estimation network is used.

We conduct experiments on the standard DAVIS [16]
and YouTube-VOS [17] benchmarks. We optionally con-
duct additional training on the large-scale MOSE 2023
[18] dataset to achieve robustness under complex VOS sce-
narios. Conducted experiments demonstrate that DeVOS
achieves top-ranked performance while enjoying consistent
run-time speeds. It is worth noting that our research direc-
tion is orthogonal to those in ISVOS [5], DeAOT [11], and
XMem [12] and can further benefit from the ideas presented
in those works.

2. Related Work

2.1. Optical Flow Estimation

Optical flow estimation is crucial for modeling global
motion. Initial studies focused on optimization problems,
emphasizing visual similarity and regularization [19]–[22].
The introduction of deep neural networks, especially con-
volutional networks, significantly advanced this field.

The RAFT model [23] introduced a significant upgrade
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Figure 2. The overview of DeVOS architecture. The current frame is processed through encoder and self-attention block. After that,
optical flow between current and previous frames is computed for the adaptive deformable video attention between current and previous
frame features. Information from a memory bank containing frames for long-term memory is incorporated through a long-term multi-scale
deformable attention block.

to optical flow estimation, incorporating the multi-scale
search window through the recurrent module. Following the
introduction of RAFT, subsequent studies like GMA [24]
and DEQ-Flow [25] further improved accuracy and com-
putational efficiency. FlowFormer [26] extends RAFT by
utilizing a transformer-based strategy for aggregating cost
volume in latent space, building on Perceiver IO [27]. It
pioneered the use of transformers [10] for long-range rela-
tionships in optical flow, achieving top-tier performance.

Recently, Fedynyak, Romanus, Dobosevych, et al. in
WarpFormer [28] showed that employing an optical flow
estimator to support a generic VOS architecture by warp-
ing the past frames into the current frame domain could be
benefitial for smooth propagation.

2.2. Video Object Segmentation

A key approach in the field of Video Object Segmenta-
tion (VOS) is AOT (Associating Objects with Transform-
ers for VOS) [9]. This method uses a Long Short-Term
Transformer (LSTT) block that incorporates short-term at-
tention and long-term attention mechanisms to extract fea-
tures from input imagery. Long-term attention gathers in-
formation from extended memory frames, while short-term
attention disseminates information from the previous frame.
The outputs of both attention units are integrated into a
feed-forward network and then passed to the decoder to pre-
dict the current object mask.

DeAOT [11] builds on the hierarchical propagation con-
cept of AOT for semi-supervised video object segmentation,
introducing a dual-branch propagation for object-agnostic
and object-specific embeddings.

XMem [12] is a Video Object Segmentation (VOS) ar-
chitecture designed for long videos. It utilizes the Atkinson-

Shiffrin memory model to create an architecture with mul-
tiple independent, interconnected feature memory stores. It
incorporates a sensory memory, a working memory, and a
long-term memory. A memory potentiation algorithm is
used to consolidate working memory elements into long-
term memory, preventing memory overload and maintain-
ing performance for long-term prediction.

The paper ISVOS [5] further highlights the importance
of instance understanding in VOS. While recent memory-
based methods have achieved impressive results in VOS
through dense matching between current and past frames,
these methods often falter when confronted with large ap-
pearance variations or viewpoint changes caused by object
and camera movements. To mitigate these issues, the au-
thors propose a two-branch network for VOS, which incor-
porates a query-based instance segmentation (IS) branch to
delve into the instance details of the current frame. This
approach allows the integration of instance-specific infor-
mation into the query key, facilitating instance-augmented
matching. These works collectively underscore the impor-
tance of instance understanding in VOS and propose so-
lutions that effectively integrate this concept into existing
VOS methods.

2.3. Vision Transformers and Deformable Attention

Transformers have gained traction in computer vision,
yet their large receptive fields pose computational and mem-
ory challenges. Deformable attention, introduced in De-
formable DETR [14] and Deformable Attention Trans-
former (DAT) [15], addresses these issues by focusing on
a small set of key sampling points, reducing computational
load and enhancing performance.

Deformable DETR applies deformable attention in the
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Figure 3. Adaptive deformable video attention. The multi-scale flow-based feature matching consists of two steps: offsets prediction for
features alignment and multi-head attention. Two types of offsets are used: flow-based offsets for movement compensation and semantic-
based offsets to extract previous frame image and mask embeddings. Multi-head attention combines the previous frame mask, and image
embeddings based on the correlation of the previous frame sampled features and query image embedding vector.

detection head to improve performance on small objects
and speed up convergence. DAT introduces a deformable
self-attention module in the vision backbone, enabling data-
dependent selection of key and value pairs, thus efficiently
capturing more informative features and modeling long-
range relations.

3. Method

To describe our method, let’s consider a video sequence
denoted as V = [X1, X2, ..., XT ], along with the annota-
tion mask of the first frame. Our approach processes the
frames sequentially, storing the predicted results in mem-
ory to inform future predictions. Firstly, we extract features
from the current image, Xt, using a backbone encoder, re-
sulting in a feature map It. Subsequently, the feature map
of the current image is compared with the memory frames
to perform semantic matching and propagate the mask. Fi-
nally, the matching result, combined with features from the
encoder at multiple scales, is fed into the decoder, which
restores the object mask in the original resolution (see the
full architecture in Figure 2).

3.1. Adaptive Deformable Video Attention

The classic attention operation is defined as follows:

Att(Q,K, V ) = Corr(Q,K)V = softmax
(QKT

√
C

)
V

where Q, K, and V denote the attention queries, keys, and
values, respectively, while C is the embedding space dimen-
sion. In order to choose only the relevant spatial locations, a
data-driven approach is used for selecting some predefined
number Nk of key and value pairs. For each query and its
corresponding reference point, Nk offsets are learned to in-
dicate the specific locations from which values and keys
should be sampled. These offsets are obtained based on
the query features, ensuring that they capture and represent
semantic information:

∆pqk = θoffset(QWQ),

where θoffset - sub-network for offset generation. To sta-
bilize the training, the predicted offsets are scaled to fit into
window with size σ: ∆pqk ← σ · tanh(∆pqk). After offsets
are sampled attention is computed as in classical formula-
tion:
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DfAttn(Q,K, V, pq) = softmax
(QKT

p√
C

)
Vp,

p ∈ {pq +∆pqk : k ∈ K}

where subscript k refers to an index of learned offset for
a given query. Such formulation allows learning sparse re-
gions to attend to each of the queries and can be naturally
extended to high-resolutions as it is linear with respect to
spatial resolution. Following the [14] and [10], we extend
this formulation with multi-scale feature maps and multi-
head attention correspondingly. For each resolution, we add
both learnable positional embeddings π and scale-level em-
beddings ω. Moreover, the window size σ is dynamically
adjusted in proportion to the scale.

Motion becomes a crucial factor when designing de-
formable cross-attention for multiple frames. As the nature
of the movement is isotropic, in the same naive formulation,
query offsets would be forced to learn windowed attention.
This is unwanted as it undermines offsets’ ability to learn
query-specific information and thus - similarity search re-
gion adaptation. To mitigate this issue, we propose to de-
couple motion and semantic information, creating separate
offset branches for them:

∆pqqk = θqoffset(QWQ),∆pfqk = θfoffset(FinvW
F ),

where Finv denotes inverse optical flow and θqoffset, θ
f
offset

- sub-networks for offset generation based on queries and
flow respectively. Besides, we normalize the predicted flow
offsets to fit into the image: ∆pfqk ← D ·tanh(∆pqk), where
D denotes spatial dimension size. Afterward, the total off-
sets are computed as the combined sum of semantic(query-
based) and motion(flow-based) offsets:

∆pqk = ∆pqqk +∆pfqk

This novel type of attention, called adaptive deformable
video attention (ADVA), adapts search region for cross-
attention based on the motion and semantic features, thus
showing superior perfomance on VOS benchmarks. We be-
lieve that is can be applied to various video-related tasks
beyond VOS as well.

3.2. QK-flow

To further leverage motion information, we explore the
possibility of integrating it into the semantic feature map.
We argue that this enhancement helps in distinguishing be-
tween different instances of the same semantic class, as
they naturally have distinct motion patterns. Formally, we
denote the direct and inverse flow between the previous

and current frames as Fdir and Finv . To integrate mo-
tion information, we augment our queries (Q) with the lin-
early projected flow towards the previous frame: Qm =
Q + WinvFinv . Similarly, we augment our keys (K):
Km = K + WdirFdir. Here, the subscript m indicates
that our queries and keys have been enriched with motion
information.

3.3. Multi-scale matching

To benefit from the sparsity of the proposed attention
formulation to its fullest, we propose to conduct semantic
matching with memory bank on multi-scale feature maps.
We argue, that it helps dealing with overlapping objects
that share a similar appearance thanks to effective utiliza-
tion of high-resolution features. Formally, our backbone
encoder generates features at multiple scales, denoted as
[I

(1)
t , I

(2)
t , I

(3)
t ], corresponding to scales of 1

8 , 1
16 , and 1

32 ,
respectively. To ensure consistent matching, we map the
features on different scales into the same embedding space
with linear projections.

Subsequently, our multi-scale features are passed to
a self-attention block, implemented as deformable self-
attention [14]. For short-term matching, we employ sparse
attention in the form of the ADVA, which is described in
Sec. 3.1. During the long-term matching, we stack the flat-
tened encoder feature maps on the spatial dimensions of 1

16
and 1

32 , then perform an attention-based global matching
with the memory bank.

3.4. Network details

To study performance capabilities and contributions im-
pact, we introduce two variants of network architecture.
Namely, DeVOS-B (Base) is a baseline implementation of
the proposed method featuring consistency with previous
approaches and considerable runtime speeds. Alternatively,
DeVOS-L (Large) is a larger-scaled configuration for which
we adopt more advanced building blocks and inject more
complex architecture decisions.

Encoder & Decoder To achieve fairness in compari-
son and to keep consistency with previous works [5], [9],
[11], [12], we equip our basic model DeVOS-B with Ima-
geNet1K [29] pre trained ResNet50 [30] image feature en-
coder. Meanwhile, with the aim of enhancing instance un-
derstanding logic, our bigger model DeVOS-L is equipped
with ViT-B [31] encoder pre trained on Segment Anything
Dataset [32]. We assume that large-scale pre-training of
transformer encoder on supervised instance segmentation
is more suitable for video object segmentation as it allows
the backbone to learn the notion of what objects actually
are. We leave this fact, though, for further research. FPN
[33] decoder with Group Normalization [34] is used in both
DeVOS-B and DeVOS-L.
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Table 1. The quantitative evaluation on multi-object benchmarks YouTube-VOS 2019 and DAVIS 2017. * denotes training on MOSE 2023.
† denotes replacing ResNet50 with Swin-B encoder. ‡ denotes FPS retimed on our hardware. Top-3 results are denoted in bold font.

YouTube-VOS 2019 Val DAVIS 2017 Val DAVIS 2017 Test

Methods Js Fs Ju Fu Avg J F Avg J F Avg FPS

STCN 81.1 85.4 78.2 85.9 82.7 82.2 88.6 85.4 72.7 79.6 76.1 19.5
AOT-L 83.5 88.1 78.4 86.3 84.1 82.3 87.5 84.9 75.9 83.3 79.6 18.0
AOT-L† 84.0 88.8 78.4 86.7 84.5 82.4 88.4 85.4 77.3 85.1 81.2 12.1
DeAOT-L 84.6 89.4 80.8 88.9 85.9 82.2 88.2 85.2 76.9 84.5 80.7 34.0‡

DeAOT-L† 85.3 90.2 80.4 88.6 86.1 83.1 89.2 86.2 78.9 86.7 82.8 21.1‡

XMem 84.3 88.6 80.3 88.6 85.5 82.9 89.5 86.2 77.4 84.5 81.0 34.4‡

ISVOS 85.2 89.7 80.7 88.9 86.1 83.7 90.5 87.1 79.3 86.2 82.8 -

DeVOS-B 84.5 89.5 79.4 87.4 85.2 83.4 88.8 86.1 77.2 84.7 81.0 36.7‡

DeVOS-L 85.2 90.1 80.7 89.0 86.3 84.2 91.2 87.7 79.4 86.4 82.9 24.7‡

DeVOS-B* 84.7 89.7 79.4 87.8 85.4 83.5 89.3 86.4 77.4 84.9 81.2 36.7‡

DeVOS-L* 85.4 90.3 80.8 89.3 86.6 84.4 91.8 88.1 79.4 86.6 83.0 24.7‡

Object masks Following [2], [5], we adopt a lightweight
ResNet18 [30] network to encode one-hot object masks into
the multi-scale embedding space. The number of input
channels to mask encoder is set to 15, matching the max-
imal object number in benchmarks. To achieve homoge-
neous and simultaneous learning of segmentation mask rep-
resentation while training, the input one-hot mask is zero-
padded to have 15 channels, and the objects (i.e., channels)
are then randomly shuffled.

Flow representation Optical flow field is used to cap-
ture the motion context between consecutive frames. For
this, we employ GMA [24] network due to its favorable
performance and flexibility in adjusting run-time speed by
tweaking the number of refinement updates. Even though
the original paper suggests performing 12 updates, we find
that four is enough to provide a strong displacement prior to
matching. Notably, our model is designed to be independent
of the actual flow estimator implementation. To construct
a multi-scale motion representation from estimated optical
flow, a lightweight ResNet18 [30] is used.

4. Experiments

4.1. Implementation details

Training details Similarly to [1], [2], [4], [5], [9], [11],
[12], we split the training of DeVOS into two stages. During
the first stage, we adopt pretraining on synthetic sequences
derived from static image datasets [35]. Consequently, we
conduct main training on DAVIS 2017 [16], YouTubeVOS
2019 [17], and optionally MOSE 2023 [18]. A more de-
tailed description of training is provided in Supplementary.

Evaluation In order to evaluate our models, we use tradi-
tional VOS metrics as proposed in [36]. We evaluate our
method on DAVIS 2016 & 2017 using the default 480p
24FPS videos, not benefiting from higher resolutions or
test-time augmentations. The impact of multi-scale infer-
ence [37] augmentation is studied in Supplementary. While
evaluating our method on YouTube-VOS 2019 validation
split, we exploit all intermediate frames of the videos to
benefit from smooth motion implying more accurate optical
flow. Even though we use 24 FPS sequences during evalua-
tion, the 6FPS version is used during training and for metric
computation.

Inference Following [1], [2], [5], [12], we maintain fea-
ture memory by memorizing every fifth frame during infer-
ence. To keep consistent run-time speeds and stable mem-
ory consumption, the memory bank is implemented as a
FIFO queue with a maximum size of 16. Meanwhile, the

Table 2. The quantitative evaluation on DAVIS 2016.

Methods J F J&F

AOT-T 86.1 87.4 86.8
DeAOT-T 87.8 89.9 88.9
STCN 90.8 92.5 91.6
XMem 90.4 92.7 91.5
ISVOS 91.5 93.7 92.6
Swin-B AOT-L 90.7 93.3 92.0
Swin-B DeAOT-L 91.1 94.7 92.9

DeVOS-B 90.8 93.0 91.9
DeVOS-L 91.0 95.8 93.5
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Figure 4. Qualitative comparison between DeVOS and some state-of-the-art VOS methods. Best viewed in zoom. We don’t include ISVOS
[5] since there is no source code available. For all methods we used DAVIS2017 val sequences in 480p.

first frame is always kept in the memory [5]. We don’t use
top-k filtering [3] or kernelized memory readouts [38] as we
rely on short-term matching for smooth propagation and on
QK-flow for temporal consistency.

4.2. Comparison with State-of-the-art Methods

Quantitative comparison Table 1 presents a comparison
of DeVOS with other state-of-the-art methods on DAVIS
2017 validation, DAVIS 2017 test-dev, and Youtube-VOS
2019 validation. The quantitative comparison on DAVIS
2016 validation is listed in Table 2.

We can see that without BL30K [3] for pretraining
and MOSE [18] for main training, our ViT-B DeVOS-L
achieves state-of-the-art performance scoring 87.7% J&F
on DAVIS 2017 validation set, 82.9% J&F on DAVIS
2017 test set and 86.3% J&F on Youtube-VOS 2019
validation. The integration of the MOSE dataset further
enhances our metrics, resulting in improved performance:
88.1% J&F 83.0% J&F , 86.6% J&F on the DAVIS
2017 validation test-dev, and on the Youtube-VOS 2019
validation.

The DeVOS-B model exhibits robust performance on the
principal benchmark, scoring 86.1% J&F on DAVIS 2017
validation set, 81.0% J&F on DAVIS 2017 test set and
85.2% J&F on Youtube-VOS 2019 validation. Despite
employing a less complex memory mechanism in contrast
to [12], omitting the direct injection of instance information
as [5], and foregoing hierarchical propagation like [11], our
method achieves commendable outcomes in both accuracy
and, notably, FPS. This highlights the efficacy of incorpo-

rating multi-scale matching and motion-guided attention, as
it contributes to the enhancement of matching performance.

Qualitative comparison Fig. 4 displays the qualitative
comparison of our method with recent state-of-the-art ap-
proaches. As shown by the gold-fish sequence, our ap-
proach demonstrates superior performance under complex
shape and appearance changes. Additionally, mbike-trick
sequence demonstrates that our design results in strong per-
formance under rapid motion. These findings highlight the
effectiveness of the proposed approach in handling various
challenging conditions.

4.3. Discussion

Training with MOSE 2023 MOSE 2023 [18] (CoMplex
video Object SEgmentation) is a novel VOS benchmark
featuring extreme scenarios of the video sequence which are
not handled good enough by existing VOS methods. The
main features of introduced videos include a large num-
ber of crowded and similar objects, heavy occlusions by
similar-looking objects, extremely small-scale objects, and
reference masks covering only a small region of the whole
object.

With adopting MOSE 2023 as training data, performance
on the classic benchmarks experiences only a small boost
(Table 1), likely because they don’t feature any similar ex-
treme scenarios. However, DAVIS and Youtube-VOS fo-
cus on circumstances with a large number of object classes
and classes unseen during training, along with a wide vari-
ety of challenging environments, while MOSE 2023 lacks
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Table 3. Ablation study. The experiments are based on DeVOS-B. MS: multi-scale matching. ADVA: adaptive deformable video attention.
FP: flow priors to offset prediction in ADVA. QK: query-key flow enhancement. Nk: number of offsets per head / scale in deformable
attention. Iters: number of flow refinement iterations of GMA. ω: scale embedding. θ: offset normalization. Note: in the final configuration
QK-flow is used only in DeVOS-L.

(a) Multi-scale matching

MS ADVA D17V D17T Y19 #param FPS

✗ ✗ 84.7 79.2 83.7 35.4M 32.4
✓ ✗ 85.2 80.5 84.4 38.1M 12.9
✓ ✓ 86.1 81.0 85.2 40.3M 36.7

(b) Motion injection

FP QK D17V D17T Y19 #param FPS

✗ ✗ 84.9 79.6 84.2 31.1M 52.1
✓ ✗ 86.1 81.0 85.2 40.3M 36.7
✓ ✓ 86.5 81.2 85.3 40.4M 29.4

(c) Number of offsets

Nk D17V Y19 FPS

2 82.5 81.8 37.1
4 86.1 85.2 36.7
6 86.3 84.9 36.1
8 86.0 84.6 35.5

(d) Optical flow iters

Iters D17V Y19 FPS

0 81.3 81.0 45.5
1 85.5 84.9 41.4
4 86.1 85.2 36.7
12 86.3 85.3 24.8

(e) Scale emb & offset norm

ω θ D17V Y19

✗ ✗ 84.9 84.1
✓ ✗ 85.0 84.3
✗ ✓ 85.8 85.0
✓ ✓ 86.1 85.2

such flexibility. Wrapping up, even minor improvements
on classic benchmarks while training with MOSE 2023 in-
dicate the high robustness and performance capacity of the
proposed method. The quantitative comparison with other
methods on MOSE 2023 validation is studied in Supple-
mentary.

Impact of multi-scale matching We argue that matching
conducted solely on 1/16 of the input resolution does not
convey enough spatial information and fine-grained details
to perform instance discrimination effectively. This limi-
tation becomes particularly crucial when dealing with over-
lapping objects that share a similar appearance. Conversely,
the short-term branch can leverage smaller feature map res-
olutions, specifically 1/8. To validate these hypotheses, we
remove multi-scale matching and evaluate the performance
of the resulting architecture in Table 3a. Multi-scale match-
ing increases J&F by 0.5% and ADVA matching further
boosts the performance by 0.9% J&F while featuring ×3
run-time speed boost on multi-scale. The importance of the
number of sampled offsets per attention head and scale is
studied in Table 3c. Selecting Nk = 4 provides optimal
performance-efficiency tradeoff. Scale embedding and off-
set normalization drastically improve training stability thus
lead to better final performance, which is reflected in Ta-
ble 3e.

Impact of optical flow guidance We assert that to make
matching emphasize semantic features and instance dis-
crimination it is necessary to inject global motion under-
standing prior to the matching process. To accomplish this,
we enhance offset prediction with optical flow. Addition-
ally, we study the effect of QK-flow, which directly injects
motion information into the query and value feature maps.

We argue that this ensures strong cycle consistency. From
Table 3b, we can see that removing QK-flow results in a re-
duction of 0.4% J&F on the DAVIS 2017 Validation set.
Additionally, removing optical flow-based offset prediction
results in a reduction in J&F by 1.2%.

Impact of ViT backbone To further evaluate the impact
of ViT-backbone, we train the same architecture but with
Swin-B [39] transformer used as the backbone. This results
in decrease in J&F by 0.2%. We leave evaluation whether
this small improvement comes from backbone architecture
or SAM [32] pre-training for further research.

Limitations One practical limitation is that the frame-
work depends on a pre-trained optical flow estimator. We
believe, though, that it is quite common that both optical
flow and VOS are required simultaneously. Moreover, our
approach works with different flow estimating architectures
thus provides flexibility of actual choice (without need of
retraining). Ablation on the number of optical flow itera-
tions of GMA [24] (Table 3d) shows that quality of optical
flow is not crucial in the overall performance of our frame-
work and thus any method performing good enough would
work fine.

5. Conclusion
This paper proposes DeVOS (Deformable VOS), an ar-

chitecture that incorporates adaptive deformable video at-
tention. DeVOS combines memory-based matching with
motion-guided propagation, resulting in robust matching
under challenging appearance changes and strong temporal
consistency. DeVOS achieves state-of-the-art performance
while maintaining top-rank FPS.
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