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Figure 1. Snapshots from the InfraParis dataset showing different modalities and full semantic annotations for autonomous driving.

Abstract

Current deep neural networks (DNNs) for autonomous
driving computer vision are typically trained on specific
datasets that only involve a single type of data and ur-
ban scenes. Consequently, these models struggle to han-
dle new objects, noise, nighttime conditions, and diverse
scenarios, which is essential for safety-critical applica-
tions. Despite ongoing efforts to enhance the resilience
of computer vision DNNs, progress has been sluggish,
partly due to the absence of benchmarks featuring multi-
ple modalities. We introduce a novel and versatile dataset
named InfraParis that supports multiple tasks across three
modalities: RGB, depth, and infrared. We assess various
state-of-the-art baseline techniques, encompassing mod-
els for the tasks of semantic segmentation, object detec-
tion, and depth estimation. More visualizations and the

download link for InfraParis are available at https://ensta-
u2is.github.io/infraParis/.

1. Introduction

In the realm of autonomous driving, the ability of ve-
hicles to navigate effectively under varying lighting condi-
tions, including both day and night, is of paramount im-
portance. Achieving this requires the development of in-
telligent systems that possess robust visual perception ca-
pabilities. In recent years, the potential of utilizing In-
frared (IR) datasets to enhance vision in challenging envi-
ronments has garnered attention [14, 26, 49]. Despite this
promise, the availability of comprehensive IR datasets re-
mains limited compared to the abundance of RGB datasets
[10, 18, 39, 40, 48]. While RGB datasets have proliferated,
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datasets containing IR imagery have not attained the same
prevalence.

The benefit of IR images lies in their capacity to con-
vey thermal information, which can provide invaluable in-
sights for understanding and interpreting the environment.
However, harnessing the potential of IR datasets is not with-
out its challenges. The distinctive nature of information
captured by IR cameras introduces complexities that make
dataset handling and analysis a formidable task. These in-
tricacies are exemplified through the existence of materi-
als acting as pure mirror for the IR spectrum (e.g. water),
thereby inducing the occurrence of false positives. Poor
contrast and drastic changes in object appearance over time
are other elements that hinder the popularity of IR modali-
ties in urban scenes.

The emergence of foundation models [3, 36] capable of
accommodating multimodal datasets and performing multi-
ple tasks has marked a significant leap forward in the field.
Models such as [20, 45] demonstrate the potential of inte-
grating diverse data modalities to enhance overall perfor-
mance. However, harnessing the benefits of these foun-
dation models necessitates access to well-annotated multi-
modal datasets, a critical resource that remains scarce.

The importance of establishing a multimodal and and
multitask dataset like the one we present, named InfraParis,
becomes evident when considering challenges related to do-
main adaptation. The drastic dissimilarity between IR im-
ages and traditional RGB data makes the InfraParis database
uniquely valuable for addressing domain adaptation scenar-
ios. Additionally, the incorporation of multitask learning
enables DNNs to attain more generalized representations.
Thus, this dataset can serve as an instrumental bridge for
testing and improving the robustness of models across dis-
parate modalities and tasks. Furthermore, the inclusion of
thermal data in InfraParis opens doors for enhanced object
detection, tracking, depth estimation, and semantic segmen-
tation, areas where traditional RGB data might fall short.

The dataset was collected across the Parisian metropoli-
tan area and its environs, encompassing a diverse array of
scenes that exhibit varying characteristics. This geographic
breadth offers a spectrum of scenes, ranging from urban
settings to rural landscapes and highway roads. Conse-
quently, the dataset encapsulates the distinct attributes as-
sociated with each of these settings, including the differing
people density, crowd dynamics, and environmental condi-
tions. Another interesting aspect is that the timing of data
acquisition coincided with the extensive preparations un-
derway for the forthcoming Olympic Games in Paris. This
temporal context further enhances the dataset’s complexity.
The significant amount of ongoing construction and activi-
ties related to the Games introduces a high degree of vari-
ability and challenge to the dataset. The dynamic nature of
this context translates into scenes featuring intricate interac-

tions between vehicles, pedestrians, and various urban ele-
ments. This intricate tapestry of activities, coupled with the
diverse surroundings, makes the InfraParis dataset uniquely
demanding and reflective of real-world scenarios that au-
tonomous vehicles might encounter.

In summary, this paper introduces the InfraParis multi-
modal dataset, acknowledging the necessity of IR data for
comprehensive environmental perception, the challenges
inherent to IR dataset management, the potential benefits
of integrating multimodal foundation models, and the piv-
otal role of the database in tackling domain adaptation dif-
ficulties. By providing researchers with a rich resource that
bridges the gap between RGB and IR domains, InfraParis
paves the way for more adaptable and reliable autonomous
driving systems, even in the most challenging visual condi-
tions.

2. Related works

2.1. Autonomous driving datasets

A range of real-world datasets tailored for autonomous
driving purposes has recently been unveiled [5,7,10,15,18,
24, 37, 43, 44, 50, 54]. These datasets have played a piv-
otal role in driving significant advancements in the field,
although they typically center on singular tasks such as se-
mantic segmentation [10,37,54], object detection [5,18,43],
or motion prediction [7, 24], often lacking multi-task ca-
pabilities with integration of multimodal information es-
pecially infrared. While synthetic datasets like GTA-V
[39], SYNTHIA [40], virtual KITTI [16], MUAD [15], and
SHIFT [44] offer ample training data without incurring the
costs of annotating real images or privacy concerns, even
these synthetic images fall short of including infrared data.

Other existing datasets predominantly serve domain
adaptation, typically emulating content and classes from a
specific real dataset. Some datasets, like Fishyscapes [4],
Lost and Found [34], and SegmentMeIfYouCan [6], em-
phasize reliability for self-driving vehicles by evaluat-
ing semantic segmentation DNNs in the context of out-
of-distribution objects. Other datasets assess robustness
against varying weather conditions, including night [11,12,
42], rain [42, 48], and fog [41, 42], though they often suf-
fer from differing locations and conditions, leading to per-
formance drops coinciding with challenging weather condi-
tions.

To bolster the reliability of semantic segmentation DNNs
and address the dearth of diversity in real-world environ-
ments, certain studies have promoted virtual object inpaint-
ing [23] or synthesis of weather conditions [47]. However,
these approaches raise concerns about result fidelity. The
recent ACDC dataset [42], composed exclusively of real
images from consistent locations and inclusive of aleatoric
uncertainty sources, endeavors to alleviate these concerns.
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Dataset Scenario Annotation type # images # classes RGB Depth IR range

Thermal Dogs and People [2] Humans and dogs in infrared Bounding box 203 2 x x Unknown

PTB-TIR [30] Pedestrians detection Bounding box 30128 1 x x Unknown

NVGesture [32] Hand gesture recognition Hand gesture label 1532 25 ✓ ✓ 0.85-0.87 µm (NIR)

SODA [27] Image segmentation Polygons 7168 20 x x 0.75-13 µm

KAIST Multispectral Pedestrian [25] Pedestrians detection Bounding box 95000 3 ✓ x 7.5-13 µm (LWIR)

KAIST all-day dataset [9]
Autonomous driving
in day and night Bounding box 8970 3 ✓ ✓ 7.5-14 µm (LWIR)

Flir thermal dataset [1] Autonomous Driving Bounding box 14000 5 ✓ x 7.5-13.5 µm (LWIR)

Brno-Urban-Dataset [28] Autonomous Driving None 13h44min ✓ ✓ 7.5-13.5 µm (LWIR)

Freiburg Thermal [51]
Autonomous driving
in day and night Instance semantics 20647 13 ✓ x 8-14 µm (LWIR)

MFNet dataset [46]
Autonomous driving
in day and night

Bounding box
Instance semantics 1569 8 ✓ x 8-14 µm (LWIR)

All-weather vision for automotive
safety & all weather visibility for cars [33] Autonomous driving None Unknown - ✓ x

0.4-1.0 µm (visible+NIR);
0.6-1.7 µm; 8-12 µm

Ours Autonomous driving
Bounding box
Full semantics 7301 19 ✓ ✓ 8-14 µm (LWIR)

Table 1. Comparative overview of the different IR/RGB datasets designed for different scenarios.

Yet, even with their significance, these datasets often remain
confined to a single modality or task.

2.2. Multi-modal datasets and DNNs

Several infrared autonomous driving datasets exist [1,19,
28, 33], yet most lack annotations for semantic segmenta-
tion. Freiburg Thermal dataset [51] and MFNet dataset [46]
have semantic segmentation annotations, yet the former
lacks object detection annotations, and the latter is short on
the image amount compared to other datasets. Moreover,
the depth modality lacks in the above-mentioned datasets.
Additionally, there are some other infrared datasets [2,9,25,
30, 32] working for other scenarios such as traffic surveil-
lance. In essence, multimodal datasets and benchmarks in
autonomous driving scenarios are still under-acquired and
under-explored.

Notably, some studies have explored thermal image se-
mantic segmentation. Qiao et al. [35] employ a level set
method to segment pedestrians in thermal images, while Li
et al. [27] propose an edge-conditioned segmentation net-
work for thermal images trained on a dataset encompassing
various indoor and outdoor scenes. Ha et al. [19] introduce
a multimodal fusion network architecture for RGB and ther-
mal images, evaluated on their own MF dataset [19].

To summarize the existing landscape of Infrared
datasets, we have provided an overview in Table 1 with a
comparison to our InfraParis dataset.

3. The dataset: InfraParis

3.1. Acquisition process

We used the Stereolabs ZED 2 stereo camera, capable
of capturing paired color images to generate depth maps.
During the data acquisition phase, the ZED 2 played a piv-
otal role in achieving precise calibration and registration of

depth and RGB information. We also employed the optris
PI 450i Infrared camera, featuring an 80◦×54◦ field of view
with a spectral range of 8 – 14 µm, while the ZED 2 boasts
a wider field of view at 110◦ × 70◦, coupled with a depth
range spanning 0 to 40 meters. Both cameras were rigidly
affixed together to prevent movement and securely mounted
on the vehicle’s hood to mitigate potential glass distortion.
The calibration process is elaborated upon in section 3.3,
along with the synchronization mechanism that ensures si-
multaneous image capture for both cameras.

Having synchronized the database and fine-tuned cam-
era calibration, the focus shifted to generating annota-
tions exclusively for the RGB images, which could then
be transferred to correspond with the infrared and depth
counterparts. To ensure accurate and reliable annotations,
we enlisted the expertise of professional annotation ser-
vices. These annotations were meticulously crafted to align
with the class schema established by the cityscape dataset
[10], thereby facilitating potential domain adaptation from
cityscape to InfraParis. Rigorous quality assessment was
undertaken through the collaborative efforts of university
members and students using specialized annotation soft-
ware. Following multiple iterations of correction and as-
sessment, the annotations attained a commendable level of
precision and fidelity.

3.2. Ethics and policy

We ensured participant awareness regarding their inclu-
sion in the dataset by providing them the option to request
the removal of their images through email communication
within the vehicle. Following a two-year period, no such
requests were received. To uphold privacy and prevent the
disclosure of personal information, we take a proactive ap-
proach by promptly removing images upon receiving com-
plaints. This action underlines our commitment to respect-
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ing participants’ rights and maintaining confidentiality. A
notable facet of this dataset is its timeframe, captured in the
aftermath of the COVID-19 pandemic. Consequently, a sig-
nificant majority of individuals were photographed wearing
masks. This situation significantly contributes to the height-
ened preservation of their privacy.

Our dataset is characterized by its comprehensive rep-
resentation of diverse viewpoints and demographics. We
have proactively undertaken efforts to encompass a broad
spectrum of backgrounds, cultures, and life experiences. By
doing so, we have diligently avoided potential biases or in-
stances of under-representation that could distort findings or
perpetuate inequalities.

3.3. Camera calibration

Our goal is to determine how an image acquired by the
ZED camera would look like if it was acquired from the
point of view of the IR camera (see Figure 3) by performing
re-projection. In this way any visual task performed on
the ZED camera image can be visualized in the IR system
coordinate which is critical if we want to combine infrared
maps with other modalities. Please note that the field of
view of the ZED Camera is larger than the IR one which
explains why the IR is chosen as reference. Indeed, a
projection from IR to ZED would have rendered maps with
a great number of unknown values.

The projection matrix, made of the intrinsic parameters
of a camera, namely its focal lengths (fx, fy) and principal
point (cx, cy) is written as follows:

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

We denote as Kz (resp. Ki) the projective matrix of the
ZED (resp. of the Optris IR) camera. Let us also define
R and t respectively the rotation matrix (illustrated as θ in
Figure 4) and the translation vector of the ZED camera with
respect to the Optris. These are the extrinsic parameters,
forming the displacement matrix:

PZ→I =
(
R t

)
(2)

Let us consider a specific visual task I performed on
the ZED camera image, semantic segmentation for instance.
And let us consider a given pixel (Uz, Vz). The goal of the
re-projection is to find the corresponding pixel (Ui, Vi) in
the IR system coordinate as described in Figure 4. To do so
we apply the following pipeline (see Figure. 5).

The 3D point in the ZED camera system coordinate can
be obtained from (Uz, Vz) as follows:Xz

Yz

Zz

 = D
[
Uz, Vz

]
K−1

z

Uz

Vz

1

 (3)

Where D
[
Uz, Vz

]
is the depth value at pixel (Uz, Vz) as

rendered by the ZED camera in the left image coordinate
system.

The obtained 3D vector can then be written in the IR
system coordinate by using the extrinsic matrix:

Xi

Yi

Zi

 = PZ→I


Xz

Yz

Zz

1

 (4)

and Ui

Vi

1

 =
1

Zi
Ki

Xi

Yi

Zi

 (5)

Finally the corresponding re-projected labelling image Ĩ
is filled as follows:

Ĩ
[
Ui, Vi

]
= I

[
Uz, Vz

]
(6)

Please note that in order to keep the number of pa-
rameters to be determined low we chose not to take into
account eventual distortions in our pipeline. We think it
was unnecessary considering that images don’t seem to be
distorted visually. Yet this is something to be considered in
the general case.

We consider two different kinds of parameters:

• Known Parameters: The ZED SDK API provides
precise values of the intrinsic parameters of the ZED
Camera.

• Coarse parameter estimates: The intrinsic parame-
ters of the IR Camera are roughly given by the docu-
mentation of the camera (Optris PI 450i).
For the extrinsic parameters, the IR camera was placed
in the middle of the ZED cameras Hence, we expect
tx the first component of the vector t to be about half
the baseline of the ZED Camera. In the same way, tz
as well as the rotation angle are expected to be around
zero.

We then refined the coarse parameter estimates by a grid
search around the coarse parameter values. We chose the
parameters that maximize the correlation between the edges
of the semantic map and the edges of the infrared image.
Edges of the infrared images were obtained with a threshold
on the gradient. Edge maps were dilated to improve the
metric quality.

3.4. Statistics of the dataset

We captured a set of 12 084 images in various areas
around Paris. During the image capture process, a portion
of the acquired images proved to be unusable, ranging from
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Figure 2. Qualitative examples of InfraParis RGB images and their corresponding annotations.

Figure 3. Results of a re-projection of a semantic map. Left is a
semantic image rendered by the ZED. Center is the same image in
the viewpoint of the Optris. Right is the corresponding IR image.
Please note the different field of view of the two cameras.

Figure 4. Our setup consists of a ZED Camera (blue) and an IR
Camera (red). The same point M can be written in two different
system coordinates. Please note the ZED is composed of two cam-
eras. Here we only displayed the left one as all visual tasks are, by
convention, rendered in the left system coordinate.

18% to 60% based on specific acquisitions. These discrep-

Figure 5. Pipeline to project a pixel from the ZED to the IR Cam-
era.

ancies arose due to a range of corruptions: some emerged
due to sensor malfunctions blending two images (as illus-
trated in Figure 6), while others were marred by noise and
unconventional lighting. In Appendix Section B, we pro-
vide an overview of instances where annotation ambiguities
arose and detail the strategies we employed to effectively
resolve them.

Consequently, we meticulously curated a total of 7 301
viable images, which we subsequently categorized into
three distinct groups: Train, Validation, and Test, as delin-
eated in Table 2. The objective was to assemble a diverse
and cohesive dataset with validation and test subsets that
amalgamate both rural and urban contexts. Nonetheless, the
InfraParis dataset offers an additional set of 16 142 consec-
utive frames, which can be interpreted as video data. These
video sequences prove particularly valuable for the unsu-
pervised depth task due to their potential to enhance depth
estimation accuracy.

The distribution of these 7 301 images is thoughtfully
arranged across various cities surrounding the Paris area,
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Figure 6. Example of unusable images from the capture due to
registration artifacts.

as detailed in Table 2. This geographical spread affords a
heterogeneous assortment of scenes. For instance, the core
of Paris exhibits a bustling atmosphere with towering mod-
ern structures in the 13th arrondissement juxtaposed with
Haussmannian buildings in the 5th. Meanwhile, the sub-
urbs like Orsay showcase a more organized layout of quaint
houses, while Clamart and Meudon, situated near forests,
evoke a rural ambiance. Examples of images from the
dataset are depicted in Figures 2.

In an effort to inject diversity among the different cities,
we chose to employ a subset of images for each city, ensur-
ing an absence of overlap between consecutive frames.

City Selected
images

Usable
images

Unusable
images

Percentage
of unusable
images

Tr
ai

n

Antony BLR 1035 1320 710 34.98%

Bièvres 661 848 238 21.92%

Chaville-Sevre-Viroflay 906 1199 332 21.69%

Meudon-Clamart 100 2076 452 17.88%

Orsay Saclay 631 986 276 21.87%

Paris5-6 1105 1415 2016 58.76%

SQY 99 283 164 36.69%

SQY-Montigny 782 946 319 25.22%

Trappes 499 1220 694 36.26%

Versailles 749 884 539 37.88%

Va
lid

at
io

n

Massy 40 973 589 37.71%

Palaiseau 10 436 584 57.25%

Paris13 73 114 1390 92.42%

Paris14 39 64 379 85.55%

Paris15 7 12 90 88.24%

Plateau 20 438 378 46.32%

Te
st

Paris12 190 921 2273 71.16%

Saint-Cyr 82 1361 450 24.85%

Verrières 299 646 211 24.62%

Total 7301 16142 12084 44.28%

Table 2. Database statistics for each of the cities within the
dataset.

3.5. Class labels

We provide precise pixel-level annotations for 20
classes. Our meticulous annotation effort resulted in a set
of 7 301 finely-detailed images, each adorned with layered
polygons. These annotations were accomplished in collabo-
ration with a professional annotation company. On average,

approximately 1.5 hours were invested in annotating each
image, followed by an additional 20 minutes of quality ver-
ification conducted by our team. The annotation team was
directed to designate instances as ”unlabeled” in cases of
uncertainty and to document any new, previously-unlabeled
instance types encountered during the process, in order to
maintain comprehensive records.

Our annotation schema comprises 20 distinct visual
classes, systematically organized into eight overarching cat-
egories: flat, construction, nature, vehicle, sky, object, hu-
man, and void. Notably, the “road” class encompasses sec-
tions of the ground typically traversed by vehicles, includ-
ing all lanes, directions, and streets, complete with road
markings. Furthermore, areas delimited solely by road
markings, such as bicycle lanes, roundabout lanes, and
parking spaces, are also classified as “road”. Curbs, how-
ever, are excluded from this label.

The “Sidewalk” class encapsulates ground segments des-
ignated for pedestrians or cyclists, demarcated from the
road by obstacles like curbs or poles, rather than mere mark-
ings. Often elevated relative to the road, sidewalks are typi-
cally situated along road sides. This category encompasses
pedestrian zones, walkable parts of traffic islands, and fea-
tures that create separation from the road.

The “person” class includes individuals walking, stand-
ing, or sitting on surfaces such as the ground, benches, or
chairs. It also incorporates toddlers, people pushing bicy-
cles, or those standing adjacent to bicycles with both legs
on one side. Items carried by a person, like backpacks, are
part of this class, but objects in contact with the ground, like
trolleys, are not included.

The “rider” class designates a human employing a de-
vice to traverse a distance. This category encompasses rid-
ers/drivers of bicycles, motorbikes, scooters, skateboards,
horses, rollerblades, wheelchairs, road cleaning cars, and
open-top cars. Notably, humans within cars are encom-
passed by the “car” label, as the label does not account for
holes or openings.

The “car” class encompasses vehicles such as cars, jeeps,
SUVs, vans with continuous body shapes, caravans, and ex-
cludes other types of trailers. The “truck” class encom-
passes trucks, box trucks, and pickup trucks, along with
their associated trailers. Notably, the back portion or load-
ing area is physically separated from the driving compart-
ment. The “bus” class pertains to vehicles designed for the
transportation of 9 or more individuals, serving either as
public transportation or for long-distance travel.

The “on rails” class pertains to vehicles operating on
tracks, including trams and trains. The “motorcycle and bi-
cycle” class covers motorbikes, mopeds, and scooters with-
out riders (who are referred to as “riders”, as mentioned
above), as well as bicycles without riders.

The “building” class encompasses structures such as
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Classe
names

# images with
the annotations

percent of pixels with
the annotations

Road 7326 9,75 %

Sidewalk 7102 3,38 %

Building 6917 12,69 %

Wall 4847 1,44 %

Fence 5992 2,29 %

Pole 7292 0,77 %

Traffic light 3231 0,08 %

Traffic sign 5479 0,18 %

Vegetation 7080 13,04 %

Terrain 6145 3,29 %

Sky 7260 10,10 %

Person 3755 0,16 %

Rider 7174 0,03 %

Car 6906 3,42 %

Truck 874 0,12 %

Bus 686 0,13%

Train 20 0,00%

Motorcycle 1669 0,10 %

Bicycle 1572 0,07%

Unlabeled 7301 40,89 %

Table 3. Overview of annotated classes

buildings, skyscrapers, houses, bus stop buildings, garages,
and carports. Even if a building features glass walls through
which visibility is possible, the entire structure is catego-
rized as a building. This class also includes scaffolding af-
fixed to buildings. On the other hand, the “individual stand-
ing wall” class pertains to standalone walls that are not part
of a larger building.

Table 3 summarizes the number of images and pixels
corresponding to each class. Only the class “person” is an-
notated for the object detection task.

4. Experimental Results
4.1. Semantic segmentation

In this section, we present a benchmark for semantic seg-
mentation using reference models, specifically SegFormer
[53] and DeepLab v3+ [8]. In Supplementary materials Sec-
tion A, we provide the detailed hyperparameters for these
experiments.

The outcomes of segmentation Deep Neural Networks
(DNNs) trained on the InfraParis (RGB) dataset and tested
on both InfraParis and Cityscapes [10] are summarized in
Table 4. Additionally, we trained the DNNs on Cityscapes
and evaluated them on both Cityscapes and InfraParis. No-
tably, the two datasets exhibit comparable mean Intersec-
tion over Union (mIoU) values, indicating similar behavior.

Furthermore, Table 4 illustrates the outcomes of training
on the infrared images of InfraParis and testing on the same
modality, emphasizing that the results are notably lower.

Training
set Models

mIoU ↑
Eval set 1 Eval set 2

Cityscapes InfraParis

C
ity

sc
ap

es

DeepLabV3+MobileNet 72.767 51.926

DeepLabV3+Resnet101 77.122 55.815

Segformer B0 72.874 54.630

Segformer B1 75.068 57.229

Segformer B2 78.972 59.859

Segformer B3 80.201 60.784

Segformer B4 80.008 62.463

Segformer B5 80.994 62.995

In
fr

aP
ar

is
R

G
B

DeepLabV3+MobileNet 47.685 65.651

DeepLabV3+Resnet101 53.062 69.040

Segformer B0 55.051 64.160

Segformer B1 58.369 68.006

Segformer B2 63.589 69.852

Segformer B3 61.775 68.803

Segformer B4 63.583 70.333

Segformer B5 63.853 70.595

In
fr

aP
ar

is
T

he
rm

al

DeepLabV3+MobileNet 31.158

DeepLabV3+Resnet101 34.445

Segformer B0 31.032

Segformer B1 35.313

Segformer B2 35.313

Segformer B3 36.623

Segformer B4 36.708

Segformer B5 36.161

Table 4. Comparative results for semantic segmentation task.
It is important to emphasize that within the InfraParis dataset,
training and testing occur on the same type of images—whether
they are RGB images or thermal infrared images.

This observation is intriguing as it suggests that infrared
images alone might not be sufficient for effective semantic
segmentation.

4.2. Supervised monocular depth estimation

We here provide a benchmark for supervised monocular
depth estimation. The baseline model is established using
NeWCRFs [55], which employs a Swin-Transformer [31]
as the encoder. We conduct the following experiments to
provide the benchmark as well as show the versatility of the
proposed dataset.

In the first experiment, the model is trained on the Infra-
Paris training and validation set, then evaluated on the Infra-
Paris test set, Cityscapes validation set [10], and KITTI [17]
eigen-spilt [13] validation set, respectively. The second ex-
periment was performed in the opposite way, training the
model on the KITTI dataset and evaluating the performance
on the InfraParis test set and Cityscapes. Note that since
the depth value range acquired by the sensor is 0-40 m, our
evaluation on the KITTI and Cityscapes datasets follows the
same range for a reasonable comparison. In the third exper-
iment, we train the NeWCRFs model to fit thermal images
to the depth values for the corresponding areas. All training
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Training set Eval set Abs Rel ↓ Sqr Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

KITTI
KITTI 0.049 0.095 1.311 0.071 0.982 0.998 1.000
InfraParis 0.388 4.486 10.543 0.747 0.339 0.565 0.677
Cityscapes 0.328 4.324 10.788 0.709 0.481 0.609 0.684

InfraParis
RGB

KITTI 0.267 1.674 4.868 0.267 0.573 0.887 0.986
InfraParis 0.203 0.860 3.638 0.234 0.680 0.945 0.987
Cityscapes 0.324 2.448 7.537 0.469 0.244 0.553 0.862

InfraParis
Thermal InfraParis 0.152 0.530 2.637 0.183 0.812 0.969 0.993

Table 5. Comparative results for supervised monocular depth estimation. The evaluation depth range is 0-40 meters.

Model AP AP50 AP75 APs APm APl

Faster R-CNN 24.825 44.363 23.963 7.148 36.774 64.205
Mask R-CNN 29.935 52.685 26.99 10.791 41.285 65.685

Table 6. Comparative results for object detection. Models were
pretrained on COCO and then finetuned on InfraParis. The thresh-
old score for the region of interests was set to 0.7.

settings are the same as those used for NeWCRFs training
on KITTI, except that we use 4 as the batch size on Infra-
Paris RGB images training. The evaluation metrics follow
those commonly used in depth maps prediction literature
[13, 55].

The benchmark is presented in Table 5. We can see that
the model trained on KITTI cannot directly transfer well to
the Cityscapes and InfraParis. Yet, the one trained on In-
fraParis can provide better performance when it is directly
evaluated on the other datasets. Since monocular depth es-
timation is an ill-posed problem and heavily depends on the
training dataset, this benchmark shows the good diversity of
the proposed dataset. The model trained on InfraParis ther-
mal images shows even better results. Since the resolution
of the thermal data is smaller, we consider that the scene has
lower diversity in this case, and one cannot directly com-
pare this result to the previous ones. We take this result as
a benchmark of the thermal-to-depth estimation task of the
proposed dataset.

4.3. Object detection

In this section, we present a benchmark for object detec-
tion using Faster R-CNN [38] and Mask R-CNN [21] archi-
tectures with ResNet50 [22] as the backbone. Supplemen-
tary materials Section A provides detailed hyperparameters.
The goal is to detect the class Person. While only one class
is considered in our study, it remains a challenging issue
to take into account the small number of samples available
for finetuning (3721 useful images with at least one person
annotated). We used the library Detectron2 [52] to do our
experiments. Models were initialized with the available pre-
trained weights on COCO [29], then finetuned on the Infra-
Paris training set, and finally evaluated on the InfraParis test
set. Results are summarized in Table 6.

5. Conclusion
In conclusion, the InfraParis dataset presented in this pa-

per stands as a significant contribution to the field of au-
tonomous driving research. Notably, it introduces a novel
multi-modal and multi-task dataset that comprises a total
of 7 301 meticulously annotated multimodal pieces of data.
One of the key distinguishing features of this dataset lies in
its uniqueness; it is one of the few datasets available that en-
compasses both multiple tasks and modalities on such a sub-
stantial scale. The dataset’s value is further amplified by its
potential to be seamlessly integrated with existing standard
autonomous driving datasets such as Cityscapes or KITTI.
By offering an extensive range of data spanning multiple
tasks, including semantic segmentation, object detection,
and depth prediction, as well as modalities like RGB and
infrared, the InfraParis dataset enables comprehensive test-
ing and validation of multi-modal models.

The diverse and challenging scenarios encapsulated
within the dataset also make it particularly compelling.
The convergence of construction activities related to the
Olympic Games and the dynamics introduced by the
COVID-19 pandemic have generated a unique amalgama-
tion of scenes that are typically absent from traditional
datasets. The dataset thereby empowers researchers to ex-
plore new and unconventional scenarios, shedding light on
previously unexplored sources of uncertainty and variabil-
ity.

In essence, the InfraParis dataset bears witness to the
progress made in improving the capabilities of autonomous
driving systems. By offering a substantial and versatile col-
lection of multi-modal data with multi-task annotations, the
dataset not only enhances the training and evaluation of con-
temporary models but also paves the way for innovations
that can contribute to safer and more reliable autonomous
vehicles in the future.

Acknowledgment : This work was performed us-
ing HPC resources from GENCI-IDRIS (Grant 2021 -
AD011011970R1) and (Grant 2022 - AD011011970R2).
We gratefully acknowledge the support AID Project ACo-
CaTherm which supported the creation of the dataset.

82980



References
[1] Flir thermal dataset. https://www.flir.com/

oem/adas/adas-dataset-form/. Accessed:
2021-08-03. 3

[2] Thermal Dogs and People Dataset. https:
/ / public . roboflow . com / object -
detection/thermal- dogs- and- people.
Accessed: 2021-08-03. 3

[3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. Flamingo: a visual language model
for few-shot learning. NeurIPS, 2022. 2

[4] Hermann Blum, Paul-Edouard Sarlin, Juan Nieto,
Roland Siegwart, and Cesar Cadena. Fishyscapes:
A benchmark for safe semantic segmentation in au-
tonomous driving. In ICCV Workshops, 2019. 2

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh
Vora, Venice Erin Liong, Qiang Xu, Anush Krish-
nan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuScenes: A multimodal dataset for autonomous driv-
ing. In CVPR, 2020. 2

[6] Robin Chan, Krzysztof Lis, Svenja Uhlemeyer, Her-
mann Blum, Sina Honari, Roland Siegwart, Mathieu
Salzmann, Pascal Fua, and Matthias Rottmann. Seg-
mentmeifyoucan: A benchmark for anomaly segmen-
tation. In NeurIPS Datasets and Benchmarks, 2021.
2

[7] Ming-Fang Chang, John Lambert, Patsorn Sangk-
loy, Jagjeet Singh, Slawomir Bak, Andrew Hartnett,
De Wang, Peter Carr, Simon Lucey, Deva Ramanan,
et al. Argoverse: 3d tracking and forecasting with rich
maps. In CVPR, 2019. 2

[8] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image
segmentation. In ECCV, 2018. 7

[9] Yukyung Choi, Namil Kim, Soonmin Hwang, Kibaek
Park, Jae Shin Yoon, Kyounghwan An, and In So
Kweon. Kaist multi-spectral day/night data set for
autonomous and assisted driving. IEEE Transactions
on Intelligent Transportation Systems, 19(3):934–948,
2018. 3

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene under-
standing. In CVPR, 2016. 1, 2, 3, 7

[11] Dengxin Dai, Christos Sakaridis, Simon Hecker, and
Luc Van Gool. Curriculum model adaptation with syn-

thetic and real data for semantic foggy scene under-
standing. IJCV, 2020. 2

[12] Dengxin Dai and Luc Van Gool. Dark model adap-
tation: Semantic image segmentation from daytime to
nighttime. In ITSC, 2018. 2

[13] David Eigen, Christian Puhrsch, and Rob Fergus.
Depth map prediction from a single image using a
multi-scale deep network. NeurIPS, 2014. 7, 8

[14] Muhammad Ali Farooq, Waseem Shariff, Mehdi Se-
fidgar Dilmaghani, Wang Yao, Moazam Soomro, and
Peter Corcoran. Decisive data using multi-modality
optical sensors for advanced vehicular systems, 2023.
1

[15] Gianni Franchi, Xuanlong Yu, Andrei Bursuc, An-
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