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Abstract

Recent point cloud registration approaches often deal
with a consecutive determination of coarse and fine feature
correspondences for hierarchical pose refinement. Due to
the unordered nature of point clouds, a common way to gen-
erate a subsampled representation for the coarse matching
step is by applying 3D-sensitive convolution approaches.
However, expensive grouping mechanisms such as nearest
neighbour search have to be used to determine the asso-
ciated fine features, generating individual associations for
each point cloud and leading to an increased overall run-
time. Furthermore current methods often tend to predict
deficient point correspondences and rely on additional fil-
tering by expensive registration backends like RANSAC im-
peding their application in time critical systems.

To overcome these challenges, we present MagneticPil-
lars utilizing a Birds-Eye-View (BEV) grid representation,
entailing fixed affiliations between coarse and fine feature
cells. We show that by extracting correspondences in this
manner, a small amount of key points is already sufficient to
achieve an accurate pose estimation without external opti-
mization methods like RANSAC. We evaluate our approach
on two autonomous driving datasets for the task of point
cloud registration by applying SVD as the backend, where
we outperform recent state-of-the-art methods, reducing the
rotation and translation error by 12% and 40%, respec-
tively, and to top it all off, cutting runtime in half.

1. Introduction

Localization or Ego-Pose-Estimation (Odometry) is an
essential task for autonomous vehicles which at any time
have to be aware of their exact location relative to a global
or local reference point or mapless position. One way to
achieve the desired pose estimation is to establish corre-
spondences between a source and a target measurement,
e.g., via LiDAR sensors, which are widely used due to
the direct determination of depth information from the sur-
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Figure 1. MagneticPillars can produce strong key points and cor-
respondences, correct (green) and false (red), which can directly
be used to perform an accurate and efficient pose estimation even
via basic methods like SVD, unlike existing methods.

rounding environment. However, unlike camera images, Li-
DAR point clouds exist in an unordered fashion, implying
particular challenges in their data processing.

A recent approach to this problem is presented in [24],
which is applied as a feature extractor for various tasks like
object classification, 3D semantic segmentation and point
cloud registration. Here, deformable 3D convolutional ker-
nels are applied to generate a sub-sampled representation
of the point cloud analogous to 2D convolutions encod-
ing information on image data. Point cloud registration
methods often utilize the downsampled features to estab-
lish preliminary connections between the source and target
frame, providing first indications about the alignment of the
clouds. By a subsequent upsampling of the clouds, associ-
ated finer point features are determined for the coarse super
points in order to refine the point correspondences on a lo-
cal level. Although 3D filtering of the point cloud is able to
capture expressive structural cues, generating robust feature
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descriptors, it also involves a high computational effort due
to the unique unordered shape of each point cloud. More-
over, this results in additional computational complexity in
terms of identifying the associations between the coarse and
fine feature vectors where expensive grouping strategies are
applied consuming a major part of the total runtime. For
instance in the case of GeoTransformer [20] around 50%
(120ms) of the average computation time (245ms) is con-
sumed by the coarse to fine feature determination. Further-
more recent methods tend to predict erroneous point corre-
spondences as visualized in Figure 1, which are filtered by
expensive registration methods like RANSAC again leading
to an enormous increase in computation time, unsuitable for
integration into time critical autonomous driving systems.

To overcome these challenges, we present MagneticPil-
lars, which extracts robust features from a BEV represen-
tation of the source and target clouds. Processing a raster-
ized version of the point clouds holds the benefit of fixed
cloud representations and associations between coarse and
fine cell features, leading to a much more efficient corre-
spondence search. Especially for our use case utilizing au-
tonomous driving datasets, where point clouds are mainly
captured using radial laser scanners in an outdoor envi-
ronment, using a BEV is feasible since points arranged in
height more likely scan the same object.

Following the basic idea of previous works [14,20,29] of
coarse pre-filtering with subsequent correspondence refine-
ment on a local level, we utilize a UNet-like [21] structure
as the base architecture providing the fundamental opera-
tions for extracting the desired coarse and fine BEV fea-
tures for our cell-based correspondence search. We show
that calculating pillar centroids for the final fine cell cor-
respondences represents strong key points that can be di-
rectly fed into Singular Value Decomposition (SVD) for an
accurate pose estimation without the need for optimization
techniques like RANSAC. More precisely, our main contri-
butions are as followed:

• A novel approach for point cloud registration based on
hierarchized cell correspondence refinement

• An efficient processing pipeline for point cloud encod-
ing and decoding in 2D space with a pose estimation
based on 3D pillar centroids

• Novel fine and coarse grid cell matching losses guiding
a robust match candidate pre-filtering and subsequent
correspondence refinement

• Pose estimation via a minimal amount of robust
matches without the need of iterative optimization
methods like RANSAC which is crucial for real time
application requirements like autonomous driving

• Wide range of experiments on two autonomous driving
datasets outperforming current state-of-the-art meth-
ods in terms of pose estimation accuracy and runtime

2. Related Work
2.1. Direct methods

Direct point cloud registration methods are designed to
predict the pose between the source and target input cloud
in the form of a translation vector and a rotation matrix in an
end-to-end fashion. Starting with ICP [4] and its successors,
where the desired transformation is iteratively refined based
on optimizing soft correspondences. Works like [19] build
up on this concept by applying machine learning and gen-
erating corresponding points in the respective other cloud.
[8] applies a UNet structure for inlier point prediction fol-
lowed by weighted procrustes based on an initial transfor-
mation proposal with a gradient-based optimizer for pose
refinement. Contrary [7] proposes an alternate registration
backend for correspondence prediction networks based on
a second-order spatial compatibility for matching analysis.
[1, 6, 18] employ a deep hierarchical feature embedding for
an initial transformation estimation on a coarse level with
subsequent refinement on upsampled features. [15] aims to
minimize a feature-metric projection error within the train-
ing process in a semi-supervised way, implicitly guiding
the clouds to overlap. Finally, FINet [27] proposes a dual-
branch network for a separate prediction of translation and
rotation-attentive features interacting at different scales.

2.2. Feature matching methods

Feature matching methods aim to extract feature descrip-
tors from the respective input clouds, which are subse-
quently matched by applying optimization techniques like
RANSAC. In this context, D3Feat [3] uses KPConv [24]
to predict dense, per point features and detection scores in
a joint learning process, while SpinNet [2] explicitly fo-
cuses on rotation invariant feature extraction, converting the
input cloud surfaces into a carefully designed cylindrical
space with subsequent local pattern extraction. 3DFeat-Net
[28] proposes a weakly supervised approach, using a three-
branch siamese network, determining a triplet loss based
on anchor, positive, and negative input clouds. FCGF [9]
generates features solely using 3D convolutional layers de-
ploying a ResUNet architecture. A more recent approach
in [14] tackles the challenge of point cloud registration with
low overlap by explicitly guiding the network to learn the
specific overlap regions via attention modules.

2.3. Correspondence matching methods

In contrast, correspondence-based methods directly pre-
dict point matches between the respective input clouds with
a certain confidence, which can be directly used for pose

7387



estimation in solvers like SVD significantly reducing reg-
istration runtime. Here [10–12] aim to find correspon-
dences between extracted key points by feature generation
and matching via graph neural networks. FIRE-Net [26]
proposes a combined feature encoder for interactive local
and global feature extraction via graph generation and filter-
ing. CoFiNet [29] conducts a coarse to fine feature match-
ing based on a KPConv encoder-decoder architecture. Geo-
Transformer [20] extends this idea by including an overlap-
aware circle loss and geometric transformers for a more dis-
tinct super-point matching. In [16], the authors use KP-
Conv solely for feature encoding with a transformer-only
backend for registration. Lepard [17] disentangles the cloud
encoding in a separated feature and positional space, deal-
ing with cloud matching in rigid and deformable scenes. In
contrast, [23] is dealing with unsupervised point cloud reg-
istration by evaluating inliers via the geometric difference
between a source and a pseudo-target neighbourhood.

While many methods use 3D processing frontends like
KPConv [3, 16, 17, 20, 29] to encode the necessary point
cloud features, we show that reducing the matching prob-
lem to a cell correspondence search via coarse pre-filtering
and subsequent high-level refinement is sufficient for an ef-
ficient and robust feature matching.

3. Methodology
The overall processing pipeline of our MagneticPillars

architecture is displayed in Figure 2. First the pillar feature
aggregation module is used for feature extraction on the two
input clouds, which are subsequently down-sampled by fea-
ture encoder layers to generate the coarse grid representa-
tion. Multiple self- and cross-attention layers are applied to
determine coarse cell matches in between the clouds, repre-
senting initial guesses for correspondences which are later
refined utilizing the fine feature vectors at the top layer of
the feature decoder. Finally, pose estimation is performed
by applying SVD on pillar centroids determined for each of
the matched fine cells.

3.1. Problem Description

Given two sets of points PK and PL, the aim of point
cloud registration is to determine a transformation matrix
TE which transforms PL into the reference frame of PK ,
resulting in overlapping clouds and thus minimizing the
overall point-to-point distance. We define a voxel grid ras-
terization of PK and PL, namely V K , V L ∈ R3 with
grid dimensions H,W,D as well as its projection to BEV
XK , XL ∈ R2 with dimension H,W . Our goal is to estab-
lish grid correspondences of BEV key cells where the as-
sociated key points are derived by calculating the centroids
π̃K , π̃L ∈ R3 based on the points assigned to the respective
cells x̃K

h , x̃L
h , h ∈ {1, . . . , nk} with infinite height, yield-

ing a rectangular pillar-shaped point aggregation. Here nk

denotes the number of extracted final cell correspondences
and key points, respectively. Based on the pillar centroid
matches, methods such as Singular Value Decomposition
(SVD) can be applied to solve for the desired transforma-
tion TE . Finally, the overall goal of our approach can be
denoted as:

fπ̃L→π̃K (PL) = TE · PL ≈ PK (1)

3.2. Pillar Feature Aggregation

Assuming a fixed grid size of HxWxD, based on the
voxel grid representations V K and V L for each cell the as-
sociated points of the original cloud are gathered. Based on
the grouped points, the respective voxel centroids vKi ∈ R3

and vLi ∈ R3 are calculated and applied to transform the
global point coordinates into local ones resulting in the fol-
lowing voxel cell feature vectors for cloud K, with i ∈
{1, . . . , nv} and nv denoting the number of voxel per cloud:

fK
i =

{[
(pKi,j − vKi ), ri,j

]
, . . .

}
, j ∈ {1, . . . , nz} (2)

With nz representing the maximum number of points per
voxel, pKi,j the corresponding 3D coordinates, and ri,j the
reflectance value per point per voxel. To maintain a static
grid representation, voxels with more or fewer point alloca-
tions than nz are cut and zero-padded, respectively. Feature
vector fL

i and all other following determinations are per-
formed analogously for cloud PL.

Following the works and promising results of [10, 11],
we chose a separate feature encoding for global and lo-
cal cloud information. In this context, the multi-layer-
perceptron (MLP) based positional-encoder (global) and
pillar-encoder (local) are introduced. While the first one
is designed to encode the global consistency of the point
clouds by processing the voxel centroids vK and vL, the
latter is constructing the finer local structures based on fK

i

and fL
i . Eventually, the resulting final feature vectors gK

and gL are obtained according to:

gKi = Pos(vKi ) + Pil(fK
i ), gKi ∈ RC (3)

Where C denotes the output feature dimension. Note
that the layers for the encoders are shared for both input
clouds in order to generate a common feature composi-
tion. To establish a 2-dimensional grid representation, we
accumulate all feature vectors g along the height dimen-
sion D, resulting in a BEV grid with a dimensionality of
H,W,C ·D, which subsequently can be processed by con-
ventional image processing methods. Additionally, in this
context, a binary vector BK , BL ∈ {1, 0} is calculated,
which expresses the occupancy of each grid cell, holding 1
if the respective cell includes at least one point and 0 other-
wise.
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Figure 2. MagneticPillars processing pipeline consisting of: 1) Pillar feature aggregation, 2) Shared birds-eye-view feature downsampling
and coarse cell match estimation, 3) Shared feature upsampling and fine cell match estimation, 4) Pillar centroid determination for the
predicted fine grid cell correspondences, and 5) Cloud registration by pose estimation backend, e.g. Singular Value Decomposition (SVD).

3.3. Coarse Cell Matching

For our downsampling blocks, we follow the architec-
ture of [30] utilizing double convolution layers followed by
batch normalization and ReLU activation. Dimension re-
duction is performed by Max Pooling with a kernel size
of 2 in each direction, bisecting the grid size with each
layer. Assuming a network depth of nl downsampling lay-
ers, the final grid size at the bottom of the encoder is de-
fined by H ′ = H/2nl , W ′ = W/2nl for each of the two
input clouds with a feature dimension of C ′. In order to
determine correspondences between the coarse cells, multi-
ple self- and cross-attention layers [25] are applied onto the
nd = H ′ ·W ′ coarse feature descriptors of each point cloud,
which are subsequently normalized using optimal transport
[22], resulting in score matrix Sc. Based on the calculated
matching scores, the nc highest ranked coarse cell corre-
spondences are selected for further processing, which helps
to reduce the general computational complexity.

3.4. Fine Cell Matching

Subsequently, to recover the original grid size, up-
sampling is conducted nl times by double convolutional
layers, batch normalization, and Relu activation, as well
as bilinear interpolation for grid enlargement. The output

of the top layer holds the original grid size of H,W with
a feature dimension of C ′′ representing the final fine cell
descriptors. Due to the linear down and up-sampling strat-
egy, the 2nl · 2nl fine features for the nc coarse cells of
each cloud can be directly gathered on which a single cross-
attention layer is applied to generate the fine feature cor-
respondences. Note that in this step, the respective fine
feature vectors are matched based on their coarse corre-
spondences, again reducing the overall complexity. This
leads to a set Sf of nc fine score matrices with dimension
nf × nf with nf = 22nl . After applying optimal transport
for normalization, the scores for unoccupied cells according
to BK , BL are multiplied by 0 to suppress invalid cells. Fi-
nally, the nk highest ranked matching scores are selected as
fine cell correspondences of x̃K , x̃L, which build the base
for the following key point generation.

3.5. Pose Estimation via Pillar Centroid Correspon-
dences

The final 3D points π̃K and π̃L used for pose estimation
are determined based on the predicted nk fine cell matches
for each cloud. In this context, the nz points per voxel gath-
ered from the original cloud for the pillar feature aggrega-
tion are used to determine the corresponding pillar centroid
for each cell. Here the respective voxels are stacked in the
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height dimension, resulting in a total of D · nz points per
cell upon which the centroids can be determined. Note that
the zero-padded entries of the voxels are neglected during
the process of the key point calculation. Finally, the nk ex-
tracted pillar centroids and the correspondence scores from
the fine cell matching can be used to determine the desired
pose via weighted SVD.

3.6. Loss Functions

Inspired by previous works like [20, 29], our loss func-
tion is built upon two terms targeting the coarse Lc and fine
Lf feature matching, respectively, balanced by a factor λ:

L = Lc + λLf (4)

3.6.1 Fine Matching Loss

The fine matching loss is calculated utilizing Negative Log
Likelihood on the set of fine score matrices Sf with weight-
ing Wf . Contrary to existing methods, in our 2D use case
the loss function is applied on the nc · nf pillar centroids
πK , πL in order to express the affiliations of the correspond-
ing fine feature cells. In this context TGT is applied to de-
termine the respective nearest neighbours, filling Wf with
either 1 if the nearest neighbour’s distance is below a cer-
tain threshold τf and 0 otherwise. Finally, the fine matching
loss can be formulated as followed:

Lf = − 1

nc · nf

nc,nf+1,nf+1∑
b=1,k=1,l=1

Wf (b, k, l) · log(Sf (b, k, l))

(5)

Wf (b, k, l) =

{
1, if ||(TGT · πL

b,l)− πK
b,k|| < τf ,

0, otherwise
(6)

In case no match was determined, additional dustbin di-
mension entries Wf (b, nf + 1, l) and Wf (b, k, nf + 1) are
assigned to 1.

3.6.2 Coarse Matching Loss

The coarse matching loss is calculated in a similar way to
Lf , however instead of applying a binary weight matrix to
the coarse score matrix Sc, we propose a soft weighting ma-
trix Wc since we found that it benefits the training process
and final network performance. A comparison between soft
and hard weighting within the coarse loss function is de-
picted in Section 4.2.3.

Therefore contrary to inspecting the sole existence of
a nearest neighbour in the respective other cloud for the
coarse cells, we aim to find the amount of nearest neigh-
bours for the fine cells associated to each coarse cell.

We define two sets of voxel centroids vK , vL, their
corresponding fine cells xK and xL when projected to
BEV, as well as their affiliations to the coarse cell grids
x̄K
m, x̄L

m,m ∈ {1, . . . , nd} with nd = H ′ · W ′. Apply-
ing the ground truth transformation matrix on vL so that
TGT · vL ≈ vK the fine nearest neighbour cells in the re-
spective other cloud xK→L

i and xL→K
i as well as their affil-

iations to the coarse scale x̄K→L
m , x̄L→K

m can be determined
by applying a threshold of τc = 0.3m. Assuming a net-
work depth of nl, here the maximum number of possible
fine nearest neighbour matches for a coarse cell is 22nl . Fi-
nally we define the nd × nd matrices NK→L and NL→K ,
expressing the amount of nearest neighbours of each coarse
cell x̄K

m and x̄L
m assigned to cells of the respective other

cloud x̄K→L
m , x̄L→K

m . The values are subsequently normal-
ized by the total number of nearest neighbours per cell, fill-
ing the entries of Wc by selecting the minimum between the
two matrices. Furthermore, dustbin dimensions are filled
with 1 minus the number of matches per cell proportionally
to the total number of possible matches. In this context the
coarse matching loss Lc can be defined as:

Lc = − 1

nd

nd+1,nd+1∑
k=1,l=1

Wc(k, l) · log(Sc(k, l)) (7)

Wc(k, l) = min

(
NK→L(k, l)∑
l N

K→L(k, l)
,

NL→K(k, l)∑
k N

L→K(k, l)

)
,

Wc(k, nd + 1) = 1−
∑

l N
K→L(k, l)

22nl
,

Wc(nd + 1, l) = 1−
∑

k N
L→K(k, l)

22nl
, k, l ∈ {1, . . . , nd}

(8)

4. Experiments
We evaluate the performance of MagneticPillars against

recent state-of-the-art point cloud registration methods
concerning estimation accuracy and runtime on the two
autonomous driving datasets KITTI [13], and Nuscenes
[5]. More specifically, we chose the feature-based meth-
ods 3DFeat-Net [28], FCGF [9], SpinNet [2], D3Feat
[3], Predator [14], and the correspondence prediction ap-
proaches CoFiNet [29], RegTr [16] and GeoTransformer
[20] based on the publicly available implementations. For a
fair comparison, the following experiments were conducted
on a reference system featuring a NVIDIA Geforce RTX
3090 graphics card.

If not stated otherwise, the baseline parametrization for
our approach in the following investigations is nc = 30,
nl = 4, with nk = 250 extracted key points, trained with
combined coarse and fine loss applying weighted SVD as
registration solver.
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Figure 3. Qualitative results demonstrate the robustness of the predicted key points and their correspondences by MagneticPillars for dif-
ferent numbers of extracted points. Green and red lines at the top represent correct and false correspondences, while the bottom row shows
the application of the resulting pose, determined by applying SVD on the predicted pillar point correspondences. As a result, selecting
the 10 highest-ranked predictions is already sufficient to establish an accurate pose estimation, proving our robust feature generation and
matching.

4.1. Data Pre-Processing and Metrics

For dataset generation, we follow the same pre-
processing as stated in the related works [3,9,14,20,29] fil-
tering point cloud pairs in a radius of at least 10m through-
out the dataset. Regarding the KITTI Odometry dataset,
we again followed the previous works and chose sequences
00 − 05 for training, 06, 07 for validation, and 08 − 10 for
testing and utilized the ICP refinement on the ground truth
poses TGT . For Nuscenes we followed the same data pro-
cessing, selecting frames with their respective counterpart
in a 10m radius. Here we chose the official training, valida-
tion and test split to generate the subsets and again applied
ICP to counteract possible errors in the ground truth poses.

Key metrics used in our experiments are Registration Re-
call (RR), Relative Translational Error (RTE) and Relative
Rotational Error (RRE) as well as the general runtime T of
the respective methods. Here RRE describes the geodesic
distance between the ground truth and estimated rotation
matrix, RTE the euclidian distance of the translation vec-
tors, and RR the percentage of transformations where RTE
and RRE are below the thresholds of: RTE < 0.6m and
RRE < 5◦. Furthermore, we also report the Inlier Ratio
(IR), which expresses the fraction of valid point correspon-
dences.

4.2. Evaluation on the KITTI Dataset

4.2.1 Registration Validation

We start off our validation on the KITTI dataset by compar-
ing the transformation accuracy of the considered methods
with respect to different numbers of extracted key points
and registration backends, listed in Table 1. Here we follow
the parametrization of previous works [14, 20, 29] for se-
lecting the number of points and registration solvers. With
regard to the RANSAC registration performance choosing
5000 extracted feature points, our MagneticPillars approach
is able to reach the state-of-the-art value of 99.5% RR and
second lowest RTE of 6.4cm, whereby Predator ranked best
with 6.0cm. Furthermore, we feature the second lowest in-
ference time with 0.112 seconds per frame, solely being sur-
passed by FCGF, which, however shows worse registration
accuracy. Although sharing the same parametrization and
environment throughout all methods, RANSAC registration
time highly fluctuates among the approaches, presumably
originating from different periods until achieving conver-
gence.

Taking a look at the results featuring only 250 extracted
key points applying weighted SVD as registration backend
shows the robustness of our extracted feature points and
matching technique. Here we reach the highest values in not
only terms of RR (99.5%), RRE (0.387◦) and RTE (6.8cm),
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but also second lowest model inference time with a much
lower registration time since no iterative optimization is per-
formed in this context. Overall, using SVD as backend, cor-
respondence prediction methods show a better registration
accuracy compared to the feature matching methods. In this
context, SpinNet and 3DFeatNet generally failed to predict
valid point correspondences and poses, with Predator still
performing best out of the feature generation methods with
a RR of 10.8%.

Applying Local-Global-Registration (LGR), introduced
in [20], which basically represents an iterative application
of weighted SVD, we are able to produce the best re-
sults in terms of RR (99.5%), RTE (5.4cm) and runtimes
(0.112s + 0.005s). Generally, LGR is able to counteract
possible false predictions, distorting the single-shot SVD
pose estimations.

Table 1. Registration performance of the considered methods on
the KITTI test dataset with respect to different pose estimation
backends and number of key points nk.

Method nk Estimator
RR ↑ RTE ↓ RRE ↓ Time ↓ (s)
(%) (cm) (◦) Model Reg.

3DFeat-Net [28] 5000 RANSAC 18.0 29.1 1.479 34.93 0.156
FCGF [9] 5000 RANSAC 93.0 15.0 0.389 0.054 0.078
SpinNet [2] 5000 RANSAC 97.3 9.0 0.490 56.26 0.056
D3Feat [3] 5000 RANSAC 99.5 6.9 0.313 0.150 0.114
Predator [14] 5000 RANSAC 99.5 6.0 0.275 0.173 0.100
CoFiNet [29] 5000 RANSAC 99.5 7.8 0.360 0.375 0.027
RegTr [16] 5000 RANSAC 86.5 22.8 0.419 0.460 0.043
GeoTransformer [20] 5000 RANSAC 99.5 7.3 0.289 0.245 0.042
MagneticPillars (Ours) 5000 RANSAC 99.5 6.4 0.299 0.112 0.082

3DFeat-Net [28] 250 w. SVD 0 - - 34.93 0.001
FCGF [9] 250 w. SVD 4.3 34.4 2.65 0.086 0.003
SpinNet [2] 250 w. SVD 0 - - 56.26 0.003
D3Feat [3] 250 w. SVD 3.1 37.4 2.244 0.206 0.008
Predator [14] 250 w. SVD 10.8 38.9 1.754 0.173 0.002
CoFiNet [29] 250 w. SVD 33.5 34.1 1.072 0.375 0.001
RegTr [16] 250 w. SVD 85.6 22.7 0.472 0.460 0.001
GeoTransformer [20] 250 w. SVD 98.9 11.2 0.438 0.245 0.004
MagneticPillars (Ours) 250 w. SVD 99.5 6.8 0.387 0.112 0.001

Predator [14] 5000 LGR 85.4 6.6 0.482 0.173 0.298
CoFiNet [29] 5000 LGR 83.4 10.3 0.514 0.375 0.006
RegTr [16] 5000 LGR 86.3 22.3 0.420 0.460 0.005
GeoTransformer [20] 5000 LGR 99.5 6.0 0.233 0.245 0.012
MagneticPillars (Ours) 5000 LGR 99.5 5.4 0.297 0.112 0.005

To demonstrate the robustness of MagneticPillars in a
more extended context, we list the registration performance
applying SVD with a varying number of key points reaching
from 5000 all the way to merely 10 extracted matches in Ta-
ble 2. Here we rank highest in every category for almost all
entries, even reaching an average RR of over 97% for only
10 extracted key points. Furthermore, we are able to contain
a transformation accuracy <14cm and <1.0° throughout all
key point selections. A qualitative visualization of our reg-
istration performance under a varying number of key points

is moreover displayed in Figure 3.
Overall MagneticPillars is able to outperform state-of-

the-art methods or gain comparable results in all considered
categories on the KITTI Odometry dataset. Mostly com-
parable to our results is the work of Geotransformer [20]
which however features more than twice the computation
time, originating from an expensive coarse to fine point ag-
gregation consuming half of the runtime 120ms/245ms.
This can be compensated by our efficient 2D-BEV process-
ing featuring fixed coarse to fine grid cell correspondences.

Table 2. Registration performance of the considered methods on
the KITTI test dataset with varying number of extracted key points
using SVD for pose estimation.

# Key points nk 10 25 50 100 250 500 1000 2500 5000
Registration Recall ↑ (%)

FCGF [9] 0 0.2 0.4 0.7 4.3 6.5 9.7 10.6 12.3
D3Feat [3] 0.5 0.2 0.5 2.0 3.1 3.6 4.9 10.1 16.0
Predator [14] 0 0.9 1.6 3.9 10.8 17.7 23.4 33.2 38.4
CoFiNet [29] 40.9 39.1 30.6 29.5 33.5 36.9 40.3 42.7 35.7
RegTr [16] 68.8 79.3 82.7 85.1 85.6 86.3 86.0 85.8 85.6
GeoTransformer [20] 90.8 96.6 98.4 98.9 98.9 99.1 99.1 98.9 98.6
MagneticPillars (Ours) 97.1 99.3 99.5 99.5 99.5 99.5 99.1 98.9 98.7

Relative Translational Error ↓ (cm)
FCGF [9] - 33.5 50.3 39.2 34.4 31.9 34.1 31.7 32.7
D3Feat [3] 36.7 46.0 45.6 49.1 37.4 37.3 38.1 36.8 37.6
Predator [14] - 45.5 38.5 39.5 38.9 33.2 34.5 32.3 33.5
CoFiNet [29] 30.6 29.7 31.9 32.6 34.1 34.4 34.6 35.8 35.6
RegTr [16] 33.3 28.0 25.6 24.1 22.7 22.4 22.3 22.5 22.5
GeoTransformer [20] 23.0 17.6 14.3 12.6 11.2 10.9 10.5 10.8 11.9
MagneticPillars (Ours) 13.5 10.2 8.6 7.5 6.8 7.1 8.3 10.5 13.0

Relative Rotational Error ↓ (◦)
FCGF [9] - 3.173 3.136 2.871 2.65 2.368 2.468 2.274 2.151
D3Feat [3] 3.138 2.865 2.661 2.614 2.244 1.939 1.67 1.35 1.167
Predator [14] - 3.076 2.914 2.498 1.754 1.313 1.003 0.789 0.759
CoFiNet [29] 1.591 1.568 1.404 1.261 1.072 0.917 0.811 0.713 0.673
RegTr [16] 1.169 0.815 0.622 0.583 0.472 0.466 0.432 0.452 0.464
GeoTransformer [20] 1.071 0.765 0.642 0.526 0.438 0.391 0.372 0.368 0.383
MagneticPillars (Ours) 0.907 0.661 0.527 0.441 0.387 0.383 0.398 0.442 0.480

4.2.2 Generalization

Applying the pre-processing according to Section 4.1 gen-
erates around 1350 frame pairs with a distance of 10m for
the training dataset. In order to show the generalizability of
the considered methods to prevent a bias to 10m distances,
we further conducted experiments on 15m and 20m frame
gaps. Note that training still was performed exclusively on
the 10m splits along the lines of the previous experiments,
but applied on test sets with 15m and 20m as presented in
Table 3.

While the 15m splits generally can be handled by most
of the approaches applying RANSAC for outlier reduction,
performance of the compared methods drastically reduces
on the 20m gaps, while MagneticPillars is still able to gen-
erate a RR of almost 96%. Utilizing SVD as registration
backend, solely GeoTransformer is able to produce accept-
able results, but surpassed by our method by more than
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Table 3. Registration performance on the KITTI test dataset for
larger frame distances of 15m and 20m based on the 10m train-
ings.

Method nk Estimator
15m 20m

RR ↑ RTE ↓ RRE ↓ RR ↑ RTE ↓ RRE ↓
Predator [14] 5000 RANSAC 93.8 12.1 0.648 25.6 22.9 1.506
CoFiNet [29] 5000 RANSAC 97.5 11.8 0.575 82.2 21.2 1.140
RegTr [16] 5000 RANSAC 0 - - 0 - -
GeoTransformer [20] 5000 RANSAC 97.9 9.9 0.405 50.5 16.1 1.295
MagneticPillars (Ours) 5000 RANSAC 98.1 8.7 0.405 95.7 11.6 0.535

Predator [14] 250 w. SVD 0 - - 0 - -
CoFiNet [29] 250 w. SVD 3.5 35.7 1.515 0 - -
RegTr [16] 250 w. SVD 0 - - 0 - -
GeoTransformer [20] 250 w. SVD 84.2 21.4 0.583 15.0 37.7 1.375
MagneticPillars (Ours) 250 w. SVD 95.7 10.9 0.523 74.0 18.1 0.816

+11% RR on the 15m data and almost +60% for the 20m
set. Overall our approach is showing high generalizability
and robustness to frames pairs with distances not featured
within the training process.

4.2.3 Ablation Study

In order to show the benefits of our introduced smooth
coarse matching loss Lc in Section 3.6.2, we compare the
performance of our network at the end of the training pro-
cess, by exchanging it with a hard binary loss Lb, similar
to Lf . In this context the pillar centroid for each coarse
cell is determined by averaging the coordinates of all points
aggregated by the corresponding fine cell associations. Fi-
nally, the desired weight matrix can be calculated accord-
ing to Equation 6 on the established coarse centroids. As
listed in Table 4 we found that utilizing Lb instead of Lc in
combination with Lf still leads to convergence of the net-
work but results in a slightly decreased prediction accuracy
of 99.1%. However solely using one of the respective loss
functions will lead to an erroneous training process which
demonstrates the importance of a combined robust cell pre-
filtering with subsequent correspondence refinement.

Furthermore we performed additional experiments re-
garding the initial feature extraction by replacing it with a
single MLP directly encoding the global point coordinates
pi,j (Merged Enc.) per voxel, instead of separated local and
global cloud information. This again leads to a decrease in
estimation accuracy without visible improvements in run-
time, supporting our claim for a split local and global fea-
ture encoding.

4.3. Evaluation on the Nuscenes Dataset

Finally, we show our registration performance on the
Nuscenes dataset, validating against the best-performing
methods of our previous investigations. Training is con-
ducted according to the splits described in Section 4.1 for
each method for 100 epochs. The results on the test dataset

Table 4. Ablation study on the impact of the proposed loss func-
tions and input feature encoding with nk = 250 applying SVD.

Lb Lc Lf Split Enc. Merged Enc. RR ↑ RTE ↓ RRE ↓ T ↓
x x 0 - - 0.113

x x 0 - - 0.113
x x 0.72 36.4 2.742 0.113

x x x 99.1 6.8 0.366 0.113
x x x 99.5 6.8 0.387 0.113
x x x 99.1 7.2 0.413 0.113

are listed in Table 5. Here MagneticPillars is able to rank
best in terms of registration recall and runtime throughout
all categories and generating lowest translational and rota-
tional error applying SVD as registration backend and sec-
ond lowest for LGR, proving its adaptability to different Li-
DAR sensors and environments.

Table 5. Registration performance on the Nuscenes test dataset.

Method nk Estimator
RR ↑ RTE ↓ RRE ↓ Time ↓ (s)
(%) (cm) (◦) Model Reg.

Predator [14] 5000 RANSAC 99.9 7.2 0.265 0.128 0.100
CoFiNet [29] 5000 RANSAC 97.0 10.8 0.416 0.288 0.026
RegTr [16] 5000 RANSAC 99.1 12.6 0.250 0.155 0.045
GeoTransformer [20] 5000 RANSAC 99.9 10.0 0.312 0.207 0.029
MagneticPillars (Ours) 5000 RANSAC 99.9 10.2 0.356 0.114 0.026

Predator [14] 250 w. SVD 33.2 37.1 2.184 0.128 0.002
CoFiNet [29] 250 w. SVD 35.0 32.8 1.092 0.288 0.002
RegTr [16] 250 w. SVD 98.8 12.8 0.467 0.155 0.002
GeoTransformer [20] 250 w. SVD 98.8 18.7 0.456 0.207 0.003
MagneticPillars (Ours) 250 w. SVD 99.2 12.1 0.386 0.114 0.001

Predator [14] 5000 LGR 96.2 6.8 0.500 0.128 0.292
CoFiNet [29] 5000 LGR 75.6 11.7 0.602 0.288 0.006
RegTr [16] 5000 LGR 99.0 12.6 0.458 0.155 0.018
GeoTransformer [20] 5000 LGR 99.3 8.7 0.268 0.207 0.010
MagneticPillars (Ours) 5000 LGR 99.8 8.2 0.283 0.114 0.005

5. Conclusion

In this work, we present MagneticPillars an efficient and
accurate point cloud registration network on BEV repre-
sentations of LiDAR point clouds. Due to fixed grid size,
we are able to directly establish associations between pre-
filtered coarse cell correspondences and the resulting fine
feature vectors. This not only leads to an improved invari-
ance to the constitution of the input point cloud but also
yields a massive boost in efficiency, increasing it’s utiliz-
ability for real-time applications. We extensively validate
our approach on the KITTI and Nuscenes datasets mostly
outperforming recent point cloud registration methods re-
garding pose estimation accuracy and overall runtime.
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Horst-Michael Groß, and Patrick Mäder. Stickypillars: Ro-
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