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Abstract

Reliably identifying reinforced concrete defects (RCDs)

plays a crucial role in assessing the structural integrity,

traffic safety, and long-term durability of concrete bridges,

which represent the most common bridge type worldwide.

Nevertheless, available datasets for the recognition of

RCDs are small in terms of size and class variety, which

questions their usability in real-world scenarios and their

role as a benchmark. Our contribution to this problem is

“dacl10k”, an exceptionally diverse RCD dataset for multi-

label semantic segmentation comprising 9,920 images de-

riving from real-world bridge inspections. dacl10k distin-

guishes 12 damage classes as well as 6 bridge components

that play a key role in the building assessment and recom-

mending actions, such as restoration works, traffic load lim-

itations or bridge closures. In addition, we examine base-

line models for dacl10k which are subsequently evaluated.

The best model achieves a mean intersection-over-union of

0.42 on the test set. dacl10k, along with our baselines, will

be openly accessible to researchers and practitioners, rep-

resenting the currently biggest dataset regarding number of

images and class diversity for semantic segmentation in the

bridge inspection domain.

1. Introduction

Bridges are an essential component of the infrastructure

worldwide. They are exposed to many impacts causing

damage, such as high traffic loads, extreme weather events,

sea salt in coastal areas or treatment with deicing chemi-

cals in cold regions. Due to their age, especially bridges

in countries with an economic upswing between the 1950s

and 1980s show an increased occurrence of damage by now.

These defects are monitored within the scope of bridge in-

spections aiming to assess the condition of buildings in or-

der to find the ideal timing for rehabilitation steps but also to

take immediate actions, e.g., limiting heavy traffic or clos-

ing a bridge. Such inspections are usually carried out “anal-

ogously” by professionally trained civil engineers who visu-

ally examine the complete surface of the bridge while taking

photos of the defects, and documenting damage class, mea-

surements and location on a 2D sketch [1,3,15]. If these ex-

aminations, specifically of buildings in a critical state, could

take place more frequently, several bridges may be operated

longer and without significant restrictions affecting rail pas-

sengers, car drivers and logistics. However, authorities of-

ten fail to keep up with the necessary inspection and restora-

tion intervals due to staff shortages and budget limitations,

but also because of the commonly applied, time-consuming,

analogue inspection process used in practice. In many coun-

tries, this leads to a steadily growing stock of built structures

in poor condition. In governmental reports, the current state

of bridges is described as “1 in 3 U.S. bridges needs repair

or replacement ...” [2] or “... at least 25,000 road bridges [in

France] are in poor structural condition ...” [5]. This under-

lines the demand of a more efficient examination pipeline

with respect to cost and time [5, 16, 17, 31]. The greatest

potential for improvement during the bridge inspection pro-

cess – irrespective of the used device (unmanned aerial ve-

hicle (UAV) [19], smartphone [45], augmented reality dis-

plays [36]) – is yielded by automating the defect recognition

which is crucial to a final assessment in order to determine

actions to be taken. The inspection framework that makes

use of automated defect recognition is called “digitized in-

spection” (DI). DIs aim for a detailed bridge assessment

according to existing country-specific guidelines where the

automatized documentation of damage allows reliably clas-

sifying, measuring and localizing each existing defect on

a given building. Within the scope of DIs, inspectors are

strongly supported. The inspections become more efficient

and engineers can focus more on the evaluation as well as

the context in which defects appear.

The field of damage recognition on built structures is still

unexplored. In contrast to the fields of autonomous driv-

ing [9,12,18,34,44] or medicine [29,32,35], semantic seg-

mentation benchmarks for damage recognition are rare. To

the best of our knowledge, only two relevant benchmarks

in the domain of reinforced concrete defects (RCDs) exist:

CrackSeg9k [26] and S2DS [7]. CrackSeg9k is a collection

of various image datasets showing cracked and uncracked

surfaces of multiple building materials. However, it aims to
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Figure 1. Example annotations from dacl10k. Top row: original image. Middle row: polygonal annotations. Bottom row: stacked

masks. The following classes are abbreviated: Alligator Crack (ACrack), Washouts/Concrete corrosion (WConccor), Expansion Joint

(EJoint), Protective Equipment (PEquipment) and Joint Tape (JTape). From left to right, the images display the individual classes: 1.

Weathering, Spalling, Exposed Rebars, Rust; 2. Weathering, Crack; 3. Alligator Crack, Restformwork, Efflorescence; 4. Weathering,

Crack, Spalling, Rockpocket; 5. Crack, Rust, Expansion Joint, Spalling; 6. Weathering, Rockpocket, Spalling, Efflorescence, Crack,

Rust, Restformwork, Joint Tape; 7. Weathering, Protective Equipment, Rockpocket, Efflorescence, Crack, Hollowareas, Alligator Crack,

Drainage; 8. Weathering, Spalling, Crack, Rust, Bearing.

segment one damage type, whereby, at least 9 types must

be recognized in order to be used in practice [1, 3, 4, 15].

S2DS is the first multi-class semantic segmentation dataset

in RCD domain which includes 743 samples differentiating

between five common defects occurring on concrete bridges

and control points for georeferencing. Thus, S2DS repre-

sents a small variety and complexity with respect to real-

world scenarios, with labels assigned to each pixel in a man-

ually exclusive way.

In conclusion, the significant deterioration of bridges

worldwide as well as the lack of visual data for effectively

monitoring their defects in a digitized manner emphasize

the urgent need for establishing a benchmark in the bridge

inspection domain.

We take the problem of semantic segmentation of bridge

defects out of the niche by introducing dacl10k, the biggest

real-world inspection dataset for multi-label semantic seg-

mentation making it possible to perform damage classi-

fication, measurement and localization on a pixel-level.

Thereby, we enable recognizing 12 frequently occurring de-

fects on reinforced concrete bridges (e.g., Crack, Spalling,

Efflorescence) and 6 important building parts (e.g., ex-

posed reinforcement bar Exposed Rebar, Bearing, Expan-

sion Joint, Protective Equipment). All these classes play

an important role for determining the building’s structural

integrity, traffic safety and durability. dacl10k includes

9,920 images from more than 100 different bridges, specif-

ically designed for practical use, as it comprises all vi-

sually unique damage types defined by bridge inspection

standards. dacl10k surpasses previous work significantly

in terms of its scale, class variety, and the complex nature

of its captured scenes. Besides, we provide essential back-

ground knowledge from the civil engineering perspective,

which is important for a deeper understanding of the RCD

domain. In addition, we supply strong baselines to bench-

mark against. In our model analysis, two semantic segmen-

tation architectures in combination with three encoders are

examined. The dacl10k dataset, and according baselines,

will be publicly released, fostering research within the field

of damage recognition on concrete structures using com-

puter vision.

2. Related datasets and baselines

Within the last six years, major contributions in the field

of damage classification on built structures have been made

through the introduction of datasets for binary classifica-

tion [14, 23, 27, 43], multi-class classification [8, 22], multi-

label classification [30], object detection [30], and semantic

segmentation [6,7,26]. In the following, we discuss datasets

for the last three named tasks. Examples for the subse-

quently named damage types can be obtained from Figure 1.

Mundt et al. [30] developed CODEBRIM which is cur-
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rently the biggest and most realistic dataset for the multi-

label classification of RCDs. They differ between the dam-

age types: crack, spallation, exposed reinforcement bar,

efflorescence, corrosion and background. The unbalanced

version of CODEBRIM comprises 7,729 patches of defect

images gathered from 30 bridges, chosen based on vary-

ing levels of deterioration, defect size, severity, and sur-

face appearance. The images were acquired under chang-

ing weather conditions using multiple cameras at varying

scales, with high-resolution. A subset of the data was ac-

quired using an UAV, due to the inaccessibility of defects

at high locations. Their annotation process was structured

as follows: (i) selecting bounding boxes (patches) enclos-

ing defects, (ii) iterating over the bounding boxes for each

damage class and label accordingly, and finally (iii) sam-

pling patches of healthy concrete surfaces as well as irrele-

vant content (background).

For solving the task of binary crack segmentation,

Kulkarni et al. [26] combine previously available datasets,

inter alia, from the RCD domain. They compile a seman-

tic segmentation dataset, called CrackSeg9k, with 9,255

images of cracks from ten sub datasets on different sur-

faces. Before unifying the datasets, their individual prob-

lems (e.g. noise and distortion) are addressed by applying

image processing. In addition, they provide baselines where

the best model, based on DeepLabv3 [11], achieves 77%

mean intersection-over-union (IoU).

Benz & Rodehorst [7] introduced the Structural De-

fect Dataset (S2DS) which is the first RCD dataset en-

abling semantic segmentation of multiple damage types,

such as crack, spalling, corrosion, efflorescence, vegetation,

and control point which is used for georeferencing. The

dataset consists of 743 patches of size 1024x1024 pixel ex-

tracted from 8,435 images taken during structural inspec-

tions. They used DSLR cameras, mobile phones, and UAVs

for acquiring the data. The labeling was executed by one

trained computer scientist and had a high level of fineness.

Their best model, based on hierarchical multi-scale atten-

tion [39], achieves a mean IoU of 92%, at joint scales of

0.25, 0.5, and 1.0.

3. dacl10k dataset

dacl10k is the first large-scale dataset for semantic bridge

damage segmentation, comprising 9,920 annotated images

from real-world inspections. During its creation, our pri-

mary objective was to develop a dataset that enables the

training of models which later support the inspector dur-

ing damage recognition and documentation to a maximum.

Hence, we analyzed several guidelines determining the

level of detail of structural inspections [1, 3, 4, 15], specif-

ically the visually recognizable defects which must be col-

lected in order to produce a legal bridge assessment. We

listed all defects defined by the guidelines accordingly and

crossed out the ones that are doppelgangers with respect

to visual appearance. Finally, this resulted in the underly-

ing class variety of dacl10k. In the following, we discuss

dacl10k’s data acquisition, classes, statistics and a compar-

ison to related open-source data.

3.1. Data acquisition

Approximately one half of the images originate from

databases of engineering offices, while the other half was

provided by local authorities from Germany. The images

were taken between 2000 and 2020. Both data sources sup-

plied highly heterogeneous images regarding camera type,

pose, lighting condition, and resolution. However, models

performing well on dacl10k, most likely generalize well in

real-world scenarios.

3.2. Damage types and annotation

The 18 classes considered within dacl10k are separated

into three groups: concrete defects, general defects and ob-

jects. The class names are shown in the first column of Ta-

ble 1. The concrete defects appear only on building parts

made of (reinforced) concrete, while general defects may

be present on all materials (e.g., concrete or steel). The only

defect within dacl10k that is not visually recognizable, per

se, is Hollowareas. This damage is usually identified by

hammering on the concrete surface, thus, it can only be de-

tected acoustically (not visually) but, as it is bordered with

chalk during hands-on inspections, we annotated its mark-

ings. The objects group includes all components of a bridge

that are not made of concrete, such as Joint Tapes, Railings

or impact attenuation devices (Protective Equipment). The

objects often show defects such as geometrical irregularities

or deficits in structural capacity. Geometrical irregularities

can arise from wrong distances between the railing rods or

if the railing height is less than the minimum according to

the given national standard. These visually challenging rec-

ognizable issues are not part of the dataset. We provide a

detailed overview, descriptions and examples of the defect

types and objects in the supplementary material.

According to the definition of Cordts et al. [12] our

dataset comprises coarse pixel-level annotations. We border

each defect and object on a given image with one polygon

(shape) and assign its label. Furthermore, we include poly-

gons of the same class that overlap with each other in one

shape. With respect to inspection standards and application,

for all the defect classes, it is not important to differentiate

between instances of a given class. Instead, their size and

localization on a class-basis is important. Thereby, we uti-

lize the open-source labeling tool LabelMe [33, 40]. Exam-

ple annotations are shown in Figure 1. It often appears that

shapes of different damage or object classes overlap with

each other, e.g., Spalling with Exposed Rebars covered by

Rust (see example 1 in Figure 1). Consequently, the under-
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lying task can be described as multi-label semantic segmen-

tation because one pixel can be part of multiple defects and

objects. In other words, the labels are not assigned mutually

exclusive to the pixels.

The two main components during labeling are the class

guideline and the annotation guideline. The class guideline

clearly defines the visual appearance, most commonly oc-

currence and cause of each defect, e.g., Efflorescences (see

example 7 in Figure 1):

• look like stalactites of white to yellowish or reddish

color hanging from the bottom of building parts which

may also appear to be printed on the buildings surface,

• often occur in wet (Wetspot) or weathered areas

(Weathering) of the building and in combination with

Crack and/or Rust,

• result from the dissolving of salts from the concrete

which consequently carbonate.

Thus, the annotator – independently from his domain ex-

pertise – can understand the color, shape and texture of a

given class. Furthermore, flags are defined to mark images

with personal data (faces, license plates) or images of bad

quality. In addition, the provided annotation guideline de-

scribes the fineness after which the polygon points shall be

set. The goal is to have consistent class and object-distance-

dependent density of points over the whole dataset.

Our labeling process consisted of two consecutive steps:

Annotation of data received from engineering offices by

civil engineering students (in-house) and annotation data

from the authorities by an external annotation team, pre-

viously filtered for relevant image content. The students

labeled approximately 7,000 images in accordance to our

guidelines. Nearly 30% of the images had to be rejected

due to flags indicating bad quality (blurring, overexposure)

or personal data. The pipeline during in-house labeling was

separated into three parts. The first part consisted of the reg-

ular annotation which comprises annotating a batch of 100

images, getting feedback by a domain expert and correcting

the failures accordingly. The second part included an exten-

sive analysis of the dataset to find structural failures in the

annotations. Thirdly, the dataset was divided into subtasks

with respect to the failures most commonly made. Then,

one student corrected each failure type consecutively.

The quality assessment of the data annotated by the ex-

ternal team was divided into four quality checks for each

data batch. In average, one batch included 250 images.

Each check included one iteration over the annotated data

by experts. Based on the analysis, the error rate was deter-

mined which is the ratio of false-labeled images and total

amount of frames in the according batch. Starting with an

error rate of 60%, the rate could be lowered to a final value

of 1%.
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Figure 2. Pixel counts with respect to each class in dacl10k based

on the original image sizes. The bars are arranged according to the

group affiliation.

3.3. Statistical analysis

In the following, we discuss split-independently (i) the

classwise pixel counts, (ii) averages and shares regarding

the polygons and pixels as well as (iii) the split-dependent

statistics, based on the original image resolutions.

Regarding the pixel counts over the whole dataset (see

Figure 2), it can be stated that Weathering, followed by

Protective Equipment, are the most dominant classes with

nearly four and 1.5 billion pixels. Within the range of 0.1

billion and 1 billion pixels, the majority of defects and ob-

jects with respect to the number of pixels can be found.

Clearly underrepresented are the defects Restformwork (66

million) and the objects Joint Tape (68 million) and Exposed

Rebars (65 million).

The average image size is 1581 px in height and 1950 px

in width. The mean image area is approximately 4 megapix-

els while the total pixel area in the dataset is approx. 43

billion px. Table 1 provides an overview of statistics de-

scribing the classwise density of polygons, size of polygons,

density of pixels, share of polygons and share of pixels over

the whole dataset. In average, 1.8 crack shapes are present

on a crack image, whereby, one polygon includes 27,467

px. The average crack image shows approx. 50,000 px la-

beled as crack. With respect to the displayed shares, we ob-

serve that four out of 100 polygons are labeled as crack and

0.3% of the total pixel area received the label Crack. Fur-

thermore, Table 1 reveals the cause of the overrepresented

classes Weathering and Protective Equipment. They dis-

play a share regarding the number of polygons of 5.31%

(top 20%) and 2.09% (exactly the median). This, in combi-

nation with the fact that an according image shows 900,000

px or rather 786,000 px of that class, leads to their dom-

inant role. The overrepresentation of Weathering can be
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Class
#polyg./

image

#pixels/

polyg.

#pixels/

image
%polyg. %pixels

Crack 1.81 27,467 49,605 4.02 0.30

ACrack 1.12 950,694 1,064,777 0.48 1.25

Efflorescence 2.29 208,565 478,395 4.54 2.59

Rockpocket 4.75 50,564 240,079 10.74 1.48

WashoutsC. 1.34 807,721 1,079,936 0.22 0.48

Hollowareas 1.21 415,627 504,482 1.72 1.96

Spalling 2.68 83,298 223,185 11.60 2.64

Restformw. 1.19 50,170 59,757 1.18 0.16

Wetspot 1.48 271,408 400,778 1.89 1.40

Rust 3.62 46,680 168,997 16.01 2.04

Graffiti 2.29 172,917 395,596 2.44 1.15

Weathering 1.41 639,776 903,974 5.31 9.28

ExposedR. 2.25 25,770 58,034 2.26 0.16

Bearing 1.45 421,784 612,581 1.37 1.57

EJoint 1.12 700,054 783,023 0.55 1.05

Drainage 1.37 230,815 316,099 1.83 1.15

PEquipment 1.22 641,715 785,601 2.09 3.67

JTape 1.19 49,401 58,569 1.25 0.17

Background 3.47 871,631 3,020,476 30.51 72.69

Table 1. Overall statistics of the dataset regarding average number

of polygons per image, number of pixels per polygon, number of

pixels per image, share of polygons and share of pixels. Midrules

separate the classes according to their group affiliation.

more fatal than the one of Protective Equipment with re-

spect to the model performance. This is due to the fact that

the features (shape and texture) of Weathering are similar

to the ones from Wetspot. Both are of round shape and rep-

resented by a darker area surrounded by a brighter “rest”.

They vary slightly with regards to their texture. Weathering

is more noisy and more matt than Wetspot which is smooth

and sometimes mirroring. In addition, Wetspot and Weath-

ering often overlap which makes it difficult to distinguish

between them from the model’s perspective. The features of

the object Protective Equipment, in contrast, are unique and

therefore shouldn’t interfere with other classes during learn-

ing. The lack of pixels representing Restformwork, Exposed

Rebars and Joint Tape, as mentioned before, originates from

their relatively rare occurrences but mostly from their small

shapes. In average, polygons bordering Restformwork or

Joint Tape have a size of approx. 50,000 px while polygons

labeled as Exposed Rebars include 26,000 px. The aver-

age size of their polygons is equal to or less than the lower

quartile (50,367 px). Additionally, Exposed Rebars shows

the smallest average polygon size of all classes.

To ensure similar data distributions (regarding damage

and object classes) in each split, we create data partitions ac-

cording to image similarity. For that, we employ K-means

clustering [28] with 20 clusters. Then, we proportionally

draw samples from each cluster for the train (70%), valid

(10%), testdev (10%), and testpriv (10%) set with respect to

the number of polygons and images (see Table 2). The test-

dev and testpriv split are summarized within the test split.

The Table presents the classwise statistics of dacl10k

separated into the given splits. Again, taking the Crack

class as an example, the aforementioned proportions can

be observed in terms of number of pixels with a number

of 89,316,599 px (73%) in the train and approx. 11,000

px (9%) in the validation split. Compared to the validation

split, the values of the test split are approx. twice as high.

For the number of polygons and images, Table 2 displays

the same targeted proportions as for the pixel count.

3.4. Comparison to other datasets

Compared to CrackSeg9k [26] and S2DS [7], the crack

annotations of dacl10k are coarser. CrackSeg9k is a col-

lection of multiple available binary crack segmentation

datasets where each was acquired in a standardized set-

ting with respect to camera pose, lighting condition and

hardware. S2DS is a single-label semantic segmentation

dataset that includes images of RCDs (and control points)

captured during real structural inspections, where the fine-

ness of crack annotations is also high. According to the in-

spection guidelines, the recognition of cracks requires the

highest degree of accuracy because their width plays an

important role during their assessment. E.g., in Germany

the minimum crack width, which must be documented, is

0.2mm [4, 15]. Consequently, for the damage type Crack,

finer annotations are definitely useful when it comes to prac-

tical use.

To sum up, both related datasets show a higher level of

detail regarding crack annotations than dacl10k but are less

diverse with respect to class variety and real-world scenar-

ios. CrackSeg9k enables the training of models for binary

crack segmentation only. The annotations of S2DS provide

single-target information at most, meaning that one pixel

can only belong to one class. In addition, S2DS consists

of a relatively small number of images. However, we fo-

cus on the multi-label semantic segmentation of all visually

unique defects and objects on concrete bridges. Thereby,

we take into account the frequently occurring case that in

real-world scenarios multiple defects overlap. Regarding

the crack annotations, it can be stated that a pixel-accurate

classification of our crack data may be possible by applying

methods from the field of weakly-labeled data [21]. In the

CityScapes dataset [12], for example, the majority of the

samples were coarsely annotated (20,000 images) with the

intention to foster research specifically in this field. With

regards to applications within the framework of existing

standards, all other classes in our dataset do not require a

finer annotation and prediction, respectively. E.g., during

currently practiced analogue inspections, the diameter and

corresponding area of a Spalling is usually measured in a

rough manner with a folding rule which is sufficient for its

assessment.
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Class
Train Valid Test

#pixels #polyg. #images #pixels #polyg. #images #pixels #polyg. #images

Crack 89,316,599 3,092 1,720 11,462,336 457 254 21,199,921 892 485

ACrack 379,337,903 378 336 33,145,894 48 42 93,285,498 106 97

Efflorescence 773,838,619 3,378 1,523 69,295,099 502 206 204,072,743 1,141 460

Rockpocket 416,831,564 8,241 1,712 51,701,480 1,207 259 131,663,248 2,422 529

WConccor 153,351,739 176 133 7,781,177 23 15 34,335,547 43 33

Hollowareas 589,108,842 1,327 1,100 68,277,162 193 155 133,137,140 382 312

Spalling 754,421,298 8,638 3,289 94,740,019 1,444 485 218,557,811 2,736 1,010

Restformwork 42,413,460 841 716 6,143,333 164 132 17,116,171 304 251

Wetspot 402,563,879 1,436 972 47,002,103 216 144 117,133,455 436 298

Rust 592,984,180 12,272 3,451 79,135,671 1,801 465 153,938,160 3,623 972

Graffiti 308,779,763 1,866 797 71,491,732 317 146 85,741,013 512 235

Weathering 2,563,181,494 4,056 2,830 367,950,798 572 407 823,072,419 1,240 916

ExposedRebars 44,829,810 1,720 773 3,824,934 244 104 15,821,469 538 234

Bearing 431,016,513 1,039 731 89,236,423 160 105 116,219,161 310 203

EJoint 335,469,869 446 396 21,145,699 56 51 66,216,825 102 93

Drainage 368,660,666 1,393 1,030 35,297,153 244 151 62,288,022 383 294

PEquipment 1,070,432,844 1,616 1,320 103,082,479 211 175 312,055,649 488 396

JTape 47,582,309 911 772 8,569,024 152 128 12,022,699 317 264

Background 21,196,542,072 23,347 6,801 2,681,148,040 3,279 962 5,514,566,563 7,095 1,968

Table 2. Splitwise statistics regarding the number of pixels, polygons and images.

4. Baselines

In the following, we describe the development of the

baseline models and their test results. In order to evalu-

ate the baselines and to demonstrate challenges with respect

to the annotation of the underlying data, we conduct an

“Engineer versus Machine” (EvsM) comparison. Finally,

we discuss the results incorporating the findings regarding

dacl10k, the baselines and the EvsM comparison.

4.1. Implementation details

For the development of the baselines we analyze two

different CNN-based semantic segmentation architectures

with three different encoders, and one Transformer-based

model. We used DeepLabV3+ [10,11] and Feature Pyramid

Network (FPN) [25] as CNN baseline architectures which

represent powerful models often used in research and in-

dustry. As encoders we utilize MobileNetV3-Large [20]

(3M parameters), EfficientNet-B2 [38] (7M parameters)

and EfficientNet-B4 (17M parameters). For each of these

base models we also investigate a separate model using an

auxiliary loss for multi-label classification. The auxiliary

classification head placed after the encoder consists of an

average global pooling layer, followed by a dropout and lin-

ear layer. The weights of the model are updated based on

a combined weighted loss including the mask and auxiliary

loss. The total loss Ltotal is computed as follows:

Ltotal = Lmask + 0.1× Laux (1)

where Lmask and Laux are based on Dice [37] and Cross

Entropy loss respectively.

To meet current developments in Transformer-based

models, we trained a SegFormer model [42]. Since aux-

iliary loss is unusual for this network, only Dice loss is

utilized. Adam optimizer [24] with four different learn-

ing rates (5e−3, 1e−3, 5e−4, 1e−4) is applied whereof the

model with the best loss based on the validation split is re-

ported. We make use of a cosine learning rate scheduler

with a warm-up phase over two epochs and train each model

for 30 epochs. All models are initialized with ImageNet

weights [13, 41].

The images and annotations are resized to a resolution of

512 × 512 before being fed to the network. Thereby, each

defect and object class is considered with a separate binary

mask, leading to a total number of 18 channels. All follow-

ing results are reported on the same resolution, enabling an

evaluation that is not focused towards large images.

4.2. Baseline results

In order to find the best performing model on dacl10k,

we compare the mean IoU of seven different models (see

Table 3). The best network using the DeepLabV3+ archi-

tecture includes an EfficientNet-B4 backbone without con-

sidering auxiliary loss. It achieves a mean IoU of 0.411.

The highest mean IoU is obtained at a value of 0.414 by

the model consisting of an EfficientNet-B4 encoder and

FPN architecture while taking the auxiliary loss into ac-

count. For both, FPN and DeepLabV3+, it can be observed

that the more parameters the encoder has, the higher is the
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Aux
DeepLabv3+ FPN

SegFor

MN EN-B2 EN-B4 MN EN-B2 EN-B4

− 0.320 0.360 0.411 0.376 0.384 0.364 0.400

! 0.329 0.400 0.409 0.378 0.395 0.414 −

Table 3. Mean IoU on valid split for both architectures and three

encoders (MobileNetV3-Large, EfficientNet-B2 and EfficientNet-

B4) with and without auxiliary loss, and the SegFormer model.

reached mean IoU. The SegFormer model achieves a mean

IoU of 0.400 which is less than the best model based on

DeepLabV3+ or FPN.

Table 4 displays the classwise IoUs and the mean IoU of

the best model, described in the preceded paragraph. We

report results on the validation and test split (see Table 2).

Due to the small differences between the metrics over the

splits, it can be stated that the data, with respect to com-

plexity, is evenly distributed. In the following, the results

on the test split are documented. The lowest IoU is obtained

for the defect Washouts/Concrete Corrosion with a value of

0.121. This class is not underrepresented (see Figure 2). We

observe that its texture and shape (features) are very famil-

iar to the ones from Rockpocket and Spalling which both are

strongly represented. Other classes for which a low IoU is

reported are Wetspot, Restformwork, Crack and Rockpocket.

The possible reason for the bad performance on Wetspot is

explained in Section 3.3. Restformwork has many differ-

ent visual appearances, which the model probably fails to

summarize within one class. The Crack class, in average, is

represented by the least number of pixels per image, and it

has the smallest polygons, after Exposed Rebars, as they are

elongated and very narrow (see Table 1). Thus, the IoU is a

challenging metric for this defect, as the false-negative seg-

mentation of classes represented by more pixel area is less

penalized. On Rockpocket a low IoU is obtained because

of the aforementioned similar-looking defects. The best re-

sults can be reported for the objects Protective Equipment

(0.715) and Bearing (0.564) while the best general defect is

Graffiti (0.623) and with respct to concrete defects, a good

IoU can be observed for Hollowareas (0.555) and Alliga-

tor Crack (0.482). Graffiti and Protective Equipment are

the two most individual classes regarding their visual ap-

pearance, additionally, they are well represented (see Fig-

ure 2) which explains their high IoU compared to the rest of

the classes. Summarizing, the best model achieves a mean

IoU of 0.424. A more detailed analysis of the problematic

classes is provided within the supplementary material.

5. Engineer vs. Machine

Figure 3 displays the EvsM comparison, which enables a

qualitative validation of segmentations from the best model

(see Section 4.2) by comparing the annotations of civil engi-

Class valid test

Crack 0.288 0.286

ACrack 0.473 0.482

Efflorescence 0.338 0.415

Rockpocket 0.267 0.294

WConccor 0.085 0.121

Hollowareas 0.536 0.555

Spalling 0.374 0.406

Restformwork 0.336 0.285

Wetspot 0.232 0.243

Rust 0.414 0.450

Graffiti 0.586 0.623

Weathering 0.423 0.395

ExposedRebars 0.393 0.358

Bearing 0.676 0.564

EJoint 0.474 0.524

Drainage 0.521 0.563

PEquipment 0.675 0.715

JTape 0.362 0.362

Mean 0.414 0.424

Table 4. Classwise and mean IoU of the best model (FPN with

EfficientNet-B4 and auxiliary loss) on the validation and test split.

neers with the network’s predictions. Therefore, we asked

the five experts, two of whom perform bridge inspections

frequently, to annotate four representative samples drawn

from dacl10k’s testdev split. Two samples are considered

easy and the others difficult to evaluate because of their low

resolution, diversity regarding the lighting condition, cam-

era pose as well as defect types and objects. After an intro-

duction to the class guideline, the experts were instructed to

annotate the images with the same quality they would ex-

pect an application to highlight defects during a close-up

or hands-on bridge inspection. Compared to other inspec-

tion types, hands-on inspections require the highest quality

with respect to defect classification, measurement and local-

ization, which also includes the detection of Hollowareas

by hammering the concrete surface. Regarding the differ-

ences among engineers, it can be stated that with increas-

ing complexity of the samples also the variance of the cho-

sen labels rises. Engineer 5 annotated at the highest quality

level. Thus, especially his annotation is used as a qualita-

tive benchmark for our baselines prediction. For the first

two samples, which contain fewer classes compared to the

last two, the prediction of the machine is better than the av-

erage annotation of the five engineers. Only in the second

image the small cavities that are part of the defect Rock-

pocket and the Protective Equipment, which is overexposed,

are not recognized. The last two images reveal the limits of

our baseline. For the third sample the classes Wetspot, Rust
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Raw Engineer 1 Engineer 2 Engineer 3 Engineer 4 Engineer 5 Machine

Bearing
EJoint

Drainage
JTape

PEquipment
Graffiti

Wetspot
Weathering

Restformwork
Efflorescence

Rockpocket
WConccor

Hollowareas
Spalling

Rust
ExposedRebars

ACrack
Crack

Figure 3. Qualitative evaluation of the best model on four samples (Raw) from the testdev split by comparing annotations of five civil

engineers (Engineer 1-5) with the best model’s predictions (Machine). From top to bottom, the samples show: Crack; a few tiny cavities

which are considered as Rockpockets and Spalling, Exposed Rebars, Rust; Wetspot, Weathering, Efflorescence, Crack, Spalling, Exposed

Rebars and Rust; Wetspot, Weathering, Efflorescence, Restformwork, Drainage, Rust, Spalling.

and Drainage are well predicted, whereas, areas of Efflo-

rescence and weak Spallings are not segmented. Weather-

ing is not present at all in the model’s prediction. On the

last image the model doesn’t predict the defects Crack at

the center bottom and the Wetspot which is located mainly

on the wall. Furthermore, the model classifies Restform-

work which is not present on the image, while Spalling and

Exposed Rebars are correctly recognized. The remaining

classes are partially classified.

6. Discussion

We have introduced the first large-scale dataset and cor-

responding baselines for multi-label semantic segmentation

in the bridge inspection domain. It’s based on real-world

data, with a label distribution deriving from the visually dis-

tinguishable classes of multiple country-specific inspection

standards. It is important to note that the concrete and gen-

eral defect group labels are not restricted to bridges, as they

can occur on any building made of (reinforced) concrete.

The evaluation of the baselines, especially the EvsM com-

parison, generally shows a good performance. However,

limitations can be observed for classes with minimal fea-

ture differences between each other, e.g., Weathering and

Wetspot or Washouts/Concrete Corrosion, Rockpocket and

Spalling. In addition, the datatset is highly unbalanced,

leading to biases towards the overrepresented classes.

We are confident that a more sophisticated search for ar-

chitectures and hyperparameters as well as data augmenta-

tion methods will lead to substantial improvements. Ad-

ditionally, with respect to finer Crack segmentations, ap-

proaches from the field of weakly-labeled data may better

satisfy the geometrical accuracy requirements of this defect

type. Overall, we believe that due to its size and diversity,

dacl10k makes an important contribution to the field of au-

tomated structural inspection.
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Arbel, Brian B. Avants, Nicholas Ayache, Patricia Buendia,

D. Louis Collins, Nicolas Cordier, Jason J. Corso, Antonio
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