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Abstract

An emerging class of Fizeau optical telescopes have the
potential to upend prior cost scaling models, substantially
improving the angular resolution and contrast attainable
by ground-based astronomical instruments. However, this
design introduces a challenging visual control problem that
must be solved to compensate for wavefront aberrations in-
duced by the flexible substructure it employs. We subvert this
problem with a deep optics approach to policy design and
image recovery that exploits, rather than corrects, aberra-
tions to obtain domain-specific object recovery performance
exceeding that of more costly filled aperture designs.

1. Introduction
The answers to many fundamental questions about our

universe lie hidden within the diffraction limit of modern
optical telescopes [30]. Light diffracts at the edge of the tele-
scope’s aperture, dispersing the inbound wavefront and mix-
ing intensity information from different angular regions. The
innermost peak of the resulting pattern of light circumscribes
the angular extent that the sensor can disambiguate [19].
Larger apertures (i.e., optical baselines) have smaller point-
spread functions (PSFs) and better angular resolution [22],
but this comes at a price; cost increases with aperture diam-
eter, placing a practical upper limit on resolving power [9].
To build the instruments needed to confirm the existence of
exoplanetary life [2] and to solve practical problems posed
by the expanding scope of human activity in space [12, 18],
a new approach to telescope design is needed.

Distributed-aperture telescopes scale more effectively
than traditional designs but introduce difficult actuation de-
sign challenges. In this work, we propose a solution to one
such challenge: inter-aperture phase errors introduced by
structural flexibility in a leading distributed aperture tele-
scope design. We formulate the manipulation of optical
diffraction to correct for these errors as an optomechani-
cal metasurface actuation control problem and develop a
deep optics approach that yields performant policies and
policy-aligned task models. Our approach compensates

Figure 1. An optomechanical surface can be adapted to the object
of observation to improve recovery. Here, we adapt an actuated
aperture to a target, which adds wavefront error (i.e., decreases
Strehl) but improves recovery (bold is better). The improvement
is small, but it serves as an existence proof. How might we learn
actuations that improve recovery on a broader target domain?

for phase differences between apertures, while exploiting
residual phase differences to improve image recovery perfor-
mance when observing a chosen class of imaging target.

The geometry and actuation of a sensor’s aperture deter-
mines the spatial frequencies (i.e., features) it captures in
the images it forms. If the target of observation is known,
one may apodize (i.e., shape) the aperture to maximize sen-
sitivity to that target [16] as shown Figure 1. If the target
is not known, one can only seek to maximize recovery of
all possible images by minimizing aberrations. From this
perspective, the removal of aberrations, which is the goal
of primary aperture design and the purpose of adaptive op-
tics [21], may be viewed as a naive but powerful strategy
for image recovery. That strategy works equally well on all
imaging targets because it incorporates no information about
those targets. It does not, however, constitute a fundamental
limit on angular resolution [34]. Instead, it represents the
best one can do without foreknowledge of the target. We are
driven to ask: given some information about the object (e.g.,
a dataset representing the object distribution), how might we
use that information to enhance imaging?

Our key insight is that object domain information may
be incorporated into an optical system by jointly learning
a sequential aperture actuation plan and image recovery
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model using task gradients propagated through a differen-
tiable proxy model of the system. In this way, domain- and
task-specific features come to be represented by the weights
of the recovery model and the sequence of parameters spec-
ifying the control plan, which are learned end-to-end. We
apply this insight to a challenging control problem that, once
solved, unlocks a technology development pathway that has
the potential to change the cost-size relationship for large
telescopes.

Contributions. We 1) extend the study of deep optics to
distributed aperture (i.e., Fizeau) image formation, includ-
ing atmospheric effects and active, high-order actuation; 2)
provide evidence supporting the hypothesis that deformable
mirrors alone can act as optical feature extractors; and 3)
demonstrate the efficacy of deep optics when applied to the
construction of jointly learned optomechanical metasurface
control policies and recovery algorithms under realistic at-
mospheric and imaging noise conditions.

2. Related Work
Large telescopes. The emerging ExoLife Finder (ELF)
class of Fizeau telescope designs employ a tensegrity-
suspended annulus of subapertures to reduce the moving
mass of the primary aperture [10] without sacrificing optical
baseline (i.e., outer diameter). Reducing the mass needed
to support additional aperture diameter improves cost scal-
ing, which expands the set of astronomical objects (e.g.,
exoplanets) that one can practically afford to detect [11]. Un-
fortunately, this design also necessitates solutions to difficult
wavefront error correction caused by the spatially distributed
subapertures shown in Figure 2. Further, like all ground-
based telescopes, ELF must contend with wavefront errors
caused by atmospheric turbulence.

Figure 2. The ExoLife Finder distributed aperture telescope design
(left) includes a tensegrity-supported annulus of primary apertures
which we model as an articulated aperture (right).

Rather than viewing this as an issue to correct, we follow
our key insight and treat it as just one of many complications
in the design of control policies for domain-specific image

reconstruction. One variant of the ELF design includes a
secondary deformable mirror (DM) that enables actuation
of the aperture. This, in turn, allows us to influence the
interference of light on the focal plane to achieve domain-
and task-specific objectives. Viewed in this way, we see
that DMs can be thought of as dynamic (i.e., sequentially
controllable) optomechanical metasurfaces. While this work
focuses on ELF, the approach is applicable to any dynamic
optomechanical metasurfaces used to image distant objects.

Deep Optics. The joint optimization of optical element
design parameters and learned image processing is an area of
active research known as deep optics [4, 14, 17]. WISH is a
deep optics approach that achieves simultaneous high resolu-
tion and high quality wavefront phase measurement that has
been applied to achieve high quality image reconstruction in
the telescopic imaging regime [32]. In traditional adaptive
optics (AO) astronomical imaging, wavefront information
is used to remove aberrations using a deformable mirror
inserted along the optical path [3]. While a combination
of WISH and AO may be used to mitigate aberrations, this
approach incorporates neither downstream image processing
task nor object domain information. Further, the division
between wavefront estimation and wavefront correction rep-
resents a silo between these two tasks; significant progress
has been made in deep optics by identifying and removing
silos in the image formation process [5]. Like WISH and
WISHED [31], our proposed approach includes a dynamic
optical element along the path. Unlike these techniques, the
state of the dynamic element in our work (i.e., the DM actu-
ations) are learned, providing a means by which to extend
end-to-end learning from the downstream task model to the
sequence of commands that determine the optical properties
of the instrument. Following Tseng et. al. , we frame our
approach as an optical metasurface design problem [24], but
extend this formulation to include dynamic surfaces.

Optomechanical adaptation. The features preserved by
an aperture are determined by its modulation transfer func-
tions (MTF). An MTF that responds to all frequencies
equally will maximize recovery of any object, but this is
not attainable in practice because the range of an MTF is
constrained by the geometry of the aperture from which it is
derived (see Section 3). The MTF can, however, be adjusted
within those constraints through aperture actuation. The
MTF that results in the least aberrated image is the MTF that
allocates its actuation capacity (e.g., DM stroke) to those
the spatial frequencies that are most common in the object,
while neglecting those that are less common. Extending
this reasoning from a single target object to a target object
domain (i.e., a class of object planes), we observe that the
most performant constrained MTF is one that responds to
the expectation of the spatial frequency distribution of that
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Figure 3. Overview of the end-to-end model illustrated using a single object example (left). The aperture actuation function, parameterized
by θP , is added to the masked atmospheric phase (A1). This aberrated aperture (P1) is used to produce an MTF with which the object
spectrum is multiplied to form an image spectrum. The inverse Fourier transform of this spectrum yields the image for a single image of the
ensemble (center left). Each element of the ensemble corresponds to the formation of a single image; across these images, the parameterized
aperture function, atmosphere, and noise vary. The ensemble is generated simultaneously and then is stacked (center right). The ensemble is
combined by the image recovery model, parameterized by θR to produce an object estimate for which the recovery loss is computed (right).

domain.
From this perspective, we can see that a task-adapted

control policy need not necessarily eliminate all wavefront
errors introduced by the ELF substructure (i.e., differential
motion) and atmospheric turbulence to enable performant
image recovery. Naturally occurring differences in inter-
aperture phase strictly increase the number of reachable
aperture actuation states. The constraints on the MTF are
only reduced by this feature of the system. This additional
freedom must be compensated for, which is the wavefront
control problem that motivates this work, but that freedom
confers the benefit of greater adaptability. Thus, by adopting
a learned approach to actuation and recovery, we subvert the
original problem.

3. Differentiable Optomechanical Simulation

Our objective is to jointly train a DM actuation plan and
image recovery model that, when used together, produce
accurate recovery estimates when used to image an object
domain represented by a dataset. Following our key insight,
we adapt recent work in differentiable simulation of opti-
cal systems [6] to serve as the deep optics physical layer
(i.e., proxy) representing an ELF-class optical system. This
differentiable model produces images, which serve as the
input domain of a trainable image recovery solution (e.g.,
frame stacking, deep neural networks) that corresponds to
the deep optics digital layer of our architecture. We train
the full deep optical model end-to-end by propagating task
loss gradients through the recovery algorithm to the physical
layer parameters by way of the deep optical proxy model.

Optical proxy model overview. Fourier optics provides
an efficient computational model of optical image formation
[22]: an image, I, is the dot product of the MTF and the
power spectrum of an object, O. The MTF, in turn, is the
real component of the Fourier transform of the PSF, which is

the squared amplitude of the spectrum of the pupil function.
In our work, T images are taken in rapid succession, such
that O is constant while the pupil function changes due
to structural instability, atmospheric effects, and planned
articulations. Noise is introduced during transduction of
light into electrons on the focal plane, and is modeled by a
combination of Gaussian and Poisson noise following [24],
a sample of which is denoted nt. In summary, an image
collected at time t is modeled as

It = F−1 (MTFt ◦ F(O)) + nt (1)

where

MTFt = |F(PSFt)| =
∣∣∣F(

|F(Pt)|2
)∣∣∣ (2)

in which PSFt and Pt are the PSF and pupil function at
time t, respectively, and F is the Fourier transform operator.

Clearly, the relationship between Pt and the object de-
termines the formed image, but what determines Pt? We
answer this question in Sec 3.2 in terms of a parameteriza-
tion, θPt , that specifies the articulations of Pt. Collectively,
we refer to the sequence of these parameterized articulations
as a plan, θP = {θP0 , θP1 , . . . , θPT }.

For each object, the execution of a plan produces an en-
semble of images, I = {I0, I1, . . . , IT }. An image recovery
model, f, maps I to an object estimate, Ô, and is parame-
terized by θR. We represent the domain of objects to which
our model is adapted using a dataset, O. Task performance
is then estimated by a task loss, L. We seek

argmin
θP , θR

EO[L(O, Ô)], (3)

where Ô = f(I, θR), which we pursue via mini-batch
stochastic gradient descent.

In this section, we propose an approach to this problem
beginning with the object domain, then moving through the
optical system model to the recovery model, and ending in
the task loss. We conclude the section with a discussion of
the policy and model update process.
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Figure 4. Chips from the SPEED+ (top) and iNaturalist (bot-
tom) datasets, which we use as object planes. These chips are
cropped to the sizes used in this work.

3.1. Object Domain

Image formation begins with the object of observation.
An object plane encodes the wavefront incident upon the
aperture of the telescope, originating from the object of
observation, as a 2-dimensional raster1 of normalized lumi-
nosity values over a spatial extent.

We must adapt our plan and recovery model to a domain
of possible object planes because the object of observation
is not known a priori. For example, even if the identity of
the target is known, it may be rotated or illuminated in a way
not previously observed. We represent the distribution of
potential object planes using a dataset comprising samples
from that distribution. Examples from these datasets are
shown in Figure 4.

We use SPEED+ and iNaturalist to represent our ob-
servation target domains. Examples from these domains are
encoded as single-channel rasters in which each cell (i.e.,
pixel) ranges from 0 to 1, representing a wavefront compris-
ing monochromatic 1 µm light. Examples of these datasets
are shown in Figure 4.

SPEED+ (Synthetic). The SPEED+ dataset com-
prises images of a small satellite and is a leading dataset
for satellite pose estimation research [15]. We use SPEED+
to approximate an imaging task to which a ground-based
distributed aperture telescope would be applied: spatially-
extended imaging of anthropogenic satellites in low-Earth
orbit [28]. The physical parameters that define the proxy
model (e.g., focal length, aperture extent) are chosen so as
to correspond to imaging an 1 m object at a distance of
1, 000 km which is the approximate distance to low-Earth
orbit. We filter the SPEED+ dataset to include only the syn-
thetic image subset, and from that subset we remove all
images with a simulated background. The synthetic subset is
useful because it excludes imaging artifacts that may other-
wise complicate an optical bench demonstration of the tech-

1While this raster conforms the common usage of the term word “image,”
we will reserve that term to refer to an image formed by an optical system
on a focal plane to prevent confusion.

niques described in this work; the inclusion of iNaturalist
is intended to ensure that our approach generalizes to real
data. Our SPEED+ comprises 50, 000 images of a single
satellite in different poses and illumination conditions. All
images are center-cropped to 512× 512 pixels which is rep-
resentative of modern focal plane arrays. We partition the
dataset into 30, 000 training examples, and set aside 10, 000
for validation and 10, 000 for testing. This dataset corre-
sponds to training against a sample of satellite images and
then generalizing to unseen poses and illumination.

iNaturalist. The iNaturalist comprises images of
species in their natural environment annotated with the taxa
to which those species correspond [26]. We use the mini
variant of the 2021 iNaturalist dataset [25] for this study.
Although smaller than the full dataset, the variant we adopt
contains 500, 000 training images which we believe to be
sufficient for training behavior we wish to observe; the full
dataset validation partitions of 100, 000 images is used. All
iNaturalist images are center-cropped to 256× 256, as
this provides for more computationally efficient experimenta-
tion without substantial loss of spatial frequency information.
The iNaturalist dataset does not correspond exactly to
the physical imaging scenario intended for distributed aper-
ture telescopes, because the object planes are neither of a
consistent length-scale nor are their contents (i.e., plants and
animals) found at 1, 000 km above the surface of the Earth.
Nevertheless, this is what our proxy model simulates. We
include iNaturalist because the semantics of a dataset do
not directly influence learning under our approach. Thus,
we may use iNaturalist to enable comparison to a larger
body of machine learning work and to evaluate learning
performance on a richer and more diverse dataset.

3.2. Distributed aperture telescope proxy models

Before we can compute and apply task gradients, we must
first form an image of the object. This image must model
imaging through a pupil function that is, in turn, conditioned
upon the parameterized articulation plan. For notational con-
venience, we introduce our model for a single subaperture
first, then generalize to an annulus, and group into an ensem-
ble. We model the pupil function of each subaperture as a
radial J-term Zernike polynomial,

Z(ρ, φ | θ) =
J∑

j=0

θPj Z
m
n (ρ, φ), (4)

in which our parameterization of the aperture actuation (i.e.,
the Zernike coefficients) is denoted θP . The radial Zernike
function is given by

Zm
n (ρ, φ) =

{
Rm

n (ρ) cos(mφ) m = 0
Rm

n (ρ) sin(mφ) m ̸= 0
(5)
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where the radial polynomial, Rm
n , is

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+m
2 − k)!(n−m

2 − k)!
ρn−2k. (6)

The OSA/ANSI single index polynomial scheme [23] defines
m and n for any value of j, completing our model of an
actuated aperture. Each value of j corresponds to a single
differentiable expression, which we implement directly.

Aperture composition. To construct an ELF-like multi-
aperture telescope pupil function, we arrange N individual
pupil functions into an annulus on a spatial grid, as illus-
trated in Figure 2. Construction of this annulus is quite
involved and the details are not essential for our objectives.
We closely follow the geometric annulus construction algo-
rithm introduced in [6], but denote the combined aperture in
shorthand as

P
(
u, v | θP

)
=

N∑
n=0

Z
(
u, v | θPn

)
mask (u, v, rs) , (7)

where θPn is the parameterization of the articulations planned
for sub-aperture n, rs is the radius of a subaperture, and mask
is the circular mask function. The actuated pupil function
constructed by this method encodes aperture deflections in
units of radians of phase.

Aberrations. Our work is motivated by the need to correct
for structural aberrations in a distributed aperture telescope
system. To model this effect, we introduce a small amount
of piston noise in each subaperture by randomly generating
the initial value of parameters corresponding to the Zernike
coefficients, θP , in each exposure. This simulates the physi-
cal challenge that a learned plan will need to overcome when
used to control a DM on a distributed aperture telescope: the
initial perturbations caused by structural flexibility will not
be known.

Additionally, all ground-based optical telescopes must
contend with wavefront errors caused by atmospheric turbu-
lence. These changes in the arrival time of different wave-
front regions result in undesirable image aberrations. We
use the von Karman atmosphere model [20] to generate un-
correlated phase screens. This complicates training because
the recovery models must learn to perform recovery in the
presence of phase noise that is only partially correctable by
the DM. All phase screens used in this work are generated
with an outer scale parameter of 2, 000 m, an inner scale
parameter of 1m, and an Fried parameter, r0, of 20cm. The
Fried parameter measures the wavefront aberration caused
by the atmosphere at a given wavelength; in our work, we
use 1 µm. An example phase screen is labeled A in Figure 3.

Both forms of aberration represent the most challeng-
ing assumptions (i.e., spatially and temporally uncorrelated
noise) for their respective phenomena. Through this choice,
we pose the hardest possible version of our task in an attempt
to measure the worst-case performance.

Image formation. We now have a complete model of the
image formation process from object illumination through
the focal plane. The last step on the path to an image is the
transduction of light into electrical signals by a camera. To
account for this process, we model read noise is modeled
as a Gaussian random variable and shot noise as a Poisson
random variable [21]. We differentiate through these sources
of noise using the reparameterization trick [8] and score-
gradient trick [29], respectively.

Ensemble imaging. Our image formation approach mod-
els a single image conditioned upon a single DM actuation.
Our goal is to execute several actuations successively to em-
phasize different object features, thereby increasing the di-
versity of features available to the recovery model. To model
this feature, we simulate an ensemble image formation si-
multaneously and stack the output. This stack is known as an
ensemble, and it represents several exposures formed from a
single object. We don’t impose a time scale on this ensem-
ble, but in practice the inter-exposure period will be defined
by the effective actuation frequency of the DM, which is
expected to be 200Hz.

3.3. Image Recovery

The output of our optical proxy model is an ensemble
of images. Each image is a different representation of the
object plane features extracted during the image formation
process based on DM actuations. To build an estimate of
the original object of observation we must combine these
disparate representations. We consider two approaches to
image recovery, each of which is differentiable.

Frame stacking. The simplest method of image recov-
ery is known as frame stacking. As the name implies, this
method consists of adding a sequence of frames to increase
contrast. We modify this method by weighting each im-
age by a learnable parameter, collectively denoted θR. The
resulting object estimation algorithm is Ô = ΣT

t=0θ
R
t It.

Learned recovery. We adopt the learned decoding model
described in [24] to enable comparison of reconstruction
approaches across different diffraction regimes, but borrow
modifications of that model architecture from [6] to simplify
model capacity tuning. This model comprises multi-scale
feature extractor followed by a feature fusion network, in
which every convolutional block is parameterized by a filter
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Figure 5. Adapting a sequence of deformable mirror actuations to a
single target enables improved recovery, even without sophisticated
image combination techniques. Recovery also improves with in-
creasing sequence length, which suggests that deformable mirrors
are able to extract features that are relevant to an object.

scale, which dictates the number of filters used in the model.
In Section 4.3 we compare the recovery performance of
small, medium, and large instances of this model, which
correspond to filter scales of 4, 8, and 16, respectively. While
hallucination is possible in any learned recovery approach,
we take care to evaluate model generalization performance
on held-out examples from a large, visually distinct dataset
to ensure that overfitting is punished with decreased metric
performance.

3.4. Policy design

The preceding sections describe a model that takes a set
of Zernike coefficients, produces a set of focal plane images,
and recovers an object plane estimate. There remains the task
of choosing the Zernike coefficients for each subaperture in
each exposure from which this model proceeds. Together
these choices comprise an open-loop policy (i.e., plan) for
the DM. Once selected, these coefficients can be provided
directly to the mirror controller for actuation.

Loss. We use the mini-batch mean absolute error (MAE),

LMAE(B,O) =
1

|B|
∑
Ô∈B

∣∣∣∑ Ô −O
∣∣∣ , (8)

over a mini-batch of object estimates, B, as our loss function.
The MAE loss is effective for image restoration tasks [33],
which are closely analogous to image recovery. We compute
the gradients of our loss with respect to the parameters of
both our recovery model and optical proxy model using the
TensorFlow autodifferentiation [1] framework and apply the
gradients using an adaptive momentum optimizer [7].

Metrics. Image restoration and super-resolution task per-
formance is often measured using the peak signal-to-noise

ratio (PSNR), structural similarity (SSIM) [27], and mean
squared error (MSE) between the object and object esti-
mate. However, these metrics measure only the recovery
performance of the model in isolation. They do not tell
us how a recovered image compares to the image formed
by a perfectly phased, filled (i.e., monolithic) aperture tele-
scope of the same diameter under equivalent conditions. The
application that motivates this work is the development of
alternatives to traditional filled aperture imaging, so this is
essential when judging the potential utility of our work. As
such, we report each distributed aperture metric as a quotient
of that metric and the same metric achieved through filled
aperture imaging.

We construct our metrics such that an increase in metric
value corresponds to an increase distributed aperture per-
formance relative to filled aperture performance. Thus, we
report MSE as

MSEm/d =
MSEm

MSEd
,

while SSIM and PSNR are denoted

SSIMd/m =
SSIMd

SSIMm
and PSNRd/m =

PSNRd

PSNRm
,

respectively. We say that a model achieves recovery parity
in a metric when the value of that metric is 1.0. Recovery
parity indicates that a plan and recovery model enable a
distributed aperture telescope to match the performance of a
filled aperture telescope of the same size. This satisfies our
original goal because we have produced an actuation plan
that enables a distributed aperture telescope to perform at
least as well as a more costly monolithic design.

4. Experiments and Results

We now turn to the central question of this work: to what
extent can jointly learned metasurface actuations and recov-
ery models compensate for the challenges introduced by
distributed aperture telescopes? Our answer to this question
is divided into three experiments, which are presented in or-
der of increasing difficulty and generality. First, we evaluate
the ability of a DM plan alone to extract useful representa-
tions from a known object when trained using our approach
in Section 3.4. Then, in Section 4.2 we address the challenge
of learning a plan and a recovery model end-to-end, such
that the resulting solution generalizes to unseen data of the
same class of objects. Finally, Section 4.3 describes the
extent to which our approach is able to produce performant
models that generalize well when applied to a dataset that
includes unseen target types in the presence of atmospheric
turbulence.
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Figure 6. Qualitative image recovery performance improves during model training. We illustrate the progression from (a) a raw distributed
aperture image to (b) an object estimate from a recovery model trained for 128 epochs, and provide comparison with (c) the object of
observation (i.e., ground truth) from the validation partition and (d) an aberration-free monolithic aperture recovery of that same object.
Insets show a detailed view of a triangular feature.

Figure 7. MSE, SSIM, and PSNR increase during training for both
the training and validation partitions of the SPEED+ dataset.

4.1. Optical metasurfaces are feature extractors

Physically, when we actuate a DM to extract certain spa-
tial frequency features, we manipulate the interference of
light on the focal plane such that those spatial frequencies
that are not relevant to the chosen task are suppressed, while
those that are relevant are retained. This phenomenon is
modeled using Fourier optics, in which the MTF of the pupil
plane emphasizes some spatial frequencies in the object spec-
trum while neglecting others. By modeling the system in
this way, it becomes clear that the DM is a physically re-
alized feature extractor acting upon the object wavefront.
The computation that extracts features from the wavefront is
done by optical diffraction, much like diffraction neural net-
works [13]. Our approach involves iterating through many
DM actuations in rapid succession (i.e., faster than the object
changes) and generating a stack of learned representations.
This leads us to ask: to what extent can these physical feature
extractors alone adapt to a chosen object domain and task?

We explore this question by simulating the imaging of
a known target with a distributed aperture telescope while
using only naive frame-stacking for image recovery. This
corresponds to training, validating, and testing our end-to-

end model on a single image. We apply this approach to the
Air Force Test Target shown in Figure 1.

Figure 5 illustrates that DM actuations alone can be used
to realize feature extraction for improved image recovery.
Additionally, we find that both the maximum PSNR achieved
and the rate of improvement during training increase as the
number of unique parameterized pupil functions increases.
These observations support the intuition that rapid, sequen-
tial actuations of imaging metasurfaces can be used to cap-
ture a set of learned representations. However, we observe
that increasing the sequence length alone is insufficient to
reach recovery parity and provides diminishing returns after
approximately 16 exposures. Furthermore, we report that
this approach fails in the presence of any realistic amount of
atmospheric turbulence.

4.2. Jointly learned control policy and recovery

When frame stacking is used for image recovery, we
observe diminishing returns as we add additional DM actua-
tions. This is unsurprising because the recovered image is
only a linear combination of the extracted feature maps. In
effect, this recovery model acts as a decoder for the encoding
produced by the image formation process. As such, a naive
image recovery process limits the utility of more sophisti-
cated feature representations. To further improve recovery
performance, learned image recovery is needed.

We jointly train our DM actuation plan and the small con-
volutional image recovery model described in Section 3.3 on
the 30, 000 image SPEED+ dataset training partition, without
turbulence, and measure metric performance on both the val-
idation and training partitions separately. We report a recov-
ery advantage in MSEm/d after approximately 30 epochs,
as illustrated in Figure 7. We also achieve SSIMd/M recov-
ery parity at approximately 130 epochs.

Qualitatively, we confirm that the recovery quality of
object estimates produced using end-to-end trained actuation
plans and recovery models exceeds that of images formed by
a filled aperture of the same size. This is consistent with the
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Figure 8. Larger recovery models generalize more effectively to
unseen examples and have less difficulty with atmospheric turbu-
lence. One epoch is one pass through the iNaturalist dataset.

Figure 9. Recovered object estimates (top) for ground truth
iNaturalist object planes (middle) compare favorably with filled
aperture images (bottom) qualitatively.

quantitative performance measured by our metrics. Figure 6
illustrates recovery of high spatial frequency features that
are lost during imaging by a filled aperture telescope.

4.3. Generalization

The preceding experiment evaluated our learned recovery
and actuation approach against a dataset that represents the
intended application domain for this technology. Unfortu-
nately, those results tell us little about the extent to which our
approach generalizes to observation targets that are outside
the training data distribution because SPEED+ contains only
a single object viewed under different conditions. For a more
realistic challenge, we train on iNaturalist both with and
without an atmosphere.

We fix the size of the ensemble of the models at 8 in this
experiment while varying the model filter scale between 4
(small), 8 (medium), and 16 (large) to explore the relation-

Table 1. Maximum validation set recovery metrics for several
model sizes with and without atmospheric turbulence.

ATMOSPHERE MODEL MSEm/d SSIMd/m PSNRd/m

r0 = 0.2m 4 1.39 0.97 0.77
r0 = 0.2m 8 2.72 1.04 0.89
r0 = 0.2m 16 4.21 1.07 0.95

None 4 1.91 0.99 0.81
None 8 3.27 1.05 0.90
None 16 2.60 1.07 0.93

ship between capacity and generalization. By turning on
and off our atmosphere simulation, we can also assess the
degree to which the learned plan and recovery model are
able to compensate for aberrations. Training and validation
performance are shown in Figure 8 and validation set perfor-
mance is summarized in Table 1. Each model was trained
for 72 GPU hours on an NVIDIA A100 with batch sizes of
256, 128, and 64 for the small, medium, and large models,
respectively.

We report improved recovery performance, with clear
recovery advantages as measured by SSIM and MSE. We
also observe near-parity in PSNR. Generalization perfor-
mance is observed to increase almost uniformly with model
size, as expect. One experiment is observed to break this
trend; we attribute this deviation to a bad training initializa-
tion, and include it, rather than re-running the experiment,
to provide an accurate representation of training stability.
These results provide evidence that distributed aperture tele-
scopes equipped with learned wavefront control solutions
will achieve performance that is comparable to more costly
filled aperture designs. Figure 9 enables qualitative assess-
ment of the recovered images.

5. Conclusion

Distributed aperture telescopes may open a new frontier
in astronomy, but methods to correct the wavefront errors in-
herent to their design must first be developed. We propose a
deep optics approach that incorporates both task and domain
information, and show that it achieves image recovery that
compares favorably to imaging with more costly filled aper-
ture designs, even in the presence of atmospheric turbulence.
Avenues for future work include specialized task losses for
objectives such as direct exoplanet imaging and biosignature
detection, as well as adaptations for other optical informa-
tion processing objectives. Reformulating this problem as a
visuomotor sequential decision making task may also prove
useful.
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