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Abstract

Object proposal generation serves as a standard pre-
processing step in Vision-Language (VL) tasks (image cap-
tioning, visual question answering, etc.). The performance
of object proposals generated for VL tasks is currently eval-
uated across all available annotations, a protocol that we
show is “misaligned” - higher scores do not necessarily cor-
respond to improved performance on downstream VL tasks.
Our work serves as a study of this phenomenon and explores
the effectiveness of semantic grounding to mitigate its ef-
fects. To this end, we propose evaluating object proposals
against only a subset of available annotations, selected by
thresholding an annotation importance score. Importance
of object annotations to VL tasks is quantified by extract-
ing relevant semantic information from text describing the
image. We show that our method is consistent and demon-
strates greatly improved alignment with annotations selected
by image captioning metrics and human annotation when
compared against existing techniques. Lastly, we compare
current detectors used in the Scene Graph Generation (SGG)
benchmark as a use case, which serves as an example of
when traditional object proposal evaluation techniques are
misaligned1.

1. Introduction
Vision-Language (VL) tasks are a growing topic in both

the Natural Language Processing (NLP) and Computer Vi-
sion communities with the majority of techniques relying on
object proposal generation for pre-processing [2, 51]. Object
proposals are a set of regions or bounding boxes deemed
likely to contain the object specified by a detector. Ob-
ject proposal generation offers an explainable, efficient, and
highly effective bridge between raw images and VL tasks.

However, current evaluation techniques of object pro-
posal generation are poorly aligned with the VL use-case,

1Source codes, data, and surveys will be released at https://
github.com/JoshuaFeinglass/VL-detector-eval.
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Figure 1. A system-level plot showing the performance of OSCAR
[21] as tags and their corresponding image features are removed
based on our proposed annotation importance scores. Captions are
evaluated using standard metrics [1, 4, 12, 42] with all punctuation
removed. The text on the plot shows at what fraction of tag and
corresponding bounding box feature removal the metrics achieve
their best score and the highest fraction of tags that can be removed
before the performance drops by more than 5% for each metric.
The results suggest that model performance depends on a critical
subset of object regions.

resulting in adverse effects like “gameability” [8]. While [8]
claim that this misalignment is caused by missing annota-
tions, we theorize that the inclusion of superfluous object
annotations not relevant to VL tasks in evaluation is also
a contributing factor. Contrary to the prevailing attitude
that models should be evaluated across all available annota-
tions, we postulate that models only need information about
a few critical objects to understand a scene. This intuition
aligns well with the idea that not all test examples are equally

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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important for evaluation [33], which is rapidly gaining trac-
tion in NLP benchmarks and benefits not just evaluation but
data annotation as well. Thus, we propose selecting ground
truth annotations for use in evaluation based on a seman-
tic grounding signal, specifically image captions or region
descriptions. To measure the importance of a given object,
we extract relevant semantic information using typicality
analysis [12, 25] and propagate this importance to adjacent
objects using graph signal processing techniques [10]. This
importance score is then used to select only the objects most
relevant to VL tasks for evaluation. Exploring image cap-
tioning as a case study of this phenomenon, we observe that
high image captioning performance can be maintained with
only 24%-44% of object tags and their corresponding fea-
tures from regions of interest depending on the performance
metric as shown in Figure 1. Furthermore, the preservation
of a high SMURF [12] score suggests that removing these
annotations does not significantly impact the detail/diversity
of the generated captions.

Due to the scarcity of relevant detectors and lack of re-
lated benchmarks, we opt for a holistic approach when val-
idating our metric. We perform three independent studies,
each of which provides unique insight into the effectiveness
and advantages of our approach. We begin with an empirical
analysis and find that annotations selected using our impor-
tance scoring result in the highest alignment with improved
image captioning performance for a widely adopted caption-
ing pipeline when compared to an area-based baseline. To
get an example-level view, we perform three human surveys
using Amazon Mechanical Turk (AMT) and find that our
proposed metric adjustments are highly aligned with human
judgement while most of the existing metrics exhibit little to
no alignment with VL bias. We then show that our selections
are consistent across human-annotated text descriptions from
different datasets, in particular, COCO captions and Visual
Genome region descriptions. Our findings support the exis-
tence of a critical annotation set which remains consistent
when using different semantic grounding sources. Further-
more, in our last experiment, we explore a Scene Graph
Generation (SGG) use case where our approach provides
information about model performance not captured in previ-
ous benchmarks. More specifically, we observe an instance
where the standard evaluation approach fails to capture poor
precision performance on VL task essential objects due to
its misalignment.
Contributions: We create a theoretical formulation of mis-
alignment in object proposal evaluation and develop an ob-
ject importance score which can be used to mitigate the ef-
fect of this phenomenon and enhance the feedback provided
when designing VL detectors. To support these insights,
we perform 4 experiments: an analysis of the alignment
between our importance score and performance on a down-
stream VL task, 3 human surveys, a study of the consistency

between selected object regions from different annotation
sets, and a demonstration of mitigated misalignment on a
SGG benchmark.

2. Related Work
Object Proposal Evaluation relies primarily on variations
of mean Average Precision (mAP) [9, 11, 26, 32], although
Average Recall (AR) and mAR (mean Average Recall) are
employed for evaluation benchmarks of related tasks like
SGG [44]. These methods are considered to be intuitive and
are not validated against human judgement. There are no
existing benchmarks or metrics for VL task related object
detection, despite the existence of benchmarks for other sub-
tasks like salient object detection [6]. Thus, our work is
the first to introduce such a benchmark. There are however
numerous scene-oriented object detectors developed via pre-
training [2,14,39,48,50,51], with Visual Genome (VG) [19]
serving as the standard dataset.
Scene Understanding tasks including scene representation
and scene recognition rely largely on supervisory signals
such as object segmentation and labels, which can be erro-
neous or incomplete [23]. Previous works have also shown
that human captions and text alone can serve as a strong su-
pervisory signal for object detection [17, 45, 46] and Visual
Question Answering (VQA) [3]. [29] sought to find the min-
imum set of objects needed for the task of scene recognition.
Objects relations have also been shown to be important for
scene representation and recognition [37], with graph-based
methods achieving significant success [5]. Dataset filter-
ing [7, 47] has also explored the use of supervisory signals
for data example selection from an inference perspective.
Our work combines these scattered concepts into a single
coherent formulation of scene-oriented bias for evaluation.
Annotation Weighting is gaining popularity with [33] and
[24] asserting that each test example is not equally informa-
tive for evaluation benchmarks and that quantifying this im-
portance can improve annotation and help detect overfitting.
In particular, Item Response Theory (IRT) is a test exam-
ple selection and weighting mechanism gaining popularity
in Natural Language Processing benchmarks [20, 35, 41]
which seeks to provide greater rewards for more difficult text
examples and has been shown to be more reliable and repre-
sentative than standard accuracy. Rather than selecting and
weighting examples based on difficulty, our work instead
focuses on selecting test examples based on their relevance
to a task of interest.

3. Our Approach
3.1. Vision-Language Task Background

An object proposal based approach to VL tasks consists
of a vision module V and cross-modal understanding module
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VL

{vd}d∈D=V(image), y=VL(wtask, {vd}d∈D), (1)

where the pre-preprocessed image information vd =
(bd, fd, cd) consists of a region or bounding box bd and ex-
tracted features corresponding to the region fd along with
a category label cd for each object detector proposal d∈D.
The text prompt wtask and output y are VL task-specific,
corresponding to a question and answer in VQA, text and
matching score in text-image retrieval, an empty prompt and
an object predicate graph in SGG, and an empty prompt and
output caption in image captioning.

3.2. Object Proposal Evaluation Background

For a specific object category, an object region proposal
bd provided by a detector is typically deemed correct or incor-
rect based on the largest intersection over union (IOU) it is
able to achieve with a ground truth human region annotation
ba from their category as shown

IOU(bd, ba) =
area(bd ∩ ba)

area(bd ∪ ba)
. (2)

IOU is an extension of the Jaccard Index applied to a region’s
pixels. A threshold γ is then applied to the IOU scores to
obtain a set of correct detections. Precision is the most
commonly used performance measure of an object detector
proposal set D and is calculated over the ground truth region
annotation set A for a specific category Ac∈A as

P (D,A) =
|{maxa∈Ac

[IOU(bd, ba)] ≥ γ}d∈D|
|D|

. (3)

Further reading on object proposal evaluation is in [27].

3.3. Object Importance and Misalignment

We now propose a novel formulation of object importance
and explain how this results in metric misalignment. We
first assume that the information relevant to task output y
provided by the output from the vision module V is limited
to a critical subset of ground truth object annotations I ∈A.
This implies that the increase in alignment, represented as the
mutual information MI , between the output and y provided
by additional annotations is limited to an arbitrarily small
constant δ such that

MI(VI(image); y) = MI(VA(image); y) + δ. (4)

Thus, at a fixed number of detector proposals |D|, a precision
metric is misaligned when the ranking of detectors evalu-
ated using the critical objects does not match the ranking of
detectors evaluated using all the objects as shown

P (D1, I)>P (D2, I) =⇒ P (D1,A)>P (D2,A). (5)

IC IO IP
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Figure 2. An example illustrating our processing pipeline. Words
used for object typicality are shown in bold font. Object annotations
are color-coded to their corresponding label in the IO and IP
processing stages. If we set T = 0.2, only the tennis racket and
adjacent player would be selected based on their high IP scores.

Here D1 and D2 are object region proposals from two dif-
ferent detectors. More specifically, this condition is violated
when ground truth region annotations from the outside the
critical subset I impact the ranking of the detectors by skew-
ing the size of the correct detection set as shown

P (D1, I) + P (D1, I) < P (D2, I) + P (D2, I). (6)

This misalignment is more severe in tasks with a larger
number of superfluous ground truth region annotations. By
removing annotations that are unlikely to be critical to VL
tasks, we reduce the size of I, thereby mitigating the risk of
the condition from Eq. 5 being violated. Thus, we define an
object’s importance I as the likelihood it is a member of I.

3.4. Estimating Object Importance

We estimate an object’s importance using semantic
grounding from human annotated captions for each image.
Our methodology consists of 3 steps: characterization of
the underlying semantic process in order obtain importance
scores for each object category present in the captions (IC),
distributing these importance scores to each object from the
category based on the area of its region annotation (IO), and
propagating object importance to adjacent objects to reduce
sparsity (IP ). Critical objects proposals to be used for evalu-
ation are then selected based on a threshold T . An example
is shown in Figure 2.
Typicality Scores (IC): We utilize typicality [12, 25] to
characterize the underlying semantic process generating the
object instances present in the ground truth captions. To esti-
mate the semantic typicality for our application, we extract
the object-specific concepts from the caption using a Parts of
Speech (POS) tagger [15]. The prevalence of each object in
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the ground truth caption set S is then determined by taking
its document frequency df where each caption is treated as a
separate document. The typicality is

IC(cs) =
dfS(cs)

|S|
, (7)

where cs is an object category present in the caption sentence
based on mappings from object-specific concepts to the most
similar object class by ConceptNet [38], |S| is the number
of captions present in the ground truth human caption anno-
tations, dfS is a function that counts the number of captions
in which the object-specific concept is present, and IC(cs) is
the estimated importance of the object category. In the rare
case that no importance is assigned to any object categories,
the data example has poor alignment between its captions
and object annotations and is skipped during the evaluation.
Distribute to Objects (IO): To begin quantifying the im-
portance of each object in the category cs, the importance
is then distributed to each of the ground truth object annota-
tions from the given category Acs based on its area area(ba)

IO(ba) =
area(ba) ∗ IC(cs)∑

a∈Acs
area(ba)

, (8)

where IO(ba) is the importance of the object ba.
Propogate Scores (IP ): We have now identified objects of
importance to VL tasks in the image. However, larger scores
are likely to be sparse among the objects since most objects
are not in a category with a high IC score. We instead infer
that VL task importance is highly dependent on regional
interactions (e.g. person holding tennis rack in Figure 2) and
utilize heat kernel based dispersion modeling techniques [49]
from graph signal processing in order to capture inter-objects
interactions. To this end, we model the objects in the image
as a graph with adjacency matrix, W , and construct a heat
kernel using the PyGSP toolkit [10]. The values of W are
based on the inverse of the minimum Euclidean distance (d)
between the ground truth object region annotations in the
image as shown

Wij =
1

max(d(bi, bj), 1)
, if i ̸= j, (9)

where Wij (shown in bottom right of Figure 2) is transpose
invariant and Wij = 0 if i = j.

The heat kernel, Ht(W ), is a function of graph connect-
edness and can be used to smooth the values of each node
on a graph over time, t. The heat kernel is defined in the
spectral domain as gt(λ) = exp(−tλ), where λ ∈ [0, 1] are
the normalized eigenvalues of the graph Laplacian (formed
by W ). Since the kernel is applied to the graph eigenvalues
λ, which can be interpreted as squared frequencies, and as a
generalization of the Gaussian kernel on graphs.

We apply this kernel to the object importance vector to
propagate the importance of the objects based on their prox-
imity to one another as shown

IP (j) =

|V |∑
i=1

IO(bi)×Ht(i, j), (10)

where |V | is the number of connections a node has on the
graph and t represents the dispersion time parameter (as
t→∞, all importance scores IP become uniform) set to the
standard value of 1 [10]. We then normalize the sum of IP
to 1 as a post-processing step.

Once we have determined the final importance weight
after propagation, denoted as IP , of each object, we apply
a threshold T in order to select a suitable subset of objects
(with IP > T ) to be used for object evaluation. Therefore,
increasing T allows for more focus on the central aspects of
the scene while decreasing T incorporates more details from
the annotations at the risk of including noisy or irrelevant
annotations.

3.5. Extending Existing Metrics

After our proposed approach of selecting critical objects,
standard evaluation procedures are then employed. In prac-
tice, precision performance is aggregated across all object
categories. Region proposals are selected based on either a
confidence threshold or by taking a set number of the most
confident predictions. There are 6 evaluation metrics cur-
rently employed in object detection: mAPIOU=0.50:0.05:0.95,
the primary COCO evaluation metric, mAPIOU=0.50, the
primary metric for PASCAL VOC and VL task object detec-
tion, mAPIOU=0.75, the precision metric most attune to lo-
calization, and 3 variations of mARIOU=0.50:0.05:0.95 where
either 1, 10, or 100 annotations are used as the ground truth
set. Additional detail regarding these metrics can be found
in [27]. For convenience, we will refer to these 6 COCO
metrics as mAP , mAP50, mAP75, mAR1, mAR10, and
mAR100. We also include an adjusted recall metric with
an IOU of 0.50 mAR1

IOU=0.50 which when combined with
mAP50 via harmonic mean, creates a proposed F1 score,
F1IOU=0.50. For convenience, we will refer to our pro-
posed metrics as mAR1

50 and F1. All proposed metrics
are developed based on the implementation from [22]. By
combining the perspectives of precision and recall with the
importance threshold of object annotations, our approach
provides insight into detector comparison and improvement.

4. Experiments
4.1. Alignment with Captioning Metrics

We first measure our method’s agreement with down-
stream captioning metrics when the importance scores are
used to select annotations and proposals from VINVL [51]
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Figure 3. Plots of the captioning performance for each importance
score decile group for image captioning on the COCO “Karpathy”
test split [16, 22] evaluated using CIDEr (C) [42], Meteor (M)
[4], SPICE (SP) [1], and SMURF (SM) [12]. The Spearman’s
ρ rank correlation is used to measure the alignment between our
importance score selections and image captioning results and is
shown for each method in the legend.

to perform the task of image captioning. VINVL uses the
1594 most frequent object classes and 524 most frequent
object attributes from VG for their label prediction set. Their
work uses OSCAR [21] as a downstream captioner, which
takes category tags and features from regions of interest as
input and uses the CIDEr optimization methodology [31].
Annotations and proposals deemed more important by our
algorithm should result in higher captioning scores, while
annotations and proposals deemed less important by our al-
gorithm should result in lower captioning scores. We select
image captioning as the representative task of the VL do-
main since it directly incorporates text-image alignment in a
consistent manner.

For our experiment, we first select the 2109 images from
the 5000 images in the Karpathy test split [16] that have
at least 1 VG annotation. We then remove 38 examples
with poor image-caption alignment, leaving us with 2071
images for use as a benchmark. We use the provided pre-
trained models with default settings and do not perform any
fine-tuning. OSCAR is provided with regional information
sourced from both ground truth annotations and VINVL [51]
and tag information sourced from ground truth annotations.
To measure agreement, we split the annotations into the 10
decile groups based on the IP importance scores to gener-
ate adjusted tag and corresponding bounding box feature
sets as input to the OSCAR captioner. Figure 3 shows the
Spearman’s ρ rank correlation between the mean caption-
ing metric scores and our importance score, along with the
correlation for a developed area-based baseline. We select

Write a caption describing the image 

on the left on a piece of paper. Now 

select the relevance of each of the 5 

labeled objects shown in the image 

on the right to your caption.

Identify the objects you feel describe 

the image below most completely. 

Which of the two annotation sets 

correctly label and isolate more of the 

objects you identi�ed?

Observe the image on the left. Now 

select the prominence of the 5 labeled 

objects shown in the image on the right.

Survey 1

Survey 2

Survey 3

Figure 4. A visualization of the 3 AMT surveys performed with
the instructions and input interface shown on the left and example
images shown on the right.

the Spearman’s ρ rank correlation since we expect the rank
of the mean captioning score for each percentile range to
increase in a monotonic, linear fashion if our importance
scores are well aligned with VINVL and the human anno-
tations. Figure 1 follows a similar procedure, but instead
removes the lowest importance decile group at each iteration
and shows the result for a data example at 3 different tag and
feature removal points.

Our results show that the IP importance score is highly
aligned with captioning metrics. Although the max caption-
ing scores from 90th-100th percentile of the pre-propagation
and final scores are comparable, performance in the lower
percentiles is very low and for the most part constant for the
pre-propagation scores. This agrees with our expectations
since the pre-propagation scores are sparse and provide no
information about objects not mentioned in the captions. The
area-based baseline is roughly correlated with improved cap-
tioning performance but has a drastically lower performance
in the higher percentile groups.

4.2. Human Surveys

We perform 3 human surveys using AMT in order to
provide an example-level view of our approach and collect
information about object importance based on human per-
ception. We start with a set of 225 randomly selected images
from COCO that contain at least 5 annotated objects. We
then use the importance score of each object to select 5 ob-
jects from each image to be visually annotated using the
provided ground truth regions and labelled for our first two
surveys. Letter labels {‘A’,‘B’,‘C’,‘D’,‘E’} are assigned to
objects randomly and images with confusing labels due to
object overlap were removed, leaving 198 labelled images
that were used in our first two surveys. The first two surveys
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Method Prominent Caption Aligned
Area (Baseline) 0.089 0.064

IO (Pre-Propagation) 0.154 0.083
IP (Final Score) 0.152 0.160

Table 1. Kendall Tau rank correlation between object scoring algo-
rithms and rating-based survey results. ’Prominent’ corresponds to
the survey 1 responses while ’Caption Aligned’ corresponds to the
survey 2 responses. The correlation between the two surveys was
0.25. A ranking based on the area of the annotations is used as a
baseline along with an ablation study.

ask Turkers to rate objects based on two separate criteria
in order to reduce survey bias and provide a more diverse
view of object importance. For the first survey, Turkers are
asked rate each object’s prominence on a scale of 1 to 3, 1
being ”not prominent” and 3 being ”very prominent”. In the
second survey, we follow a similar procedure except we ask
Turkers to first write a caption describing the image, then
rate the objects based on their relevance to that caption. For
our third survey, two state-of-the-art anchor-free detectors,
FoveaBox [18] and fcos [40], are used to automatically anno-
tate our previously selected 225 images with bounding boxes
and class labels. We include only the top 5 most confident
predictions of each model. The 142 images with inconsistent
class labels were used for the third survey, which asks Turk-
ers to choose which image of the automatically annotated
images includes and correctly labels more of the objects
most important for understanding the scene. Each detector’s
annotated image was placed randomly on either the left or
right side of the survey page for the selection process. The
majority decision from 3 different Turkers is used as the final
selection. The selections were quite consistent with all 3
annotators choosing the same image 81% of the time. The
full survey is shown in Figure 4. We publicly release the
AMT responses (822 in total), survey templates, and labelled
images for all the surveys.

Table 1 shows the rank correlation of each object scoring
methodology with the human responses from our first two
surveys, as well as an additional ablation study showing the
importance of propagating the importance over regions yield-
ing results consistent with Figure 3. As a baseline, we use
object area as a method for importance scoring. For the pur-
poses of this comparison, the importance scores are mapped
to the discrete set {1,2,3} such that the frequency of each
value matches that of the human survey response distribu-
tion. We use Kendall Tau due to its focus on concordant and
discordant pairs, making it more robust to ties and survey
noise and more appropriate for experiments not fitting to a
linear representation. Our importance scores demonstrate a
dramatic increase in human object rating alignment over the
more naı̈ve area-based approach for both survey prompts,
despite the inter-correlation between the surveys being only
25%. Based on the results from the third survey, we measure

Metric Acc
mAP 0.489
mAP50 0.692
mAP75 0.600
mAR1 0.559
mAR10 0.425
mAR100 0.425

mAR1
50 (Ours) 0.750

F1 (Ours) 0.737

Threshold Value (T)

A
c
c
u

ra
c
y

Best T

Figure 5. The table on the top shows the example-level accuracy
with human judgement from Survey 3 for different detection metrics
using all ground truth annotations (T=0). The plot on the bottom
shows how this accuracy improves for the best performing metrics
by selecting ground truth object annotations based on importance
with T=0.25 (92% of annotations removed) yielding the best results.

the agreement between our proposed detection evaluation
metrics along with existing metrics in the table in Figure 5.
We observe that mAP50 along with our proposed recall and
F1 scores have the greatest alignment with human judgement
when compared with other existing metrics. We are able to
further improve alignment with human judgement by using
our annotation selection methodology, which can be seen in
the plot shown in Figure 5. The initial dip in alignment be-
tween human and metric selections is largely caused by the
forced selection of object rankings in Survey 1 and 2 rather
than allowing for ties. This necessary limitation on the hu-
man survey’s granularity simplifies the response process but
forces arbitrary selections for lower importance objects. One
such example can be observed in Figure 6. This selection
should have instead been considered a tie by the metric since
most scene-essential objects have been accounted for by both
models and any image selection is likely to be arbitrary.

4.3. Consistency Study

Although COCO is a crucial benchmark for object de-
tection, VG is one of the primary benchmarks for VL tasks.
Therefore, we assess whether our approach is consistent
across the COCO and VG annotation formats. By showing
the consistency of selected objects across datasets, we fur-
ther support the existence of a critical subset of ground truth
object annotations and the effectiveness of our approach.

In place of captions, VG utilizes region descriptions
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pizza: 0.445

dining table: 0.342

fork: 0.092

cup: 0.072

knife: 0.019

person: 0.012

chair: 0.008

cup: 0.004

cup: 0.003

chair: 0.003

Object Annotation

Scores

Human ChoiceIncorrect Choice for T=0.05

Figure 6. A failure case for mAP50 for T=0.05. Object annota-
tions used in the evaluation are shown in bold.

where a human annotator describes a section of the image.
These descriptions are very similar to captions and at least
10 descriptions are provided for each image, so we postulate
they can be used in place of captions for our method. We
use the preprocessed VG split from [44], commonly utilized
for SGG tasks, which contains information on only the 150
most frequent object categories, to perform a study. We first
acquire the annotations of 11,597 training split images that
appear in both the VG and COCO dataset. Then we perform
our score-based selection of objects on the COCO dataset
with a threshold value of 0.25. We perform the same selec-
tion on VG, but sweep the threshold value from 0 to 0.35 in
increments of 0.05. Here we use the Intersection-over-Union
(IOU) between the selected annotations of the two datasets
to show that our method is gradually removing excessive and
noisy annotations and instead focusing on essential regions,
like those annotated in COCO, as supported by the results
in Figure 7. Visualizations of selected annotations for two
images show that selected VG annotations become very sim-
ilar to the COCO annotations in terms of quality and focus,
but still include some additional detail. The gradual increase
in IOU is highly significant since it occurs despite the large
amount of overlap between the annotations of VG. Our re-
sults suggest that some of the additional annotations found
in VG actually lead to worse scene coverage and that there
is a subset of objects recognized by annotators as capturing
the essence of the scene, which we are able to identify with
our method. Based this study, we determine T=0.075 (61%
of annotations removed) to be a threshold of interest for the
VG dataset since an inflection point occurs around this value,
meaning many of the most irrelevant annotations have been
removed and the rate of IOU increase has begun to slow. We
also determine T=0.30 (96% of annotations removed) to be
a threshold of interest since this selection has the greatest
IOU with the selected COCO annotations.

4.4. Importance in a SGG Benchmark

Current VL works typically report the mAP50 score of
a proposed detector as a intermediate validation of their

VG w/ All Annotations VG w/ Selected Annotations COCO Annotations

Threshold Value (T)

In
te

rs
e
c
ti

o
n
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v
e
r 

U
n
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n
 (

Io
U

)

T=0.075 

IoU In�ection Point

T=0.30 

Largest IoU

Figure 7. Examples of the annotation selection process for Visual
Genome using a threshold value of 0.075 are shown on the top along
with a comparison to COCO. The plot on the bottom shows the
average IOU between COCO and VG annotations as the importance
threshold is raised.

methodologies. While mAP50 is certainly correlated with
the bias needed for improved VL performance, cases of
disagreement between the intermediate measure and down-
stream task performance measures are very common. An-
other issue is that since specialized detectors like VINVL
[51] and BUTD [2] use unique category sets and training
procedures, it is difficult to compare them with other detec-
tors. Scene Graph Generation (SGG) benchmarks, on the
other hand, have a strict category set and training procedure
used by proposed detectors, allowing for direct and mean-
ingful comparison. Authors have also claimed that SGG can
serve as an important benchmark for connecting detection
and scene-understanding tasks. However, there is little to no
evidence to support that SGG provides any more feedback
on VL-oriented performance than mAP50, nor is there any
evidence that techniques improving SGG performance lead
to improved performance in other VL tasks. On the contrary,
the novel portion of SGG, the object relations, have been
found to be highly imbalanced and ambiguous [39]. In addi-
tion, it is difficult to determine how results reported in Scene
Graph Generation works can be related to other VL tasks.

In this experiment, we present a use case that highlights
the flaws of these competing methodologies in a highly
explainable manner. We follow the progress of detectors
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Previous Ours

Model T=0 T=0.075 T=0.30
P P R F P R F

2018 [48] 20.4 18.0 37.7 24.3 5.9 46.7 10.6
2020 [39] 22.9 18.7 40.0 25.5 5.2 47.2 9.4
2021 [14] 24.5 20.0 41.7 27.0 5.7 50.9 10.2

Table 2. Detector evaluation based on the Visual Genome experi-
mental procedure from [44]. The “Previous” column represents the
relevant information provided by the unmodified mAP50 metric,
while the remaining columns correspond to the feedback provided
by our proposed modifications using thresholds determined in the
consistency study.

utilized in Scene Graph Generation (SGG) by extensively
evaluating 3 selected detectors. All detection models in SGG
currently use the Faster RCNN architecture [30]. However,
the 2018 model from “Neural Motifs” [48] incorporates a
VGG backbone [36] and both the 2020 model from [39] and
the 2021 model [14] incorporate the ResNeXt101-FPN as
the backbone as originally done in [50]. Since VG has ap-
proximately 20 object annotations per image, we use the top
20 most confident proposals from each detector in our evalu-
ation. A comparison of the performance of these detectors is
shown in Table 2.

Based on this analysis, it is apparent that the information
provided by previous measures is very limited. Questions
like which objects were detected and whether these objects
were worth detecting are ignored. Using our more detailed
evaluation, we see the 2021 detector consistently achieves
higher recall than the other two detectors, but the 2018 model
has higher precision on objects critical to VL tasks. This
leads to the 2018 model having a larger F1 score at the
higher importance threshold and shows that newer models
may not be adequately prioritizing the correct classification
of essential objects, a phenomenon not captured by existing
evaluation methods due to their misalignment. While our
measures demonstrate a degree of agreement with previous
methods, our method is able to capture a much broader and
more nuanced story about a given detector’s performance.

5. Discussion and Limitations
It should be noted that selection of critical objects is by no

means a “one size fits all solution” to metric misalignment.
Our method is intended to be an enhancement of existing
VL evaluation metrics like caption evaluation by providing
more detailed feedback on object prioritization by the vi-
sion module based on downstream semantic information.
Furthermore, proper alignment between object proposals
and evaluation is a task-specific problem where the sever-
ity of misalignment will vary depending on how few of the
annotated objects are relevant to a given downstream task.

Another challenge facing VL evaluation metrics is degrad-
ing performance when there are fewer or noisier captions

provided by human annotation [1]. For our method, fewer
captions would result in more data examples being skipped
during the evaluation due to no importance being assigned
to any of the objects in the image. We also find that while
the mappings performed by ConceptNet are very reasonable,
there are a number of failure cases. An example of such a
case is the word “player”, which is mapped to “sports ball”
instead of the more appropriate “person”. This can lead to
sports players being given less importance at the IO stage,
especially if all the annotators only use the term “player”
to describe the person in question. Importance propagation
helps compensate for this issue as long as the “player” is in
close proximity to the “sports ball”.

We also observe some limitations in the human study in
the form of annotation noise. We attempt to reduce influence
of this noise by using two different prompts for the first two
surveys, using the majority decision of 3 responses in the
third survey, and removing select responses. To avoid bias in
our selections, we do not keep any intermediate data from the
survey process and instead make removal selections based on
survey completion in an unreasonable amount of time, with
too little variation in scoring, or with excessively repeated
patterns. In addition, there is a clear trade-off between in-
struction specificity and bias when conducting surveys [28].
We appeal to the AMT annotators innate understanding of
importance with unique and open-ended tasks, but this can
potentially lead to less consistent responses.

6. Conclusion and Broader Impact
We present a formulation of misalignment in object pro-

posal metrics along with an importance score that can be
used to select objects critical to VL tasks in order to address
this phenomenon. Our object proposal evaluation methodol-
ogy is the first to be validated with both human judgement
and empirical results. The current lack of a VL specific detec-
tor evaluation benchmark has contributed to a shift towards
embedding-based approaches for VL tasks [43, 52]. This
shift represents a dangerous trend in VL pipelines, which
are known to be sensitive to language [34] and dataset [13]
priors. To avoid such issues, vision and language compo-
nents of these pipelines should be evaluated independently in
an explainable manner. Our approach could help revitalize
research in detectors and enable transparent and explainable
approaches and analyses in VL tasks. Future work could
focus on applying our method to other elements of scene
understanding such as activities or attributes by shifting the
focus of the concept extraction to the element of interest.
Acknowledgments: The authors acknowledge support from
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