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Abstract

Event cameras report events whenever an individual

pixel changes brightness. The discrete and asynchronous

nature of events makes recovering pixel brightness signals a

challenging task, even if conventional brightness frames are

recorded along with events. Recent works have addressed

this task with neural networks, which tend to be biased to-

wards their training distribution. All methods need to deal

with noise in the events to produce very high output fram-

erates. We introduce a new approach to event-based re-

construction, not learning-based: Our model assigns each

event an explicit confidence weight to account for the un-

certainty arising from noise. We also introduce a novel loss

term to balance confidences against each other and show

that interpolation of brightness signals between events can

benefit from Bézier curves. We demonstrate that allowing

brightness changes between exposures can improve recon-

struction quality. Our evaluation shows that our method

improves the state of the art in the tasks of event-based de-

blurring and event-based frame interpolation.

1. Introduction

Classic frame-based cameras synchronously expose their

pixels to incoming brightness, for a nonzero exposure time.

The resulting frames indicate the average brightness flow-

ing into each pixel during exposure. This averaging is prob-

lematic for fast motion: Either a high-end camera with very

short exposure time and high framerate is used, which re-

quires large amounts of memory for storing frames and con-

sumes considerable amounts of power, or a low-end camera

with rather long exposure time and low framerate is used,

where the averaging leads to motion blur in the frames.

Event cameras [3, 6, 9, 12, 26] have their pixels asyn-

Input events Input RGB Output RGB

Figure 1. Given an event stream and a sequence of long-exposure

RGB frames, we optimize a model of a continuous brightness sig-

nal that plausibly explains the input. We can query our model at

arbitrary exposure times, for example to obtain deblurred output.

chronously report so-called “events”: A pixel emits an event

as soon as the brightness it measures deviates from a refer-

ence value by a sufficient margin c. The reference value

is usually the level of brightness measured at the previous

event. Event cameras measure brightness at a far higher rate

than conventional cameras, which greatly reduces motion

blur and also makes them suitable for low-light conditions,

in which classic cameras tend to produce very strong noise.

In addition, the fact that pixels produce data only when they

measure a change in brightness makes event cameras en-

code sequences in a much more compact format than frame-

based cameras. In this work, we focus on event cameras that

not only record events, but also low-framerate, long expo-

sure brightness frames through the same pixel matrix, see

Fig. 1. Given a recording of such a camera it is desirable to

reconstruct a brightness signal that could explain both the

events and the frames: In doing so, one can obtain deblurred

versions of the recorded frames, or interpolate frames in-

between exposures. This allows one to record sequences

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
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at lower memory bandwidth and power consumption than

with a classic high-framerate camera, while capturing more

temporal detail than a low-framerate camera would.

Many approaches to the task of event-based video recon-

struction [7,10,17,19,20,25,28,31,32,34,38] are based on

neural networks, which learn priors that enable them to ac-

count for noise in the input. However, their training not

only requires a sufficiently large dataset, which can be ex-

pensive and difficult to obtain, but also tends to limit their

performance on scenes that are not in line with the train-

ing distribution. In contrast, other methods [15, 33] do not

rely on prior training, but exploit the semantic properties of

events in a principled way. Our method belongs into this

category, but our contributions make it improve the SOTA:

We define a family of brightness signals that incorporate

the input events by construction, while compatibility with

brightness frames is formulated as an energy that we min-

imize by gradient descent. Our method shares a loss term

with mEDI [15], but our model construction and optimiza-

tion strategy are completely different. Beyond that, we con-

tribute several novel notions: Since cameras tend to produce

spurious events, we allow our model to ignore events, by as-

signing each event a “confidence weight”. Also, additional

degrees of freedom allow our model to reproduce bright-

ness frames in regions in which brightness changes are too

small to trigger events. Lastly, our signals are defined as

piecewise Bezier functions, instead of piecewise-constant

functions, which improves reconstruction accuracy.

In summary, our contributions are:

• A new method to reconstruct high-frequency bright-

ness signals that explain a stream of input events and a

sequence of input frames with long exposure time.

• Our method does not require any training and hence no

training data that it would be biased towards.

• Per-event a confidence weights, regularized by a novel

loss term, are adjusted during optimization.

• Exposure-based control points help produce smooth

signals when brightness changes did not trigger events.

• Bézier interpolation in-between events leads to higher

reconstruction accuracy.

2. Related Work

Event cameras have attracted the attention of the re-

search community for some time now, with several applica-

tions in 3D reconstruction [23,36], feature point tracking [5,

27], spatial super-resolution [8, 11], video frame interpola-

tion [10,15,33,38], SLAM [18,40] and many more [3]. We

focus on methods for event-based video reconstruction that

allow for temporal interpolation. Most current solutions use

neural networks [7,10,17,19,20,25,28–32,34,35,37,38,41]

while some do not [1, 2, 13, 15, 16, 24, 33, 39].

Neural network-based approaches. Many works have

addressed event-based video reconstruction via neural net-

works: The idea is to train a convolutional neural network

that takes events (and sometimes also brightness frames)

as input and predicts interpolated frames with high tem-

poral resolution. To achieve this, researchers have pro-

posed different designs, including recurrent neural net-

works [7, 19, 20, 25, 41], conditional GANs [28], direct su-

pervised learning [32, 34], complex modularized pipelines

[10, 29–31, 35, 37], and combinations with the mathemat-

ical formulation of event-based deblurring [38]. Most of

them need training on synthetic high-FPS data, which could

lead to domain gap issues when applied to real sequences.

Recently, Zhang et al. [38] and Valles et al. [17] presented

self-supervised learning methods that get rid of the need for

ground truth training data, but still need pretraining [17,38].

Since our method is not learning-based, it does not require

any training data, but still achieves SOTA results.

Non-neural network approaches. Other works attempt to

reconstruct signals without neural networks, often inferring

the high framerate brightness signal purely from the physi-

cal meaning of events [1,2,13,15,16,24,33]. Some of them

focus on reducing the effects of noisy events [24, 33, 39],

which is a well known issue of event cameras. Other ap-

proaches [1, 2, 13] are “events-only”, i.e. they do not use

brightness frames and thus cannot reconstruct videos with

accurate brightness. The most related work to ours is mEDI

[15], which, like our method, solves an optimization prob-

lem over the entire duration of the sequence. However, our

signal representation is more general as it introduces event-

associated confidence score to handle noisy events, and is

based on Bezier functions that offer more flexibility in rep-

resenting the signals. We demonstrate the advantages of our

design over mEDI and other baselines in Sec. 4.

3. Method

The input to our method is a recording from an event

camera that also captures long-exposure brightness frames.

Our method models a brightness signal that should be com-

patible with the input data: The events are used directly in

the definition of the model, whereas the frames are used to

formulate a loss term. We minimize this loss by gradient

descent, to find values for the free parameters of the model.

We model brightness frames of resolution w × h with d

color channels as functions Bi : [0 : w] × [0 : h] × [0 :
d] → [0; 1]. The camera logs exposure times t

open
i , tclose

i ∈
[T0;T1], i.e. times at which the shutter opens/closes, which

all lie within the time bounds T0, T1 of the sequence. Color

undergoes a Bayer filter, see supplemental document.

Events are modelled as tuples (tj , xj , yj , zj , pj) ∈
[T0;T1] × [0 : w] × [0 : h] × [0 : d] × {−1,+1}. The
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emission of events is based on two numbers, c+1 and c−1,

that we refer to as the positive and negative logarithmic

brightness thresholds, explained in Eqs. (2) and (3).

Our model treats each pixel (x, y, z) in isolation. To sim-

plify notation, we will, in much of the remainder of this sec-

tion, assume one arbitrary, but fixed pixel identity (x, y, z)
and omit indices (x, y, z) and tuple components (x, y, z).

We assume that both frames Bi and events (tj , pj) were

obtained from a brightness signal b(t), i.e. for all Bi:

Bi =

∫ tclose
i

t
open

i

b(t) dt (1)

and, as in previous work [16, 23, 38], the existence of two

consecutive events (tj , pj), (tj+1, pj+1) is equivalent to the

conjunction of Eqs. (2) and (3):

pj+1 · (b̃(tj+1)− b̃(tj)) ≥ cpj+1
(2)

∀t ∈ [tj ; tj+1] : −c−1 < b̃(t)− b̃(tj) < c+1 (3)

where b̃(t) := log(b(t) + ϵ) for a small positive constant ϵ.

Once we have found an approximation b∗ of b we can com-

pute integrals over much shorter exposures [t′open; t′close] to

re-render the sequence at arbitrary temporal resolution.

3.1. Model

Our model M(t) represents not b∗(t), but its integral:

b∗(t) := M ′(t) (4)

We choose this formulation because our loss term (see

Sec. 3.2) is expressed in terms of integrals under b∗. If

we were to model b∗ directly, we would have to approx-

imate these integrals by numeric integration, subject to a

trade-off between accuracy and computation time. Instead,

Eq. (4) allows us to compute integrals by evaluating M (see

Eq. (10)), while b∗ can be computed accurately and effi-

ciently by automatic differentiation, or even analytically.

Eqs. (2) and (3) constitute a strong prior on the set of

admissible functions b∗. We utilize this prior by repre-

senting each pixel signal of M(t) as an interpolation be-

tween carefully defined control points (CP, see Fig. 2) Pk =
(tk, yk, gk, w

left
k , w

right

k ) ∈ R
5, that enforce, for all k:

M(tk) = yk M ′(tk) = gk (5)

while wleft
k , w

right

k govern the interpolation between Pk and

its neighbors. The Pk are subject to the following rules:

• Each Pk belongs to one of two types:

An event-based CP represents an event and its tk is

fixed to the time of the event. An exposure-based CP

represents the transition from one brightness frame Bi

to its successor and we fix tk := 0.5(tclose
i + t

open
i+1)

• yk ≥ 0 is a free parameter of the model.

• gk is defined by the event semantics (see below).

• The gradient weights wleft
k , w

right

k are free parameters.

To make our model compatible with the events by construc-

tion we have to define the gradient parameters gk in accor-

dance with Eqs. (2) and (3). We thus equip the pixel signal

with one confidence weight γj per event and one overall pa-

rameter b̄. γj represents the confidence our model has in

the validity of event j. Modelling such confidence is nec-

essary because our assumption of only two threshold values

c+1, c−1 is a strong simplification: The physical properties

of the camera circuit make the thresholds rather fuzzy, lead-

ing to an entire distribution of thresholds that could have

caused an event. The confidence weights account for this

uncertainty. The parameter b̄ is left free and represents the

average brightness our model assigns to the pixel over the

entire sequence duration, see Fig. 2. We transform the confi-

dence weights and multiply them with the thresholds, to ob-

tain the effective logarithmic thresholds cj for each event:

cj := cpj
· sigmoid(γj · ωpj

+ βpj
) (6)

where the scales ωp ∈ {ω+1, ω−1} and biases βp ∈
{β+1, β−1} are shared by all pixels.

Given b̄, chaining Eq. (2) in the form pj+1 · (b̃
∗(tj+1)−

b̃∗(tj)) = cj admits only one possible valuation for those gk
that are event-based , if one assumes that brightness is con-

stant between events (see Fig. 2). For more details, please

see our supplemental document. For the remaining, expo-

sure-based control points Pk, we consider the latest event

j that occurs before tk. Since there exists an event-based

control point Pk′ with gradient gk′ for this event, we can set

gk := exp(δk · csign(δk) ·
cj

cpj

) · gk′ (7)

where δk ∈ [−1; 1] is a free model parameter, allowing log-

brightness values at exposure-based control points to devi-

ate from the value at the beginning of the event interval they

lie in by at most c+1 or c−1, satisfying Eq. (3).

We have now determined a set of control points Pk that

make M consistent with Eqs. (2) and (3), on the basis of the

parameter b̄, the parameters γj for all events and the param-

eters δk for all exposure-based control points k. Each pixel

has its own set of these parameters. The only parameters

shared by the pixels are ω+1, ω−1, β+1, β−1, and c+1, c−1.

To define M between the control points, we could use

straight lines (which by Eq. (4) would translate into

piecewise-constant brightness signals) or parabolas (lead-

ing to piecewise-linear signals), but these methods require

further constraints, because they cannot comply with ar-

bitrary combinations of control point parameters. Also,

Sec. 4.2 shows that the usage of simple Bézier curves can
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Figure 2. Our brightness signal visualized in the log domain: The

green rectangles represent input exposures, with significant gaps

in-between them. Based on b̄ and the event times and polarities,

the orange-hatched area can be constructed (∆T := T1 − T0),

determining the brightness levels at each event (red for positive

polarity, blue for negative). Black points are exposure-based and

must lie within either the reddish or blueish rectangle that we de-

pict them in here (Eq. (7)). Based on the gk, yk and other control

point parameters, we construct M as a piece-wise Bézier curve

(not depicted here) and thus M ′ = b∗, depicted as the black curve.

lead to higher accuracy. For a Bézier curve between points

Pk, Pk+1, a general solution to Eq. (5) requires a cubic

Bézier spline and thus two helper points, which must lie

on certain lines determinted by the control points. The con-

trol point parameters w
right

k , wleft
k+1 tell us which helper points

on these lines to choose, controlling how quickly b∗ transi-

tions from the value gk to the value gk+1. Our supplemental

material contains the technical details of this construction,

including the ranges we constrain our parameters to.

3.2. Optimization

M is differentiable with respect to its parameters, so we

can minimize the following losses via gradient descent:

The exposure loss forces the model to reproduce the in-

put brightness frames:

Lexposure :=
∑

∀i,x,y,z

erri,x,y,z

(

∫ tclose
i

t
open

i

b∗x,y,z(t) dt
)2

tclose
i − t

open
i

(8)

erri,x,y,z(b) :=

{

Bi(x, y, z)− b : Bi(x, y, z) < 1

max (0, 1− b) : Bi(x, y, z) = 1
(9)

and according to Eq. (4) we can compute the integral as

∫ tclose
i

t
open

i

b∗x,y,z(t) dt = Mx,y,z(t
close
i )−Mx,y,z(t

open
i ) (10)

Lexposure is strictly necessary, since it is the only compo-

nent of our method that informs our model about absolute

levels of brightness recorded by the camera: Without it the

model (in particular the parameters b̄) could converge to ar-

bitrary multiples of the brightness values recorded in the

frames and each pixel could do so independently from the

others. In addition, this term helps suppress noise that may

be present in the event data. The second case in Eq. (9) is

necessary for pixels that are completely saturated.

The confidence loss uses the helper variables mx,y,z,j
+

and mx,y,z,j
− to drive all confidence weights γj up, such

that the sigmoid term in Eq. (6) approaches 1:

Lconfidence :=
∑

(tj ,x,y,z,pj)∈E

(

1
2mx,y,z,j

+ + 1
2mx,y,z,j

−
)2

∆T
(11)

where E is the set of all events and mx,y,z,j
+ and mx,y,z,j

−

are penalties on the the amount of integral mass under the

brightness signal that would be gained/lost by making the

sigmoid term in in Eq. (6) equal to 1:

Let (x, y, z) be a pixel and (tj , x, y, z, pj) an event.

We use the identity function SG to indicate where our

implementation stops gradient backpropagation, to make

Lconfidence affect no parameters other than the confidence

weights. For the l-th event in the pixel, there exists the

event-based control point Pk and we define the “idealized”

integral mass ml under the brightness signal between the

events l and l + 1 as ml := SG(gk) ·∆tl. The number ρj
is the factor by which the brightness level between events j

and j + 1 would change if the confidence for event j could

make the sigmoid term in Eq. (6) equal to 1:

ρj := exp

(

SG(cpj
) ·

(

1−
cj

cpj

))

(12)

ρj is also the factor by which all later event intervals would

increase their ml, which is why mx,y,z,j
+ equals the abso-

lute amount of integral mass that these intervals would gain:

mx,y,z,j
+ := ∥ρj − 1∥ ·

n−1
∑

j+1

ml (13)

Penalizing only later intervals would make it very cheap for

the last intervals in the pixel to have low confidence. Thus

mx,y,z,j
− penalizes earlier intervals:

mx,y,z,j
− := ∥1−

1

ρj
∥ ·

j
∑

l=0

ml (14)

Lconfidence makes sure that we take every event as “seri-

ous” as possible. Without it some events may be needlessly

assigned a low confidence, leading to high-frequency infor-

mation being ignored, and thus more motion blur.

The linearity regularizer encourages our Bézier curves

to have linear derivatives and thus our brightness signal to

be piecewise linear in areas where other losses do not de-

termine a specific shape. We achieve this between Pk and
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Input AKF EVDI LEDVDI mEDI Ours

Figure 3. We compare our method to AKF [33], EVDI [38], LEDVDI [10] and mEDI [15]. We omit the event input in this figure. Input

exposure time was approximately 0.2 seconds, but output exposure time for all methods was 0.002 seconds. Our method manages to reduce

motion blur most effectively. Our supplemental video results give a much better impression than these still frames.

Pk+1 by penalizing the surface area Ax,y,z,k of the triangle

between the points (tk, gk), (tk+1, gk+1) and

(

tk,k+1

gk,k+1

)

:=

(

1
2 (tk + tk+1)

bx,y,z
∗( 12 (tk + tk+1))

)

which yields the loss formulation

Llinearity :=
∑

∀k,x,y,z:
Pk,Pk+1∈P(x,y,z)

A2
x,y,z,k

∆tx,y,z,k
(15)

where P(x, y, z) is the set of CP for pixel (x, y, z) and

∆tx,y,z,k := tk+1 − tk. Sec. 4.2 shows that this loss gives

better results that enforcing linearity by construction.

We minimize our overall loss

L := 1 · Lexposure + 0.2 · Lconfidence + 0.1 · Llinearity

by gradient descent, updating the model parameters b̄ for

all pixels (x, y, z), the parameters γj for all events, the pa-

rameters yk, wleft
k , and w

right

k for all control points, the pa-

rameters δk for all exposure-based control points, and the

global parameters c+1, c−1, ω+1, ω−1, β+1, β−1.

4. Results

We recorded sequences with a DAVIS 346C, at expo-

sure 0.2s, resulting in 4.5FPS - 5FPS, due to the shutter

remaining closed for significant durations between frames.

For the DAVIS 346C, the duration of these so-called “expo-

sure gaps” (visualized as black input frames in supplemen-

tal video) remains constant as exposure time is decreased,

leading to exposures covering less and less sequence time.

The long exposure of 0.2s was chosen in order to keep this

coverage high (92%). If one were to reduce exposure time

and thus increase framerates, frames would contain less in-

formation about the scene instead of more: For example,

exposure time 0.01s would result in 35FPS, covering only

about 35% of sequence time. Even shorter exposures and

higher framerates would make frames even less informa-

tive, because they would represent only very short time in-

tervals, with large gaps in-between. We thus constrain the

evaluation to a setting where the exposures cover most of

the sequence duration. Ground truth signals for quantitative

evaluation was obtained in 2 ways: First, we dropped ev-

ery second frame in our recordings, allowing us to evaluate

how well a reconstruction method is able to compute the

missing long-exposure frames. Second, similarly to previ-

ous work [38], we synthesized events from high-framerate

RGB sequences: We temporally upsampled 30 REDS se-

quences [14] to 800Hz using FILM [21,22] and synthesized

events using ESIM [4] (threshold c = 0.2). We also derived

a low-FPS, long-exposure version from each latent image

sequence, at 10Hz, without exposure gaps, to be used as in-

put. We cannot show results on the Color Event Camera

Dataset [26], because it lacks exposure time information.

4.1. Comparison to previous work

We compare our method to 4 previous approaches to

event-based reconstruction that all take events and long-

exposure brightness frames as input: EVDI [38] is a recent

learning-based method that is self-supervised, but needs to

be pre-trained. Likewise, LEDVDI [10] is learning-based,

but needs ground-truth supervision and thus is trained on

synthetic data. It increases temporal frequency by a factor

fixed at training time. Since our method does not require

any pre-training at all, we use the official checkpoints of
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Reference Input AKF EVDI LEDVDI mEDI Ours

SSIM:

Figure 4. On our synthetic dataset, we can compare outputs to a pseudo-ground truth reference and hence evaluate results quantitatively.

Input exposure time was 0.1s, output exposure time was 0.002s. SSIM in particular often shows the superiority of our method.

Method PSNR ↑ SSIM ↑ LPIPS ↓

AKF 14.42dB 0.4861 0.3675

EVDI (pretrained) 23.32dB 0.7356 0.2504

LEDVDI (pretrained) 20.66dB 0.6491 0.2000

mEDI 24.68dB 0.7888 0.1831

Ours 29.69dB 0.9039 0.0739

Table 1. We evaluated all methods quantitatively on our synthetic

dataset based on REDs [14]. The scores in this table are averaged

over the 30 sequences in the REDS validation set.

EVDI (“GoPro” checkpoint) and LEDVDI (frequency fac-

tor 6). EVDI is self-supervised and does not require ground

truth, so we overfit it to the input for 10 epochs, helping

overcome the domain gap between the input and the training

data. Like our method, AKF [33] and mEDI [15] do not re-

quire pre-training. A comparison to TimeLens(++) [30, 31]

is out of the scope, because TimeLens requires very short

exposures with as little motion blur as possible, whereas

our goal is to deal with long exposures that do contain blur,

see supplemental. We have each method produce outputs at

500FPS. We have extended all previous methods to process-

ing coloured data, by applying the to each colour channel

individually. This is necessary because official checkpoints

have been trained on single channel data only.

Fig. 3 shows a comparison on multiple recordings:

Methods are expected to turn inputs with exposure 0.2s into

output with exposure 0.002s, which should reduce motion

blur. AKF produces strong spatial noise. Both EVDI and

mEDI give results with considerable motion blur. Surpris-

ingly, LEDVDI, which can only produce output at exposure

time 0.033s, manages to reduce blur considerably for the

racket, but suffers from a “pulsing” artifact (see supplemen-

tal video). Our method deblurs best, to be seen, for exam-

ple, in the third row, where EVDI and mEDI struggle with

clearly resolving the right edge of the foreground leaf.

We evaluated methods on our synthetic data, comparing

outputs to pseudo ground truth. Fig. 4 confirms many obser-

vations from the recordings, with the exception of LEDVDI,

Method PSNR ↑ SSIM ↑ LPIPS ↓

AKF 22.64dB 0.5033 0.4505

EVDI (pretrained) 33.92dB 0.9498 0.0651

LEDVDI (pretrained) 30.74dB 0.9120 0.0739

mEDI 34.91dB 0.9114 0.0876

Ours 37.91dB 0.9251 0.0882

Table 2. Evaluation of our frame drop experiment. Exposure

for both reference and input was 0.2s. Spurious events in the

scene background make it hard for our method to keep background

brightness constant, hence our scores do not beat those of EVDI.

Ref. exp. 0.1s Ref. exp. 0.002s

Variant PSNR SSIM PSNR SSIM

Lin. interp. 40.72dB 0.987 29.50dB 0.901

Parab. interp. 39.21dB 0.980 28.95dB 0.889

No confid. 43.96dB 0.993 30.25dB 0.911

No exp.-CP 43.69dB 0.993 29.52dB 0.901

No Lconfidence 45.80dB 0.996 27.70dB 0.868

No Llinearity 42.61dB 0.992 20.92dB 0.668

Ours (full) 45.17dB 0.995 29.69dB 0.904

Table 3. Ablation study on synthetic data, comparing outputs to

input frames (exposure 0.1s) and to pseudo ground truth (exposure

0.002s). Since this dataset does not contain the real-world noise,

the event confidences in our method, as well as Lconfidence are not

improving performance. However, our full method ranks second

best more often than any other method ranks best. Both linear

interpolation and parabolic interpolation lead to the input frames

being reproduced far less faithfully.

which now also gives blurry results, possibly due to the bias

of LEDVDI towards its training distribution. In fact, Tab. 1

lists rather weak scores for LEDVDI and AKF, while our

method consistently outperforms the others.

For quantitative comparison on real inputs, we modified

our recordings by dropping every second frame and using

the original as a blurry long-exposure reference (Sec. 4).
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Reference Input AKF EVDI LEDVDI mEDI Ours

[Frame dropped]

SSIM:

Figure 5. After dropping every second recorded frame (Sec. 4), we can use the remaining frames and the events as input, while the original

recording can serve as a long-exposure reference. All methods struggle in this setting, but ours performs best.

All methods struggle in this setting (Fig. 5). As expected,

those frames that were still remaining in the input were

reproduced more faithfully than those that were dropped,

confirming that event-based reconstruction greatly benefits

from the availability of long-exposure brightness frames.

Tab. 2 averages scores over a number of recordings: In both

SSIM and LPIPS our method is outperformed by EVDI.

The reason for this seems to be that the spurious events that

the camera reports for the scene background (i.e. exactly in

those areas where no motion is happening) make it hard for

our method to keep the brightness of the background pix-

els constant. Normally Lexposure (see Sec. 3.2) would cor-

rect that, but without the dropped frames our method has no

way of knowing whether these events are legitimate or not.

It is here, where the learned priors of EVDI prove to be an

advantage. Error maps and scores in supplemental video.

4.2. Ablation study

Bézier interpolation. Sec. 3 specifies that the interpolation

in-between the control points of our model is computed as

Bézier splines, which means that the function M , i.e. the

integral under the brightness signal (not the brightness sig-

nal itself) consists of Bézier curves. Since we also regu-

larize these curves to become parabolas, by having Llinearity

encourage the brightness signal to become piecewise linear,

we have to investigate whether these choices really give bet-

ter results than making the interpolation use parabolas al-

ready by definition, or even linear functions (in which case

the brightness signal would be piecewise constant). How-

ever, both these “simplifications” require the addition of fur-

ther constraints to our model, because piecewise parabolas

or lines cannot satisfy Eq. (5) in all cases, since they admit

fewer degrees of freedom than Bézier curves do. Techni-

cally this means that we cannot leave the y coordinates yk
free, and instead have to compute them from other parame-

ters in a way that allows parabolas or lines to be used. These

additional constraints change the dynamics of our signal

representation during optimization. Tab. 3 shows that this

leads to significant degradations in quality, especially with

regard to the ability of our method to reconstruct the input

frames. Furthermore, the second row of Fig. 7 shows more

spatial noise for the simplified interpolation methods.

Exposure-based control points. Similarly, Tab. 3 shows

that omitting exposure-based control points harms the fi-

delity with which input frames are reconstructed. Fig. 6

gives a possible explanation: Pixels in the sky region change

their brightness only very slightly as the camera is pan-

ning. The logarithmic brightness threshold of 0.2 that we

used to synthesize events for the REDS sequences is ap-

parently too large to trigger frequent events for such subtle

changes. Therefore, the control points in these pixels are

very sparse and cannot satisfy Lexposure, which leads to the

sky region having bad SSIM scores. Only exposure-based

control points add the necessary degrees of freedom here.

Confidence weights. Tab. 3 shows our full method outper-

form all ablations except those that are missing confidences

or Lconfidence. The reason why omitting these seems to even

slightly improve the metrics in this ablation study is that

since we did not simulate event camera noise, almost all

events in the synthetic dataset are legitimate (up to corner

cases due to quantisation), so allowing confidences to devi-

ate from 1 cannot do much good. Note that the PSNR met-

ric (given only because previous work gives it) is unreliable

in the case of Tab. 3: Not only is SSIM a more advanced

metric for perceived quality, but also does PSNR diverge

towards infinity as images become more similar to the ref-

erence, making PSNR differences less and less significant.

We therefore suggest to focus on SSIM values especially in

the first half of Tab. 3, where similarity is very high. On

real data however (Fig. 7), many events are not legitimate at

all and especially in-between exposure periods the lack of

confidence weights can lead to severe artifacts.

Confidence loss. SSIM scores in Tab. 3 show that omis-

sion of Lconfidence leads to a significant loss of quality on

synthetic data at short exposure times, suggesting that con-

fidences tend to needlessly deviate from 1. The third row of

Fig. 7 confirms this as well, with the omission of Lconfidence

leading to strong artifacts in the orange tiles of the cube.

Linearity regularizer. Using Bézier interpolation with-

out having Llinearity regularize those parameters that are not
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Reference Input Ours (full) Linear Parabolic No No exp.- Without Without

interpol. interpol. confid. based CP Lconfidence Llinearity

SSIM:

Figure 6. Ablation on synthetic data. We observe that the sky region leads to significant SSIM error if no exposure-based control points

are used. This is because the pixels in this region change their brightness very slightly, without triggering events. Enabling exposure-based

control points allows Lexposure to correct the resulting brightness errors. The checkerboard patterns visible in the error maps are due to the

Bayer filter of the camera and must appear regardless of the method used. Please see our supplemental video for details.

Input Ours (full) Linear Parabolic No No exp.- Without Without

interpol. interpol. confid. based CP Lconfidence Llinearity

[Exposure gap]

Figure 7. Qualitative ablation on real recordings, at output exposure time 0.002s. The first row was captured in-between two input exposure

periods, hence we cannot show an input frame. In the second row, we observe that both linear and parabolic interpolation lead to increased

spatial noise in the green mat on the yellow box. In all three rows, the result without confidences shows significantly more blur and the

third one shows strong artifacts in the orange tiles of the cube if Lconfidence is not used. Once more, disabling Llinearity proves harmful.

strictly derived from the event data leads to very strong ar-

tifacts, as evidenced by the poor scores for short exposures

in Tab. 3 and the visual results in Figs. 6 and 7.

5. Limitations

Lexposure requires knowledge of exposure time stamps.

Another limitation of our method is its resource usage: Rep-

resenting a sequence in memory requires significant GPU

capacity. We experimented with applying our method only

to pairs of consecutive brightness frames and stitching re-

sults together. While this leads to qualitatively comparable

results with less memory demand, it does take more time,

because frame pairs need to overlap and because optimiz-

ing for one frame pair does not fully make use of GPU par-

allelism. We chose to value computation time higher than

memory consumption and thus reported results for global

optimization only. Nevertheless, depending on scene char-

acteristics (duration, number of events), our run time on an

RTX 3090 can range from tens of minutes to several hours.

For an extended discussion see the supplemental document.

6. Conclusion

We have presented a method for event-based video re-

construction. Instead of learning from a training set that our

method would then be biased to, we have exploited the se-

mantic model of events in a principled manner. On this ba-

sis we introduced per-event confidence weights as a novel

way of dealing with event camera noise, which required

a novel regularization loss. In addition, we showed that

equipping the brightness signal with new degrees of free-

dom in-between exposures and even, by the use of Bézier

interpolation, in-between single events, helps improve out-

put quality to the point where we outperform state of the art

methods at a temporal resolution 100 times as high as that

of the input. In contrast to methods like TimeLens [31] we

manage to do so given very long exposure input frames.
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