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Abstract

Star localization in astronomical imagery is a computer
vision task that underpins satellite tracking. Astronomi-
cal star extraction techniques often struggle to detect stars
when applied to satellite tracking imagery due to the nar-
rower fields of view and rate track observational modes of
satellite tracking telescopes. We present a large dataset
of real narrow-field rate-tracked imagery with ground truth
stars, created using a combination of existing star detection
techniques, an astrometric engine, and a star catalog. We
train three state of the art object detection, instance segmen-
tation, and line segment detection models on this dataset
and evaluate them with object-wise, pixel-wise, and astro-
metric metrics. Our proposed approaches require no meta-
data; when paired with a lost-in-space astrometric engine,
they find astrometric fits based solely on uncorrected image
pixels. Experimental results on real data indicate the effec-
tiveness of learned star detection: we report astrometric fit
rates over double that of classical star detection algorithms,
improved dim star recall, and comparable star localization
residuals.

1. Introduction
Human activity in space is rapidly accelerating [31].

With this orbital object population growth comes height-
ened challenges for human activity in space [2]; among
these are collision avoidance, debris tracking, and safety
of human space flight. The burgeoning ranks of anthro-
pogenic Earth satellites (e.g., commercial megaconstella-
tions [28]) have driven a commensurate increase in the num-
ber of ground-based astronomical telescopes with which to
track them [3, 15]. However, the computer vision applica-
tions through which the operators of these telescopes per-
ceive the space environment are largely adapted from astro-
nomical data processing. These algorithms require expert
adaptation to each telescope, and are prone to error when
improperly calibrated.

The adaptation of astronomical techniques to satellite

Figure 1. The astrometric image processing pipeline. A star detec-
tion model accepts an astronomical image as input and produces
detected star positions. The detected star positions are passed to
an astrometric engine, which uses the ratios between the star po-
sitions to match detected stars to real world catalog stars. The
output of this pipeline is either an astrometric fit (if the detected
stars could be matched to the celestial sphere) or an astrometric
failure (if the detected stars could not).

tracking yields sub-optimal object detection performance
due to misalignment between the content of astronomical
optical images and those collected for satellite tracking [15].
Both the narrower fields of view and rate track observational
modes reduce precision and recall for star source extraction,
resulting in failed astronomical alignment and, ultimately,
satellite tracking failure. Prior work has improved source
extraction for satellite tracking [16], but astrometric local-
ization of the detected satellites remains a limiting factor for
end-to-end performance.

In this work, we propose a learned approach to star de-
tection in narrow-field rate-track imagery. We show that
this approach outperforms two baseline star source extrac-
tion methods across all metrics. Our star source extraction
models can be paired with a lost-in-space algorithm to pro-
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duce an astrometric fit for an image with no input other
than the uncorrected image pixels, as shown in Figure 1.
This differs from traditional astrometric image processing
pipelines, which require dark and flat field corrections in the
star detection step as well as scale and pointing information
in the astrometric engine step [37]. We contribute:

• StarNet: a real dataset of 64k narrow-field rate-tracked
images and their corresponding 4.5 million stars, ex-
tracted from a star catalog.

• Three novel learned approaches to the star source ex-
traction task leveraging object detection, instance seg-
mentation, and line segment detection in which star
locations are predicted as bounding boxes, pixel-wise
masks, and line segments, respectively.

• A framework for evaluating star detection solutions in-
cluding object-wise metrics, pixel-wise metrics, and
astrometric fit rate.

2. Related Work
Astrometric processing comprises the extraction (i.e.,

detection) of relevant light sources from astronomical im-
agery and the the positioning of those sources with respect
to the fixed celestial background (i.e., astrometric fitting),
as shown in Figure 1. In this section, we review source
extraction methods for stars, various approaches to astrom-
etry, learned computer vision techniques that are applicable
to our source extraction problem, and conclude with a dis-
cussion of recent work in deep learning for Space Domain
Awareness (SDA).

2.1. Star Source Extraction Methods

Prior works in source extraction employ hand-crafted
features and rule-based systems, and are often optimized
for one specific sensor or telescope [13, 29]. Some rely on
image metadata such as telescope track rate and exposure
time, limiting their generalization capabilities [24, 37]. Re-
cent forays into learned computer vision techniques have
revealed the applicability of deep learning to source extrac-
tion, and include object detection neural networks for stars
[5, 22], galaxies [5, 20], and satellites [16, 22, 38], as well
as semantic segmentation neural networks for stars [11,42],
galaxies [33], and satellites [39].

For star extraction, these studies have relied upon small,
often simulated, training datasets [5,11] consisting of wide-
field-of-view (WFOV), sidereal (i.e., the sensor is slewed to
match the apparent movement of the stars) images. In the
cases where real data is used [22, 42], ground truth star an-
notations are produced by traditional computer vision tech-
niques or human annotation, both of which are imperfect
approximations for ground truth star locations.

In order for a star extraction method to be a robust so-
lution for the satellite tracking community, it must be able
to detect stars when telescope track rates deviate from side-
real and stars appear as star streaks instead of point sources.
Few classical source extraction methods have this capac-
ity [13, 24], and no published deep learning methods do
[22, 42]. In this work, we propose a method that addresses
this gap. The foundation of our work is a large, real dataset
of narrow-field, rate-track images. We pair an astrometric
engine with a star catalog to ensure that every real star in an
image is labeled in the ground truth.

2.2. Astrometry Methods

Astrometry is an astronomical data processing task in
which the positions of celestial bodies (extracted by an
image processing algorithm or deep learning model) are
matched to a portion of the celestial sphere. Astrometry can
be broadly divided into lost-in-space algorithms and recur-
sive algorithms, both of which produce astrometric meta-
data for astronomical images [36]. Lost-in-space algorithms
autonomously identify the stars present in an image without
any initial image metadata [23], while recursive astromet-
ric algorithms leverage image metadata (an initial pointing
guess and an approximate scale) for the same task [37].

A typical astrometric pipeline consists of a pattern-
based feature extraction algorithm (which transforms the
extracted stars in an image into a unique object such as a
geometric shape, matrix, or string), a catalog search step
(typically of O(n) complexity where n is the number of
star patterns being searched through), and occasionally a
validation step (such as a voting mechanism or a Bayesian
decision process) [36].

One publicly-available lost-in-space algorithm is astrom-
etry.net, which was designed by an interdisciplinary team of
astronomers and software developers to be robust to false
extracted stars and shifted star centroids, both of which
are common failure modes for astrometric engines [23, 36].
With rigorously documented scalability and fidelity, as-
trometry.net is the astrometric engine of choice for this
work and is discussed further in Section 4.2.

2.3. Deep Learning Computer Vision Techniques

Three established deep learning problem formulations
are well-suited to the task of star localization: object de-
tection, instance segmentation, and line segment detection.

Recent developments in object detection demonstrate the
effectiveness of one-stage object detectors such as YOLOX
[19, 34] and transformer-based object detectors such as
Deformable DETR [6, 43]. While architectures such as
Faster RCNN [35] and RetinaNet [26] continue to perform
well, these newer architectures eliminate the need for hand-
designed components such as non-maximum suppression
and anchor generation, increasing their applicability to new
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problem domains. Deformable DETR is particularly well-
suited for detecting small objects [43], like stars in astro-
nomical imagery.

Instance segmentation developments tend to follow ad-
vances in object detection, with Mask RCNN evolving
Faster RCNN [21] and Mask2Former extending DETR [9]
to predict masks and bounding boxes in parallel. Other
models such as HTC [7] and QueryInst [12] interleave the
bounding box regression and mask prediction tasks in a
self-attention manner, enabling communication between the
tasks to integrate complementary features. HTC incorpo-
rates a semantic segmentation branch to distinguish faint
objects from noisy background [7], useful for dim stars in
astronomical imagery.

Recent developments in line segment detection (an off-
shoot of wireframe parsing) shift deep learning approaches
from detecting line segment proposals and junctions sepa-
rately to treating line segments as objects [10, 41]. LETR
is the current state of the art architecture, modifying DETR
to predict line segment endpoints and utilizing a direct end-
point L1 loss to avoid IoU issues when line segments are
horizontal or vertical [41], a common occurrence for stars
in astronomical imagery.

2.4. Deep Learning for Space Domain Awareness

SDA entails the detection, astrometric localization, iden-
tification, and characterization of artificial satellites. Deep
learning approaches to satellite detection [14, 16, 17], iden-
tification [18, 30], and characterization [32] have been ex-
plored, but astrometric localization still relies on physics
based methods.

Astrometric localization is a process in which the stars in
an image are extracted, then matched to a set of real world
stars in a process called astrometric fitting, as shown in Fig-
ure 1. This allows for accurate localization of any satellites
in the image, down to arcseconds of precision. A satellite
can only be localized, and subsequently tracked, if the as-
trometric fitting process is successful.

The zoo of learned star localization models proposed in
this work are a first step towards a deep learning solution for
satellite localization, as high-precision and high-sensitivity
star detection enables astrometric fitting, and by extension
high-accuracy satellite localization.

3. Approach
3.1. A Task Formulation for Star Detection

The objective of astrometric image processing is to pro-
duce an astrometric fit for an image. This binary measure-
ment of astrometric fit/failure is not conducive to learning,
so we substitute the astrometric processing task with the star
localization task. If every ground truth star in a given image
is extracted, then that image will have an astrometric fit.

Figure 2. Sample StarNet images and their corresponding ground
truth stars represented as bounding boxes, demonstrating a range
of star streak characteristics and background noise patterns.

The task of localizing an unknown number of stars with
unknown streak lengths and angles in noisy electro-optical
imagery naturally lends itself to a deep learning computer
vision solution. Stars can intuitively be represented as
bounding boxes for object detection models, pixel-wise
masks for instance segmentation models, and line segments
for line segment detection models.

3.2. Creating Training Data

The process of creating our StarNet training dataset is
detailed in Section 4. Satellite tracking images collected
over a period of four years are run through the astromet-
ric imaging pipeline shown in Figure 1. Four classical star
detection methods detailed in Section 4.1 are used to ex-
tract stars: SExtractor, AstroGraph, human annotation, and
model ensemble bootstrapping. These extracted stars are
submitted for astrometric fitting using the astrometry.net al-
gorithm described in Section 4.2. If astrometric fitting is
successful, the astrometric fit is paired with the SSTRC7
star catalog defined in Section 4.3 to extract all real stars in
the image. Finally, the ground truth stars are represented in
one of three formats suitable for deep learning (bounding
boxes, pixel-wise masks, and line segments) in Section 4.4.

3.3. Training Models

Nine deep learning models are trained on the StarNet
dataset. We select the object detection models Deformable
DETR, Faster RCNN, RetinaNet, YOLOX and the in-
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stance segmentation models Mask2Former, Mask RCNN,
QueryInst, HTC as they span a wide variety of model ar-
chitectures and loss functions. Additionally, we select the
line segment detection model LETR as a more specialized
model that aligns well with the task of star streak detec-
tion. All models are described in Section 2.3. The top-
performing models (Deformable DETR, HTC, and LETR)
undergo rigorous comparison to baseline star detection
methods in Section 5.

Every model architecture is created in pytorch [27] and
modified to detect one class (star) and a maximum of 1000
objects (stars), then trained on the train partition of StarNet
using an NVIDIA DGX system with 4 GPUs. Models are
instantiated with a pre-trained R-50 backbone and trained
for 500 epochs with a total batch size of 64 [8]. The number
of model parameters and floating-point operations (FLOPs)
for the top-performing models is detailed in Table 2.

3.4. Evaluating Models

To frame the star detection task within the SDA com-
munity, we prioritize sensitivity (recall) and precision when
evaluating our deep learning models on the test partition of
StarNet. High-sensitivity star detection is critical for detect-
ing enough stars per narrow-field image to find an astromet-
ric fit. High-precision star detection is essential for achiev-
ing small star localization residuals, and by extension small
satellite localization residuals.

We compare the trained deep learning models to SEx-
tractor [4] (a widely-used classical star extraction method
within the astronomy community) and AstroGraph (a newer
classical star extraction method designed for narrow-field
rate-tracked imagery [37]). The metrics precision, recall,
and F1 score are used to quantify deep learning model
performance against SExtractor and AstroGraph on both
object-wise and pixel-wise scales in Sections 5.1 and 5.2,
aligning with previous work in astrometric source detec-
tion [16]. We compare astrometric fit rates in Section 5.3,
using the astrometric engine astrometry.net. To further un-
derstand star recall, we analyze star recall in relation to the
number, length, and magnitudes of stars in Section 5.4. To
further understand star precision, we decompose star resid-
uals into RA residuals and Dec residuals in world space in
Section 5.5. Finally, we address model and pipeline com-
putational complexity in Section 5.6.

4. StarNet Dataset
The StarNet dataset consists of 64,668 images and their

corresponding 4.5 million stars. StarNet images are cap-
tured in rate-track mode against low earth orbit (LEO),
medium earth orbit (MEO), and geosynchronous equatorial
orbit (GEO) targets by four sensors at three geographic lo-
cations. The images range in size from 512× 512 pixels to
1024×1024 pixels, in field of view (FOV) from 0.3 degrees

to 0.9 degrees, and in instantaneous field of view (IFOV)
from 2.0-4.2 arcseconds per pixel. The star streaks in these
images range in angle from 0 to 360 degrees, in length from
0 to 270 pixels, and in quantity from 9-500 stars per image.
Sample StarNet images are shown in Figure 2.

4.1. Detecting Stars

SExtractor is a well-known algorithm for detecting stars
in astronomical images. It uses a series of image processing
steps such as background subtraction, filtering, segmenta-
tion, de-blending, and pruning to localize stars, each rep-
resented by a barycenter in pixel space and an isophotal el-
lipse enclosing the detected star. SExtractor is optimized for
detecting point sources in sidereal imagery and can struggle
detecting long star streaks in rate-track imagery, producing
multiple detections per star streak [4].

AstroGraph is a comparatively recent star detection ap-
proach that entails a series of steps including dark and
flat field corrections, background subtraction, thresholding,
clustering, template matching, and filtering to generate a list
of detected stars, defined by barycenters in pixel space. As-
troGraph leverages image metadata to estimate star streak
length and angle, enabling it to reliably detect long star
streaks. Its ability to detect dim stars can be impacted by
the absence of high-quality dark and flat frames, as is the
case for the observations in our dataset [37].

Human annotation is accomplished by a team of trained
analysts that label stars in astronomical images. Due to the
high number of stars per image, we introduce an iterative
process in which an annotator labels 10 stars, the image is
submitted for astrometric fitting, and if the image cannot be
fit the annotator labels 10 more stars. This cycle is repeated
until the image is fit, or there are no more visible stars to
label. Labeling a star consists of annotating both endpoints
of a star streak. This process yields a throughput of approx-
imately 30 images per annotator per hour.

Model ensemble bootstrapping is used to augment Star-
Net. The four object detection models detailed in this work
(Deformable DETR, Faster RCNN, RetinaNet, YOLOX)
are trained on 10k images of StarNet. If all trained mod-
els predict a star within 4 pixels of each other, the average
pixel location of the predictions is included in the set of
stars submitted for astrometric fitting. In this approach, we
are using the astrometric fit process as an oracle. We ac-
knowledge the potential bias introduced when using model
predictions to populate the training dataset. However, by
including the astrometric fitting and star catalog steps in the
data production pipeline we keep astronomy “in the loop,”
thereby ensuring that every star included in the ground truth
is a bona fide star.
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Figure 3. A random StarNet image with star detections. From left to right: SExtractor isophotal ellipses, AstroGraph centroids, Deformable
DETR bounding boxes, HTC instance segmentations, and LETR line segments.

4.2. Astrometric Fitting: Astrometry.net

Astrometry.net is an astrometric engine that uses the
pixel locations of stars to estimate the pointing, scale, and
orientation of an image. It encodes that information as a
World Coordinate System (WCS), which describes the geo-
metric transformation between pixel space and world space
using a reference point and a matrix. The astrometry.net al-
gorithm operates by geometrically hashing sets of four stars
(known as a “quad”) and comparing them to pre-indexed
hashes built from star catalogs. Matching quads are veri-
fied through a Bayesian decision process, weighted to avoid
false positive astrometric fits. We use the provided 4200 star
index, constructed from the 2MASS catalog [23].

4.3. Star Extraction from Catalog

The WCS generated by astrometry.net is paired with the
SSTRC7 star catalog to extract all of the real stars in an im-
age. SSTRC7 merges many catalogs including GAIA-DR2,
Tycho-2, and 2MASS to form a comprehensive catalog with
over 1.6 billion stars with a maximum visual magnitude of
18 [37]. Each extracted star is represented by a star centroid
in pixel space and a visual magnitude. We include all stars
with a visual magnitude of less than 15 in the ground truth,
yielding an average of 73 stars per image. We ensure every
image in StarNet can be astrometrically fit using only the
stars in the ground truth.

4.4. Representing Stars for Deep Learning

Bounding boxes are created for object detection models.
Star streak length and angle information are extracted from
image metadata to construct a bounding box that encom-
passes the star streak. Bounding boxes are then padded to
ensure they are at least 5% of the size of the image. A repre-
sentation without padding (with bounding boxes as small as
1 pixel x 1 pixel) was explored but resulted in a significant
drop in model recall.

Pixel-wise masks are created for instance segmentation
models. Star streak length and angle information are ex-
tracted from image metadata to construct a 1-pixel-wide

star streak connecting the endpoints of the streak, then this
streak is dilated three times to account for the point-spread
function [24]. A semantic segmentation representation was
evaluated but resulted in a marked decrease in astrometric
fit rate due to overlapping star streaks.

Line segments are created for line segment detection
models. Star streak length and angle information are ex-
tracted from image metadata to construct a line segment
connecting the top-left endpoint of the streak to the bottom-
right endpoint of the streak. An alternative representation
connecting the “start time” streak endpoint to the “end time”
streak endpoint was investigated but resulted in a substantial
decline in model precision.

5. Experiments
5.1. Object-Based Metrics

We match ground truth star centers to detected star cen-
ters by computing the Euclidean distance and thresholding
at 8 pixels, aligning with previous work in deep learning
for SDA [16]. Although intersection-over-union (IoU) is a
widely-used metric for matching, it is less relevant in the
SDA domain where the objective is to find star centroids,
and it is not applicable to line segment detection. A star
centroid is defined as the position of a source for SExtractor
and AstroGraph, the center of a bounding box in object de-
tection, the geometric center of a segmentation mask in in-
stance segmentation, and the midpoint of a line segment in
line segment detection. The object-based metrics are shown
in Table 1. HTC has the highest precision and LETR has the
highest recall, while Deformable DETR represents a bal-
ance between both with the highest F1 score. SExtractor no-
ticeably struggles with precision (identifying multiple stars
along the same streak) and AstroGraph noticeably struggles
with recall (only identifying the brightest/least-noisy stars),
as shown in Figure 3.

5.2. Pixel-Based Metrics

For star detection methods that make pixel-wise predic-
tions, we match ground truth star pixels to detected star
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Table 1. Comparing performance metrics on the StarNet test partition. Best metrics are bolded.

Star Det. Object-Based Metrics Pixel-Based Metrics Astrometric Metrics
Method Precision Recall F1 Precision Recall F1 Fit Rate False F it Rate

SExtractor 0.29 0.46 0.35 0.28 0.20 0.23 0.26 0.05(Baseline)

AstroGraph 0.89 0.27 0.41 - - - 0.38 0.00(Baseline)

Deformable 0.89 0.70 0.78 - - - 0.96 0.00DETR (ours)

HTC 0.90 0.59 0.71 0.84 0.56 0.67 0.96 0.00(ours)

LETR 0.80 0.75 0.77 0.15 0.48 0.22 0.96 0.00(ours)

(a) (b) (c)

Figure 4. Comparing astrometric fit rate to model performance metrics for (a) Deformable DETR (b) HTC (c) LETR. The average number
of detected stars at a given confidence threshold is shown in gray.

pixels by comparing heatmaps. For SExtractor, we con-
struct isophotal ellipses and rasterize them into a heatmap.
For instance segmentation, we collapse individual segmen-
tation maps into a semantic segmentation map. For line seg-
ment detection, we rasterize line segments and dilate them
to match segmentation ground truth, aligning with previous
line segment detection work [41]. The pixel-based metrics
are shown in Table 1. The instance segmentation model
HTC exhibits the highest pixel-wise performance across
precision, recall, and F1; a logical result as this model was
the only one trained to make pixel-accurate predictions.

5.3. Astrometric Fit Rate

An astrometric fit is the ultimate goal of the astromet-
ric image processing pipeline. Achieving an astrometric fit
means a star detection method has detected enough stars
(high recall) precisely enough (high precision) to match said
stars to a portion of the celestial sphere. The astrometric fit
rate of each star detection method is displayed in Table 1.
All deep learning models have similarly high astrometric fit

rates, while SExtractor’s fit rate suffers due to low precision
and AstroGraph’s fit rate suffers due to low recall.

A false astrometric fit occurs when the WCS reference
point created by astrometry.net differs by more than 1 de-
gree from the pointing information in the image metadata.
In other words, when the detected stars are so poor quality
that they resemble a different part of the celestial sphere.
The false fit rate of each star detection method is displayed
in Table 1. Only SExtractor has a significant false fit rate,
highlighting the consequences of predicting false stars.

In order to get a more complete understanding of the re-
lationship between deep learning metrics and astrometric fit
rate, we plot precision, recall, F1, and astrometric fit rate as
functions of model confidence threshold in Figure 4. As-
trometric fit rate is highly correlated to star recall. This is
intuitive; detecting more stars provides astrometry.net with
more information for astrometric fitting (particularly signif-
icant for narrow-field imagery). The consistency of astro-
metric fit rate over a wide range of predicted star quantities
highlights astrometry.net’s robustness to missing stars.
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5.4. Exploring Star Recall

Figure 5. Natural data distribution of number of stars in image
(gray), and star source extraction recall by number of stars in im-
age (colors).

Figure 6. Natural data distribution of star streak length (gray), and
star source extraction recall by star streak length (colors).

Figure 7. Natural data distribution of star magnitude (gray), and
star source extraction recall by star magnitude (colors).

Star density has an inverse relationship with recall for ev-
ery star detection method, as shown in Figure 5. The de-
crease in SExtractor and AstroGraph recall at higher star
densities may be due to the image noise introduced by a
dense star field. The decrease in model recall at higher
star densities may be due to lack of representation in the
training data or model architecture. We scale the number
of queries in Deformable DETR and LETR to align with
our data (the original Deformable DETR model uses 100
queries to detect an average of 7 objects per image [25],
our models use 1000 queries to detect an average of 73 ob-
jects per image [41]). Further query scaling may increase
model recall in densely populated star fields, but should
be considered carefully due to the polynomial relationship
between the number of object queries and the number of
model parameters. HTC uses non-maximum suppression
(NMS) with a threshold of 0.5, which can be problematic in
dense star fields. Increasing the IoU threshold required for
NMS could improve model recall in densely populated star
fields, but may lead to inferior predictions in less densely
populated star fields.

Star streak length has a direct relationship with model
recall and an inverse relationship with SExtractor and As-
troGraph recall, as shown in Figure 6. SExtractor out-
performs the deep learning models for zero-pixel-long star
streaks (i.e., stars in sidereal imagery). The poor perfor-
mance in model recall for point source stars can be at-
tributed to the lack of representation in the training data
(only 1% of StarNet is sidereal), as well as common knowl-
edge that deep learning models struggle with small objects
[1, 43]. Although we can (and did) pad bounding boxes to
facilitate detection, we could not pad segmentation masks
(a point source segmentation mask only occupies 0.02% of
a StarNet image), contributing to HTC’s notably poor per-
formance detecting point source stars.

Star magnitude has an inverse relationship with recall
for every star detection method, as shown in Figure 7. SEx-
tractor and AstroGraph have lower recall than the models
across all star magnitudes. The drop in model recall around
a visual magnitude of 14 aligns with results from previous
deep learning work in astronomical source detection [16],
and confirms that our ground truth star visual magnitude
cutoff of 15 was a reasonable choice for this application.

5.5. Star Localization Residuals

Figure 8 displays predicted star residuals in world space
for the top-performing deep learning models. Right Ascen-
sion (RA) and Declination (Dec) are coordinates used to
specify the position of an object in the sky, similar to how
latitude and longitude are coordinates used to specify the
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Figure 8. Star centroid residual distributions in world space. Standard deviations are included in the legend.

position of an object on the Earth’s surface. RA is the an-
gular distance between the object and the vernal equinox,
while Dec is the angular distance between the object and
the celestial equator. Both can be expressed in units of arc-
seconds, where one arcsecond is approximately equal to 1/3
of a pixel in StarNet imagery.

For the StarNet dataset, RA generally corresponds to
the axis along the star streak while Dec corresponds to the
axis perpendicular to the star streak. The Dec residuals
are tighter than the RA residuals for every star detection
method, illustrating that localizing a star center “along the
streak” is more difficult than localizing a star center per-
pendicular to the streak. AstroGraph has a tighter resid-
ual spread than SExtractor, emphasizing the distinction be-
tween a baseline method optimized to detect point source
stars (SExtractor) and a baseline method optimized to de-
tect streak-like stars (AstroGraph). All models have similar
residual spreads to AstroGraph.

5.6. Computational Complexity

Table 2. Model architecture computational complexity details and
training times (in GPU hours).

Model Params FLOPs GPU Hours

Deform. DETR 120.5M 1486.2G 975
HTC 76.9M 248.1G 80

LETR 177.6M 2737.25G 1460

The computational complexity of each model is detailed
in Table 2. The large number of queries in Deformable
DETR and LETR lead to a significant increase in the num-
ber of FLOPs, contributing to longer training times. Infer-
ence time is negligible, as rate-track telescopes take n < 1
images per second.

The complexity of the classical star detection methods
SExtractor and AstroGraph is O(n) due to their image filter-
ing operations. In contrast, the trained star detection models
make predictions in O(1), enabling stars to be detected in
real-time.

The entire astrometric processing pipeline still has O(n)
complexity, as the astrometric engine takes O(n) time to
match predicted stars to real-world stars. The adoption of a
deep learning approach for the astrometric engine has been
impeded by the significant architecture required for infer-
ence [40], but should be explored in future work to render
the entire astrometric image processing pipeline O(1).

6. Conclusion

We have explored the efficacy of learned approaches to
star streak extraction in narrow field of view rate-track as-
tronomical imagery. Our methods establish a new state of
the art in star source extraction and bridge the last gap in
the learned astrometric processing pipeline from raw tele-
scope imagery to usable satellite tracking and identification
information. By introducing a benchmark dataset and estab-
lishing quantitative performance across several task formu-
lations we place the study of learned star source extraction
on firmer footing. Future work may build on this foundation
to increase recall performance in dense star fields, increase
localization precision to sub-pixel levels, and may also ex-
plore end-to-end learned astrometric processing.
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