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Figure 1. Given a set of multi-view input images of a human face (a), our approach reconstructs a 3D human face, transfers the style of a
style image (b) to it and generates 3D consistent stylized novel views of the face (c).

Abstract

Style transfer for human face has been widely researched
in recent years. Majority of the existing approaches work in
2D image domain and have 3D inconsistency issue when
applied on different viewpoints of the same face. In this pa-
per, we tackle the problem of 3D face style transfer which
aims at generating stylized novel views of a 3D human face
with multi-view consistency. We propose to use a neural ra-
diance field (NeRF) to represent 3D human face and com-
bine it with 2D style transfer to stylize the 3D face. We find
that directly training a NeRF on stylized images from 2D

style transfer brings in 3D inconsistency issue and causes
blurriness. On the other hand, training a NeRF jointly with
2D style transfer objectives shows poor convergence due
to the identity and head pose gap between style image and
content image. It also poses challenge in training time and
memory due to the need of volume rendering for full image
to apply style transfer loss functions. We therefore propose
a hybrid framework of NeRF and mesh rasterization to com-
bine the benefits of high fidelity geometry reconstruction of
NeRF and fast rendering speed of mesh. Our framework
consists of three stages: 1. Training a NeRF model on in-
put face images to learn the 3D geometry; 2. Extracting a
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mesh from the trained NeRF model and optimizing it with
style transfer objectives via differentiable rasterization; 3.
Training a new color network in NeRF conditioned on a
style embedding to enable arbitrary style transfer to the 3D
face. Experiment results show that our approach generates
high quality face style transfer with great 3D consistency,
while also enabling a flexible style control.

1. Introduction

Style transfer for human face has been a popular research
area in recent years. It has various applications in anima-
tions, advertising and gaming industry. Existing style trans-
fer approaches for human face mainly focus on 2D image
domain, where the input of the system is generally a style
image and a content image, and the output is a stylized im-
age which preserves the identity of the content image while
having the style of the style image. The approaches for
2D face style transfer are usually achieved by 2D convo-
lutional neural networks and pose 3D inconsistency issue
when applied on a video or multi view images of the same
face, which constraints usage of these 2D style transfer ap-
proaches in movies, animations or gaming for a consistent
visual experience.

Several recent studies on 3D style transfer leverage
NeRF to stylize a 3D scene. They generally supervise
NeRF training with style transfer objectives applied on im-
ages rendered from NeRF, which introduces training time
and memory challenge due to volume rendering on large
number of pixels to form the full image needed to com-
pute style transfer losses. Stylizing-3D-Scene [5] proposed
a hyper network which was conditioned on style embedding
of a style image and transferred style information to the
color network of NeRF. They applied style transfer losses
on small image patches (32x32) to avoid issues in train-
ing time and memory. UPST-NeRF [4] also utilized a hy-
per network and trained on small image patches. Training
with small image patches has difficulty in capturing global
semantic information and leads to a loss in style transfer
quality. ARF [39] proposed a nearest neighbor-based Gram
matrix loss for style transfer and deferred gradient descend
to optimize on full image instead of image patch. How-
ever, deferred gradient descend significantly slows down the
training process as it doesn’t reduce the computation needed
for volume rendering full resolution image.

To reduce training time and memory of NeRF, recent
work [7,43] proposed to only sample points near object sur-
face for volume rendering. In this paper, we take it one
step forward and propose to use just one single surface in-
tersection point to render, in which case the volume ren-
dering falls back to its simplest form and becomes equiva-
lent to rendering a mesh extracted from NeRF. Compared
to volume rendering, mesh rasterization is faster and con-

sumes less GPU memory. We then propose a three stage
approach for 3D face style transfer, where we apply differ-
ent 3D representation and rendering techniques in different
stages to optimize for different loss objectives in consid-
eration of their computation needs. In the first stage, we
train a NeRF model to reconstruct 3D geometry from input
face images, optimized by an RGB loss applied on a batch
of randomly sampled pixels through volume rendering. In
the second stage, we extract a mesh from the trained NeRF
model, and stylize the mesh color from a style image. The
mesh color is optimized by style transfer objectives applied
on full image rendered from differentiable mesh rasteriza-
tion [15]. We generate 200 stylized meshes from 200 style
images in a training dataset. In the third stage, we fix the ge-
ometry network weight of NeRF, and train a hyper network
to predict the color network weight from a style image, to
generalize for arbitrary style transfer. During each training
iteration, we randomly sample a style image and its corre-
sponding stylized mesh, and renders a full image through
mesh rasterization. The hyper network is then optimized
by an RGB loss between a random batch of predicted pix-
els from NeRF’s volume rendering, and corresponding pix-
els from mesh rendered image. With the combination of
NeRF and mesh rasterization, we are able to do 3D face
style transfer at original resolution of up to 2K.

During mesh optimization, we observe that using raw
style image for style transfer objectives usually leads to
poor convergence due to the large difference in identity
and head pose with the content images rendered at differ-
ent view points. We therefore propose to generate pair data
of stylized images with similar head pose and identity by
applying a 2D style transfer model [38] on content images
randomly rendered at different head pose angle. Mesh op-
timization with pair data shows better style transfer quality
on the mesh.

To summarize, our contributions are:

* We propose a novel three stage approach which
achieves arbitrary 3D face style transfer with good
style transfer quality and 3D consistency.

* We combine NeRF and mesh rasterization to optimize
for different loss objectives which enables 3D face
style transfer on original image resolution of up to 2K
at a reasonable training cost.

* We propose to generate pair data of stylized images to
fill the gap of head pose and identity. Optimizing mesh
colors with pair data shows better style transfer quality.

2. Related Works
2.1. Novel View Synthesis

Novel View Synthesis aims at synthesizing image at
arbitrary view point from a set of source images. Tra-
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ditional approaches apply explicit 3D representations to
model 3D scenes, such as 3D meshes [2, 6, 33, 36], 3D
voxels [11, 13,28, 37], point clouds [, 22,25, 35], depth
maps [9, [7]. They further combine the 3D geometry de-
fined with explicit representations with appearance repre-
sentations such as colors, texutre maps, light fields or neural
texture. The use of explicit 3D representations of geometry
either requires supervision from ground truth 3D represen-
tation or poses strong assumption on the underlying 3D ge-
ometry.

In recent years, there has been advances in neural render-
ing approaches with neural radiance field (NeRF) [23, 40],
where a 3D scene is represented implicitly by a multi-layer
perceptron (MLP). The MLP maps the 3D coordinate and
camera view direction to RGB value and density, and syn-
thesizes a novel view via volume rendering which aggre-
gates the colors of sampled 3D points along a ray. NeRF
produces high quality novel view synthesis without the need
of 3D supervision or assumption on the 3D geometry. Fol-
lowing works extend NeRF for faster training and inference,
such as representing 3D scene with hashmap [24], or oc-
tree [19], followed by a reduced number of MLP layers to
speed up. Other works extend NeRF to improve surface
capture quality, such as NeuS [34].

2.2. Human Face Style Transfer

Given a content image of human face and a reference
style image, human face style transfer aims to synthesize
a stylized image with the style of the style image and the
structure of the content image. Traditional approaches for
human face style transfer mainly focus on 2D image do-
main. Some works realize human face style transfer with an
image-to-image translation framework, where the main idea
is to learn a bi-directional mapping between the real face
domain and artistic face domain [26,32,42]. The other line
of work falls on modifying and finetuning styleGAN [12].
Pinkney and Adler [27] first finetuned StyleGAN on cartoon
data and achieved cartoon style transfer by simply apply-
ing the latent code in original StyleGAN to finetuned car-
toon StyleGAN. Kwong et al. [8] further swapped the con-
volutional layer features between original styleGAN and a
finetuned cartoon styleGAN to achieve style transfer. Dual-
StyleGAN [38] modified the architecture of StyleGAN by
introducing explicit extrinsic style path to have a deeper
control on the style transfer. As these approaches focus on
2D image domain, they usually show 3D inconsistency is-
sue when applied on multi view images of the same face.
In contrast to 2D approaches, our approach achieves style
transfer in 3D domain, with visually pleasing quality while
preserving 3D consistency.

2.3. 3D Scene Style Transfer

There have been recent works [4, 5, 18,39] on 3D scene
style transfer which combines style transfer and novel view
synthesis and aims to synthesize novel views with style
from a style image while preserving the underlying 3D
structure. They mainly leverage NeRF [23] as the 3D rep-
resentation for the scene. These works mainly apply on
in-the-wild 3D scenes and transfer the color tone of style
images. However, they cannot capture the detail style pat-
terns and semantics as required in human face style trans-
fer. Further, to handle the training time and memory issue
from NeRF, they propose solutions that may reduce style
transfer quality, or fail to generalize to unseen styles. For
example, [4, 5] applies style transfer losses on small image
patches during training, which degrades the style transfer
quality as it cannot capture global semantic information.
ARF [39] proposed deferred gradient descend to train on
full resolution image, which significantly slows down train-
ing and makes learning multiple styles impossible in prac-
tice. In contrast to these works, our approach focuses on
3D human face style transfer and captures local details and
semantics in style transfer. We propose a novel NeRF-mesh
hybrid framework which enables fast training speed at orig-
inal image resolution and achieves good style transfer qual-
ity and 3D consistency.

3. Proposed Approach
3.1. Overview

As illustrated in Fig. 2, our approach consists of three
stages: 1. geometry training stage, where we train a NeRF
model to capture the 3D geometry of the real face; 2. mesh
optimzation stage, where we derive a mesh from the trained
NeRF model, refine its color through inverse projection, and
stylize it by optimizing for style transfer objectives with pair
data setting; 3. style training stage, where we train a hy-
per network to predict NeRF’s color network weight from
a style embedding extracted from a style image. Details of
each stage are presented in the following sections.

3.2. Geometry Training

Neural Radience Field (NeRF) [23] uses multilayer per-
ceptron (MLP) networks to model a 3D scene as fields of
volume density and colors. Given a pixel of an image for
a 3D scene at view direction, a ray from the pixel is emit-
ted and several 3D points are sampled along the ray. For
each 3D point, NeRF predicts its volume density and color
by a geometry network and color network. The geometry
network of NeRF maps a 3D point to volume density and
features. The color network of NeRF then maps features
from geometry network and view direction to RGB color.
The predicted color of the pixel is derived by volume ren-
dering which aggregates the color and volume density of the
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Figure 2. Overview of our approach. Our approach is in 3 stages: 1. Geometry training to learn the 3D geometry of a human face; 2. Mesh
optimization to refine mesh colors and transfer style from a style image to the mesh; 3. Style training to train a hyper network conditioned

on style image to generalize to arbitrary style.

3D points along the ray.

Original NeRF has issues with extracting high quality
surface due to insufficient surface constraint during training.
To derive higher quality mesh from a trained radiance field,
we use NeuS [34] which proposes improvements in surface
capture. NeuS represents surface as a signed distance func-
tion (SDF) and replaces geometry network in NeRF with an
SDF network to predict signed distance from a 3D point. It
also modifies volume rendering formulation based on SDF
and introduces an extra loss terms for surface regularization.

In the geometry training stage, we train a NeuS model
on input face images. The trained SDF network of NeuS
represents the 3D geometry of the human face.

3.3. Mesh Optimization

After training a NeuS model on input images, we use
marching cube [20] to export a face mesh from trained SDF
network. To optimize face mesh, we apply differentiable
rasterization [15] to render image from mesh, and apply
losses on image level, where the gradients of the losses can
be back propagated to the mesh. Optimizing topology of
3D mesh from image supervision usually leads to subopti-

mal convergence, as analyzed in [16,29]. We therefore fix
the vertex locations of the mesh and only optimize for ver-
tex colors.

Mesh Refinement: The initial mesh from marching
cube generally contains some artifacts in the colors. This is
because the color network of NeuS model was trained with
volume rendering which aggregates colors along the ray to
form final color at pixel, and thus the color at surface point
has some gap with the color seen in the image. We then
refine the mesh color by optimizing an inverse projection
problem.

argmineL,qgp(M © ¢c(0), M © Ig) (1

where c is vertex colors and ¢.(-) represents an image
generator by mesh rasterization, parameterized by vertex
color. Iy is a random ground truth image from the set of
input images and 6 is the corresponding view angle. M is
the mesh segmentation mask. We optimized the mesh color
on input images with masked RGB loss with an iterative
process. After inverse projection, the mesh color is refined
to be similar as presented in source images. We further re-
move background by applying a foreground segmentation
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Figure 3. Qualitative Comparisons of transferring style in a style image (a) to input views (b). Our approach (f) shows better style transfer
quality and 3D consistency compared to other 3D scene style transfer approaches (UPST [4] (¢), Stylizing 3D Scene [5] (d), ARF [39] (e))

model [3] on input images and trim down mesh vertices
that are visible in the input images as background pixels.
After mesh refinement and background removal, the result-
ing mesh mainly contains human head and part of the upper
body and has a photorealistic texture, which enables us to
synthesize photorealistic images at different view points to
use for content images for 2D style transfer.

Face Mesh Style Transfer: Given a refined face mesh
and a style image, we aimed at transferring the style from
the style image to the face mesh through optimization. Nat-
urally, we can view the face mesh as an image generator
¢ parameterized by vertex colors c that can generate con-
tent images of the face at arbitrary angle. And we apply
style transfer objectives between content images and the in-
put style image to optimize the vertex colors c. For the style
transfer objectives, we use a feature matching loss [10] and
contextual loss [21]. This brings in our initial optimization
objective below.

argminchm(Cﬁc(a), Istyle) + ch(¢c(9), Istyle) (2)

where Ls¢y1e is the style image, and ¢ is the view angle
of the mesh randomly sampled from a semi sphere in each
iteration of optimization.

However, the initial objectives could not optimize the
mesh color to have good style transfer quality. We find that
it is because of a large gap in identity and head pose be-
tween the mesh rendered images and the style image. The
mesh rendered images always resemble the identity of the
input images that is different with the style image. And the
mesh rendered images have diverse head pose that could be
largely different with style image. Therefore, we propose
to optimize with pair data that has similar identity and head
pose.

More specifically, instead of using a fixed style image
Lstyie for arbitrary content image ¢ (6), we use a 2D style
transfer model DualStyleGAN [38] ¢ (-) to generate styl-
ized image from a content image and a style image to have
similar head pose and identity with the content image.

3508



a’rgminchm (¢C(9)7 ’lp(d)c(e)v Istyle))+
L(”I‘(¢C (9)7 1/J(¢c(9), Istyle))) (3)

During optimization, for each iteration, we randomly
sample a view angle 6 from a semi sphere, render an
image ¢c(f) from mesh, and generate a stylized image
(P (8), Lstyre) from 2D style transfer. The vertex color is
optimized by the feature matching loss and contextual loss
between these two.

The stylized images are generated from 2D style transfer
and could contain 3D inconsistencies. As we are fixing ver-
tex locations, the 3D consistency of the optimized mesh is
guaranteed, and the optimization objectives only supervise
the style of the mesh and avoid potential 3D inconsistencies
from the generated stylized images. After optimization, we
obtain a stylized face mesh from a style image. With mesh
rasterization, the optimization is pretty fast and only takes 2
minutes per mesh.

3.4. Style Training

In this stage, we would like to generalize the color net-
work of NeuS model for arbitrary style transfer. For this
purpose, it should be trained with multiple styles seen so
that it could generalize to unseen style. Therefore, we gen-
erate 200 stylized meshes corresponding to 200 different
style images to use as our ground truth generators for train-
ing.

We modulate the weight of the color network in NeuS
model by a hyper network €(-) whose input is a style em-
bedding extracted from a style image by a PSP style en-
coder [30]. Given different style images, the hyper network
is capable of generating different color network weight to
render for different stylized outputs.

We freeze the SDF network from stage 1 to reuse the
learned 3D geometry, and only train the hyper network. We
train with RGB loss supervised by the stylized mesh in stage
2. For each iteration, we randomly sample a style image
Lstyle, its corresponding stylized mesh ¢(-), a view angle ¢
at a semi sphere and a batch of pixels. We query the hyper
network from a style embedding to generate weight of color
network and render the color of sampled pixel through vol-
ume rendering. For RGB supervision, we use the stylized
mesh ¢(+) to render an image from the same view angle 6.
Formally,

argming Lyg, (2(2styte, 0), ¢(6)) “)

where zg¢y1e represents a style embedding from a style im-
age, Q(Zstyle, 0 represents a batch of pixels from hyper net-
work rendering.

In test time, the trained hyper network can be used for
arbitrary style transfer. With a style image, we extract its

style embedding and predict the weight of color network.
And the predicted color network and the pretrained SDF
network are used to generate stylized novel views through
volume rendering with the style in style image applied.

4. Experiment

Dataset We collect a video dataset of 8 subjects, where
each of them records a video of 10-15 seconds of 300-500
frames at 30 FPS. The videos are further processed with
COLMAP [31] to estimate camera intrinsics and poses for
every video frame. For style transfer, We use a cartoon
dataset [27] with 317 cartoon images. We use 200 images
during training and hold off the remaining 117 images as
unseen styles to evaluate for the generalizability of our ap-
proach. For each subject, we train a separate model for ar-
bitrary style transfer on this subject. For a single model, the
training can be finished in 23 hours, with 7 hours for stage
1, 6 hours for stage 2 and 10 hours for stage 3.

Methods for Comparison We compare our approach
with state of the art 3D scene style transfer approaches
(UPST [4], Stylizing 3D Scene [5], ARF [39]), and two
baselines: 1. 2D style transfer — NeuS, where we first run
2D Image style transfer [38] on input images and then train
a NeuS model directly on top of the stylized source images;
2. Neus — 2D style transfer, where we first train a NeuS
model on top of the source images to synthesize novel views
for real human face, and then apply 2D style transfer on top
of the synthesized novel view images.

4.1. Qualitative Results

We compare our approach and 3D scene style transfer
approaches (UPST [4], Stylizing 3D Scene [5], ARF [39])
qualitatively in Fig. 3. Among the 3D scene style trans-
fer approaches, UPST [4] is significantly under-stylized and
has a bad novel view synthesis on the side view. Stylizing
3D scene [5] generates 3D consistent frontal and side views,
but can only transfer overall color tone and have artifacts in
the background. ARF [39] applies stronger style transfer
than other two approaches, but loses details in facial struc-
ture and contains blurriness. The compared 3D scene style
transfer approaches only transfer the overall color tone of
the style image and fail to capture the semantics of the face,
whereas our approach transfers the color of hair, skin and
lip well and also achieves good 3D consistency.

4.2. Quantitative Results

Consistency Measurement We use the short range con-
sistency error and the long range consistency error from
[14] to measure the 3D consistency between stylized im-
ages at different view points, aligned with the other 3D
scene style transfer approaches. The consistency error is
implemented by a warped LPIPS metric [41] where a view
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Style 1

Content Image

Style Blending

Style 2

Figure 4. Style blending, our approach can interpolate between two styles and generate a mixed style of both. We show two rows of

examples with style gradually changing from style 1 to style 2.

Table 1. Quantitative Comparison on short range and long range
3D consistency error. Our approach outperforms the compared
approaches by a magnitude.

Short Range Long Range
Method Consistency Error Consistency Error
(LPIPS x1072 |) (LPIPSx 1072 |)
2D style transfer
3 NeuS 1.21 3.47
NeuS —
2D style transfer 3.23 307
UPST [4] 1.71 4.14
Stylizing 3D 120 506
Scene [5]
ARF [39] 1.88 5.12
Ours 0.29 0.38

is warped to another view with a depth estimation.
E(Vi,Vj) = LPIPS(M;; © Vi, My © fi5(V;))  (5)

where E(V;, V;) is the consistency error between view ¢ and
view j, f;; is the warping function and M;; is the warp-
ing mask. When computing LPIPS metric, only the pixels
within the warping mask are taken. For short range consis-
tency, the consistency error is computed with every adjacent
frames in the testing video. For long range consistency, the
consistency error is computed with all the view pairs with
the gap of 7 frames.

Table. 1 shows that our approach outperforms the com-
pared approaches by a magnitude in both short range consis-
tency and long range consistency. The large improvement
in the 3D consistency benefits from our multi stage training
where explicit mesh guidance is applied. Among the other
approaches, NeuS — 2D style transfer has the lowest 3D

consistency as it absorbs most of the 3D consistency issues
from 2D style transfer. Other NeRF based approaches show
better 3D consistency but is significantly worse than our ap-
proach as they do not have explicit mesh guidance as ours
which strengthen the 3D consistency.

User Study We perform a user study to evaluate the style
transfer quality and 3D consistency between different ap-
proaches. We compare our approach with four different ap-
proaches (Style to NeuS, ARF [39], Stylizing 3D Scene [5]
and UPST [4]). For each comparison, we generate videos
of two approaches for two identities (four videos in total).
For each identity in a comparison, we ask users to make
two selection: 1. select the video of better style transfer
quality; 2. select the video of better 3D consistency. We
collect votes from 20 participants per comparison, in total
320 votes (320=4 (comparisons) x 20 (participants) x 2
(identities) x 2 (questions). Results are shown in Fig. 5.
Our approach outperforms other approaches in both style
transfer quality and 3D consistency.

4.3. Ablation Studies

Mesh Optimization without pair data To show the ef-
fectiveness of our pair data setting during mesh optimiza-
tion stage, we do an ablation study and show that without
pair data setting, the mesh optimization could not converge
well, due to the large identity and head pose gap between
the style image and the content image from mesh render-
ing. Visualization can be seen at Fig 6.

4.4. Application

Style Blending Our approach can perform smooth style
blending between two styles by interpolating between the
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Figure 5. User study in style transfer quality and 3D consistency.
We ask the users to select the approach with better style quality or
3D consistency.

two embedding of the style images, generating smooth and
harmonious style transfer of a mixed style blended from two
style images, as shown in Fig. 4. This allows creation of
non-existent styles through blending two styles.

Unseen Style Our approach trains a hyper network to
generalize on multiple styles, hence is capable of generaliz-
ing to unseen style images in training, as illustrated in Fig.
7. This allows a broader use of our approach to apply on
arbitrary cartoon images for 3D human face style transfer.

5. Conclusion

In this paper, we propose a novel three stage approach
that achieves 3D face style transfer with good style qual-
ity and 3D consistency. We present a hybrid training strat-
egy with volume rendering and mesh rasterization which
enables style transfer at original image resolution. We de-
sign a novel mesh optimization stage where we propose a
pair data setting to generate decent stylized meshes. We

Y\ s
o | &

Paired style images optimized mesh with pair data

Figure 6. Comparison of mesh optimization with/without pair data
setting

Unseen Style Image

Content Image

Stylized Novel Views

Figure 7. Our approach can generalize to unseen style images and
generate style transfer with decent quality and 3D consistency

train a hyper network on stylized meshes to generalize for
arbitrary style transfer. Our experiments demonstrate that
our approach outperforms baselines approaches in terms of
style quality and 3D consistency quantitatively and quali-
tatively, and is also capable to perform smooth and harmo-
nious style blending as well as generalizing to unseen style.
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