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Figure 1. Our generative models learn to synthesize skeleton-based human actions using few samples of the target domain. We exploit a
large public dataset to tackle the overfitting problem. Our cross-domain and entropy regularization guide the model to having variations in
the generated actions. In this figure, stretching actions are generated using only 10 samples as the target domain data in adversarial training.

Abstract

We propose few-shot generative models of skeleton-
based human actions on limited samples of the target do-
main. We exploit large public datasets as a source of motion
variations by introducing novel cross-domain and entropy
regularization losses that effectively transfer the diversity
of the motions contained in the source to the target domain.
First, target samples are divided into patches, which are a
set of short motion clips. For each patch, we search for a
reference motion from the source dataset that is similar to
the patch. Next, in adversarial training, our cross-domain
regularization encourages the generated sequences to re-
semble the reference motion at the patch level. Entropy reg-
ularization prevents mode collapse by forcing the generator
to follow the distribution of the source dataset. Experiments
are performed on public datasets where we utilize three ac-

tion classes from NTU RGB+D 120 as the target and all
data of 60 action classes in NTU RGB+D as the source.
Ten samples for each target action class, 30 in total, are
selected as target data. The results demonstrate that data
augmented with the proposed method improve recognition
accuracy by 28 % using a ST-GCN classifier.

1. Introduction
Human action recognition (HAR) has been in the midst

of rapid advancement, benefitting from the progress of ar-
tificial intelligence such as deep learning. HAR involves
many applications such as human-behavior monitoring,
human-computer interaction in different areas of education,
entertainment, medical, and sports.

Recognizing human actions from a video (i.e., a se-
quence of RGB images) has become an area of particular
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interest. Convolutional neural networks (CNNs) became
widely used for vision-based HAR. Tran et al. [41] pro-
posed a spatio-temporal convolution network called a 3D
CNN. 3D CNNs were further extended using other image
recognition techniques such as Inception-v1 [3] or ResNet
[16], and by training with large datasets, recognition has im-
proved greatly. A video of a person contains a large amount
of information on his or her body positioning; thus, high
accuracy recognition should be possible with video-based
HAR. However, training deep networks with large datasets
tends to be computationally intensive due to the data size of
videos. In addition, changes in illumination and occlusion
reduce the robustness of recognition.

Skeleton-based models are being increasingly utilized
for HAR [31, 47]. Skeletons are expressed as a sequence
of two- or three-dimensional coordinates of the joints in the
human body. Skeletons are a compact but complete repre-
sentation of human poses; thus, minimal computation is re-
quired to process skeleton data without sacrificing accuracy.
Spatial temporal graph convolutional network GCN (ST-
GCN) [47] is the most well-known skeleton-based model
for HAR, which made it possible to apply deep learning to
skeletons by extending a GCN so as to model temporal dy-
namics of human actions. Additionally, the emergence of
pose estimation methods from RGB images [2, 10, 21, 38]
and related preprocessing methods [15, 25] have enhanced
the applicability of skeleton-based models by enabling cal-
culation of skeletons from any videos without special equip-
ment such as depth cameras or motion capture devices.

Few-shot scenarios are often the case when training
HAR models; this is considered a major obstacle to prac-
tical use because collecting human action data and annotat-
ing labels correctly are time consuming and labor intensive.
Researchers have made significant efforts to disclose a va-
riety of large public datasets: daily behaviors [9,17,26,36],
dancing [4], sports [37], gait [20], and work-specific motion
such as logistics [29] and nurse care [23]. But what if you
want to build a model applicable to a target domain that is
not covered the above datasets? In many cases, domains of
interest have a very limited collection of data, or it is neces-
sary to obtain training and validation data by yourself where
you may want to begin with just a few samples. However,
small datasets potentially do not cover the entire distribu-
tion of the target domain, which will result in a reduction of
recognition accuracy, known as overfitting.

Thus, augmenting few-shot training samples is funda-
mental in HAR. Some studies have utilized model-based
approaches where they implement physical simulators to
synthesize physically plausible human motion [1, 18, 34].
Cabrera et al. proposed a one-shot augmentation of hand
gestures where arm movements are simulated as a set of in-
verse kinematic solutions with the constraints of minimum
jerk and energy expenditure. Jiang et al. [18] considered

musculotendon characteristics of the body to produce re-
alistic behaviors. The difficulty with the model-based ap-
proaches is scalability and versatility because they rely on
the hand-crafted formulation of the human body using do-
main knowledge.

In our work, we will explore generative approaches,
which automatically find the patterns of human motion vari-
ation from training data. The limitation of state-of-the-art
generative models for human action synthesis [6, 8, 11, 33,
40, 42, 46] is that they are validated with a large number of
training samples. In few-shot scenarios, they suffer from
overfitting problem resulting in generated samples of low
quality. Hence, we aim at realizing a method to train gener-
ative models with limited target samples.

The proposed method leverages a large public dataset as
a source domain and transfer the information on diversity
of motion from source to target. The contributions of our
study are as follows:

• The first few-shot generative models of human actions,
to the best of our knowledge

• Novel cross-domain and entropy regularization losses
from exploiting the variation within large public
datasets

• Improved recognition accuracy using data augmented
by the proposed method

2. Related work
Approaches for human action synthesis include video-

and skeleton-based approaches, analogous to HAR. As pre-
viously mentioned, our approach is skeleton-based, though
video generation is also an important research field be-
cause it has inspired skeleton-based methods. We begin
by reviewing the video-based generative models and dis-
cussing studies related to few-shot generation, followed by
skeleton-based generative models.

2.1. Video-based generative models

There has been a growing interest in using deep net-
works for generative modeling of visual data, particularly
images and videos. Prior studies have been focused on
video prediction that predicts future frames given some of
the previous frames. Kalchbrenner et al. [19] proposed an
encoder-decoder architecture where CNN encoders com-
pute the temporal dependencies of the video tensor, and the
PixelCNN decoder computes dependencies along the space
and color dimensions. To generate new sequences rather
than predict them, subsequent studies have used adversarial
approaches. Saito et al. [35] proposed a two-phase model
consisting of temporal and image generators. Tulyakov et
al. [43] modeled the latent spaces for content and motion
separately from which video frames are synthesized. Clark
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et al. [5] introduced two discriminators for spatial and tem-
poral domains. Sun et al. [39] utilized two parallel gener-
ators that process content and motion individually. Gupta
et al. [14] designed a recurrent-based generator and CNN-
based discriminator.

2.2. Few-shot generation approaches

The purpose of few-shot generation is to successfully
train generative models while avoiding overfitting. Most
studies use an adaptation strategy, where a pre-trained
model is guided to the target domain with a small number
of real samples while inheriting the diversity of the source
domain. Wang et al. [45] employed a transfer learning ap-
proach to fine-tune pre-trained GANs with as few as 1000
target images. Noguchi and Harada [30] proposed another
transfer method where only scale and shift parameters in
the generator are updated using –100 target images. Liu
et al. [27] connected a detector and a GAN to explicitly im-
prove the produced images for the downstream object detec-
tion task. Wang et al. [44] introduced the process of mining
of GANs where subregions of the pre-trained generators are
identified to generate samples close to the target domain.
Mo et al. [28] showed that the freezing lower layers of the
discriminator improved the effectiveness of fine-tuning. Li
et al. [24] demonstrated image generation with less than
10 samples by regularizing the changes of the weights at
each layer of the network. Subsequent studies have uti-
lized cross-domain adversarial learning. Ojha et al. [32]
used only ten training samples for image generation by in-
troducing cross-domain consistency. Kwon and Ye [22] im-
proved [32] by exploiting the CLIP space to achieve one-
shot adaptation.

2.3. Skeleton-based generative models

Previous studies mostly involved autoregressive models,
such as RNN [8,11] and LSTM [42], which generate frames
one by one. Subsequent studies have shown that generat-
ing entire sequences from latent vectors improves the qual-
ity of generated motion by capturing the long-term tempo-
ral structure using generative adversarial networks (GANs).
Yan et al. [46] proposed a CNN-based model where the
skeleton sequence is generated using latent vectors from
a Gaussian process. Degardin et al. [6] proposed Kinetic-
GAN, which uses ST-GCN to produce the generated sam-
ples from the latent space representation of a noise vector.
Petrovich et al. [33] designed a Transformer-based architec-
ture. Tevet et al. [40] devised a diffusion-based model.

Historically, most of these studies emerged from the field
of computer graphics, so data augmentation is not necessar-
ily their main research interest. However, some studies val-
idated the effectiveness of generative models for data aug-
mentation in HAR. Tu et al. [42] reported that the HAR ac-
curacy increased by 4.2% when their augmented data was

used to train a recognition model. Petrovich et al. [33]
found that the augmented training is especially effective on
low-data regimes. However, these methods are designed for
scenarios that contain thousands of training motion sam-
ples.

3. Proposed Method
Our approach is to extend an existing generative model

by introducing a novel regularization that is effective in
few-shot scenarios. One of the state-of-the-art models,
Kinetic-GAN [6], is used as a generative model in this pa-
per. Thus, we start with the problem formulation on the ba-
sis of Kinetic-GAN and then describe the objective function
using our method. WGAN-GP [12] is used in [6], which is
expressed as:

Ladv(G,D) = D(G(z))−D(x) (1)

Lgp(D) = (∥∇x̂D(x̂)∥ − 1)2 (2)

Ez∼pz(z),x∼Dt,x̂∼Px̂
=

argmin
G

max
D

Ladv(G,D) + λgpLgp(D) (3)

where Dt is the target dataset, and Px̂ is sampled uniformly
along straight lines between pairs of points sampled from
the target dataset Dt and generator distribution. The loss
weight λgp for gradient penalty is set to 10 in all experi-
ments.

Our goal is to successfully train a generator G on a small
target dataset Dt, given a large source dataset Ds which is
different from the target domain. With Dt only, the training
samples can be memorized by a discriminator. This causes
overfitting where the discriminator forces the generator to
make the samples from Dt.

The key idea is to make the generator use the source
dataset as a hint for valid motion variations. We hypothesize
that, if the target motion is similar to the motion contained
in the source dataset (we call this motion the reference mo-
tion), then the variations in the target motion should also be
similar to that of the reference motion. We will handle tar-
get and source motion at the patch level, i.e., short motion
clips, and find the reference motion patches for each target
motion patch.

Before explaining the modified objective function, we
will define the reference motion patches as illustrated in
Fig. 2. For the k-th patch motion of the target samples,
we first calculate p∗(k) as a nearest neighbor of the source
patch motion:

p∗(k) = argmax
p∈{W (Ds(i),j)}ij

sim{W (Dt, k),p} (4)
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Figure 2. Reference motion patches are defined as a set of source motion patches from action class i that are similar to the target motion.
Searching reference motion patches Pk for k-th target motion patch W (Dt, k) is to find action class i and patch position j within the
source dataset where the averaged motion W (Ds(i), j) is the nearest neighbor p∗(k).

where Dt is the mean target motion and Ds(i) is the mean
source motion for the action class i, which are also formu-
lated as Dt = Ext∼Dt

(xt) and Ds(i) = Exs∼Ds(i)(xs),
respectively. Given the motion sample x = {x1, x2, · · · },
the sampling function W (x, k) = {xm|xm ∈ x, k ≤ m <
k +K} enumerates a subset of x starting at the k-th frame
with sliding window length K. sim represents the cosine
similarity. Then the reference motion patches for the k-th
patch of the target sample are defined as follows:

Pk = {W (x, j)|x ∈ Ds(i)}
for i, j s.t.p∗(k) = W (Ds(i), j) (5)

The proposed method transfers diversity from Pk, a sub-
space of the source domain conditioned on the target sam-
ples, while the existing method [32] transfers from an entire
space. For example, upper body-dominant samples are se-
lected as Pk when the target samples are also upper body-
dominant.

By transferring the variation in the reference motion
patches to the target domain, overfitting should be pre-
vented, and learning should be feasible with few target sam-
ples. To carry this out in GAN training, we propose two reg-
ularization terms in the loss function. Cross-domain regu-
larization guides the generator to remain consistent with the
reference motions at the patch level. Entropy regularization
encourages the generator to capture the distribution of the
reference motions to enhance diversity. The concept of the
two regularizations is illustrated in Fig. 3. Note that Ojha et
al. [32] also employ patch-based loss; however, they apply
it to the discriminator while we use it for the generator.

3.1. Cross-domain regularization

We encourage the generated samples to resemble the
reference motion at the patch level. We formulate this as

Generated data

Action class #i

Source dataset

� � −

Reference motion 
patches

� � −

Cosine distance matrix

Distribution of nearest-neighbor 
reference motion patches

Figure 3. Cross-domain regularization Lcd is defined as the mean
of minimum values along each row of the cosine distance matrix,
which correspond to the nearest-neighbors within the reference
motion patches for each noise vector zn. Entropy regularization
Lentropy is defined as the entropy for the normalized frequency of
the nearest-neighbor reference motion patches along each column
of the cosine distance matrix. These two losses are calculated with
reference motion patches sampled from action class i, as shown in
Eq. (5).

the distance of nearest-neighbor reference motion patches.
Given the generated samples from a batch of B noise vec-
tors {zn}B−1

0 , the loss function is expressed as:

Lcd(G) =

∑
k minp∈Pk

{1− sim(W (G(zn), k),p)}
N −K + 1

(6)
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As the generated motion becomes closer to the reference
motion at the patch level, the loss become smaller. This
causes the generator to be guided by the source dataset.

3.2. Entropy regularization

We encourage the generated samples to follow the distri-
bution of reference motion patches. With the cross-domain
regularization only, the generator may fall into using a small
subset of reference motion patches. This results in limited
variations of the target samples, i.e., mode collapse. We
formulate the variability of the target samples as entropy:

Lentropy(G) =

∑
k e

−H(Pk;G)

N −K + 1
(7)

H(Pk;G) = −
∑
p∈Pk

q(p;G) · ln q(p;G) (8)

where q(xi) is the distribution of nearest-neighbor reference
motion patches, which can be expressed as:

q(p;G) = |Ω(p;G)| /B (9)

Ω(p;G) =
{
n|p = argmax

p̂∈Pk

sim (W (G(zn), k) , p̂)
}
(10)

When entropy H is high, it means target samples have
different nearest-neighbor reference motion patches. Con-
sequently, a high H value results in small loss, which cor-
responds to capturing the distribution of the reference mo-
tion in the generated samples. This approach is similar to
Prescribed GAN [7], where the distribution of the target do-
main is considered, while ours considers that of the source
domain.

3.3. Final objective

Our final objective consists of these three terms: Ladv for
the appearance of the target, Lcd, which directly leverages
the diversity contained in the source dataset, and Lentropy,
which prevents mode collapse:

G = Ez∼pz(z),x∼Dt,x̂∼Px̂

{
argmin

G
max
D

Ladv(G,D)

+ λgpLgp(D)
}
+λcdLcd(G) + λentropyLentropy(G)

(11)

We determined the optimal loss weight by grid search, and
used loss weight λcd = 1.0, λentropy = 1.5 in all experi-
ments except for the ablation study.

4. Experiments
In this section, we evaluate our method by training ST-

GCN as a standard action recognition model using our gen-
erated sequences.

4.1. Dataset

NTU RGB+D [36] This dataset contains RGB videos,
depth videos, and skeleton data calculated by Kinect for 60
action classes. The total number of samples is 56,880. The
dataset is split into training and validation data on the basis
of the authors’ definition of “cross-subject.” We utilize all
data of 60 action classes (A001 – A060) of the training data
as the source dataset.

NTU120 RGB+D [26] This dataset is a superset of NTU
RGB+D where additional 60 action classes (A061 – A120)
are collected, altogether amounting to 120 action classes.
The total number of samples is 114,480. The dataset is split
into training and validation data on the basis of the authors’
definition of “cross-subject.” We utilize three characterist-
sic action classes from the training data that include upper
body-dominant, lower body-dominant, and fast movements
— Run on the spot (A099), Side kick (A102), and Stretch
oneself (A104) — as the target dataset. The validation data
for these three action classes is used in accuracy evaluation
of the ST-GCN classifier (Sec. 4.3).

Preprocessing Due to the inaccuracy of 3D joint anno-
tations in the original NTU RGB+D dataset, we re-estimate
the 3D joint rotations extracted from only RGB videos us-
ing the VIBE method [21].

4.2. Architecture and training

We configure the discriminator and generator networks
on the basis of Kinetic-GAN with two exceptions. One of
them is that, for simplification of implementation, we dis-
able the action conditioning of Kinetic-GAN by removing
the embedded class representation y from its mapping net-
work. Instead, we train individual networks for each action
class. The second exception is that we use the rotation rep-
resentation for datasets, while the original Kinetic-GAN is
trained with the position of each joint calculated by Kinect
from depth images. We use VIBE [21] to obtain the rotation
representation of each joint using the RGB images.

Networks are trained using the Adam optimizer with
learning rate 0.0002 and weight decay parameters b1 =
0.5 and b2 = 0.999. For the target samples, we manually
checked and excluded samples with estimation errors of 3D
joint rotations by VIBE, then picked ten samples for each
action class A099, A102, and A104. These 30 samples are
then sampled randomly to compose 38400 samples to be
used as training data. Training was performed with a batch
size of 32 for 10 epochs using a single NVIDIA Quadro
RTX 5000 GPU.

4.3. Data augmentation for ST-GCN classifier

We validate our method by applying it to data augmen-
tation for action recognition models.
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4.3.1 Recognition model

We use a standard model, ST-GCN [47], for action recogni-
tion. We train the model with the concatenated data of the
real and generated samples. The real samples are identical
to that used in Sec. 4.2. In data augmentation, A total of
1149 samples are generated (i.e., 383 samples for each ac-
tion class), which is as big as the original real samples. For
the training parameters, we follow their implementation on
GitHub1 with learning rate 0.1, weight decay 0.0001, mo-
mentum 0.9, batch size 64, and number of epochs 80. The
tests are performed on the validation data three times with
different random seeds, and the median of resultant accu-
racy is reported.

4.3.2 Comparison methods

The state-of-the-art methods Kinetic-GAN [6] and ACTOR
[33] are compared with our method. Since the problem of
few-shot human action synthesis is new and we could not
find any existing few-shot learning methods, these methods
are not designed for few-shot scenarios and do not have the
capability for cross-domain learning. Therefore, these mod-
els are trained using target samples only.

We additionally perform an ablation study to investigate
the effect of the proposed loss functions: Cross-domain
only (λentropy is set to zero) and Entropy only (λcd is set to
0). Note that Kinetic-GAN can be considered as a part of the
ablation study since it is equivalent to setting the weight of
both regularization terms to zero (i.e., λcd = λentropy = 0)
in our method.

4.3.3 Results

Tab. 1 summarizes the results. When trained with only real
training data, the top-1 accuracy is 58.4% (w/o augmenta-
tion). All the results with data augmentation show better
accuracy. This indicates that when there are few real sam-
ples, ST-GCN suffers from overfitting, which causes low
accuracy; however, the accuracy improves when generated
samples are added.

The best accuracy of 86.4 % (Ours) is obtained with the
proposed method. This confirms that the proposed method
can successfully augment motion data to improve recogni-
tion accuracy even in few-shot scenarios. Ablation results
suggest that both the cross-domain and entropy losses are
essential for effective augmentation. We will analyse the
role of these losses later in Sec. 4.4.1.

We further investigate how the effectiveness of data aug-
mentation changes with the number of real samples. In
Fig. 4, the dotted red line indicates the top-1 accuracy with-
out augmentation, i.e., real data only. The accuracy is 58.4
% when the amount of real data is 30, as already shown

1https://github.com/open-mmlab/mmskeleton

Table 1. Data augmentation: Action recognition with the ST-
GCN model improves most when using the samples generated by
the proposed method (Ours), compared to state-of-the-art methods
(ACTOR [33] and Kinetic-GAN [6]). Application of only one of
cross-domain or entropy regularization degrades the the quality of
augmentation. The number of real samples was 30 (i.e., 10 sam-
ples per action class), and the number of generated samples was
1149 (i.e., 383 samples per action class).

Top-1 accuracy (%) ↑
w/o augmentation 58.4
ACTOR 73.6
Kinetic-GAN 81.7
Ours (Cross-domain only) 70.9
Ours (Entropy only) 72.1
Ours 86.4
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Figure 4. Effect of data augmentation is prominent with few real
samples, while the accuracy of both w/ and w/o augmentation ap-
proaches asymptotically to the same value with larger number of
real data.

in Tab. 1. As the number of real data increases, the accu-
racy also increases. When 150 samples (i.e., 50 samples
per action class) are used, the accuracy improves to 85 %.
With more than 300 samples (i.e., 100 samples per action
class), the accuracy, 95%, is almost at the maximum. This
demonstrates that ST-GCN recognition models are poorly
trained in the few-shot scenarios, which can be attributed
to overfitting. However, augmented learning with the pro-
posed method lessen the accuracy reduction. The solid red
line indicates the accuracy with augmentation where real
data and 1149 generated samples are used for training. Even
when only 30 real samples are used, augmentation is effec-
tive and the accuracy increases by 28 %. The variability of
the generated samples may have prevented overfitting. The
difference in accuracy between with and without augmenta-
tion decreases as the number of real data increases. Hence,
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Table 2. Diversity evaluation: Diversity measures the overall vari-
ance across all action classes. Multimodality measures the vari-
ance within each action class. Refer to [13] for the difinition.

Diversity Multimodality

w/o augmentation 29.7 24.9
Kinetic-GAN 27.6 23.9
Ours (Cross-domain only) 29.9 24.7
Ours (Entropy only) 30.1 25.4
Ours 29.7 25.8

our method can be considered more effective in scenarios
with few data.

4.4. Diversity evaluation

4.4.1 Quantitative analysis

We examine the diversity and multimodality, which are em-
ployed in [13], for the real and augmented training data used
in Sec. 4.3. For both metrics, the motion sample x itself is
used as a feature vector. In Tab. 2, we observe the high-
est multimodality for our method. The highest accuracy
of the proposed method (in Tab. 1) should be attributed to
this. The ablation results suggest that the proposed cross-
domain and entropy losses successfully transfer the vari-
ation of source domain to the generated samples. With
only cross-domain loss, less diversity is observed. With
only entropy loss, greater diversity is obtained. However,
the reference motion is not taken into account without the
cross-domain loss, which prevents accuracy improvement.
Our method combines both losses, resulting in generations
which can contribute to effective augmentation.

4.4.2 Qualitative analysis

We qualitatively analyze the generated samples to demon-
strate that our method is capable of injecting both spatial
and temporal diversity. Fig. 5 shows the resulting 25 gen-
erated samples for each action class Run on the spot, Side
kick, and Stretch oneself. Our method successfully synthe-
sizes different ways to produce a given action. They inherit
the motion from real samples of the target domain while
also maintaining spatial diversity. We found that the results
for Stretch oneself were more varied; this may have been
because most of the actions in the source dataset involve
the upper body, which is also the case for stretching. Fig. 6
shows the skeletal sequences of real and generated samples
for each action, representing both the temporal variation and
plausibility of the output.

It should be noted that the generated samples are not
completely different each other. This, however, does not
necessarily mean the limitation of our method. Because the
goal of our model is to serve as a data augmentation method

Table 3. Top-3 source action classes corresponding to the target
action class. The rankings are ordered by the percentage of ac-
tion classes to which the reference motion patches used for cross-
domain learning belong.

Target action class
Run on the spot Side kick Strech oneself

1 Touch head Drop Cheer up(headache)

2 Take off Kicking Throwjacket something

3 Jump up Rub two hands Taking
together a selfie

for HAR, the generated samples should follow the varia-
tion of the target domain. In this context, the motion that
is likely to appear in the target domain should be generated
more frequently.

4.4.3 Target ↔ source correspondence

The diversity transferred to the target domain is based on
the distribution of reference motion patches drawn from a
certain action class of the source dataset. Tab. 3 lists the
correspondence between target and source action classes in
our experiments. Note that there exist multiple source ac-
tion classes in the list, because a source motion is searched
individually for each patch of the mean target motion di-
vided by a sliding window, as shown in Fig. 2. As in the
“Side kick” ↔ “Kicking something” or “Strech oneself” ↔
“Cheer up”, we can observe intuitive mapping examples.
On the other hand, in somes cases irrelevant actions appear
to be selected, such as “Run on the spot” ↔ “Touch head”
or “Side kick” ↔ “Drop”. This may be due to the paucity of
actions involving lower body movements in NTU RGB+D,
suggesting the need for sufficient diversity in the source data
set. Also, the current action classes, which follow the def-
inition of NTU RGB+D, may not be optimal for effective
cross-domain learning. Redefining optimal action classes
could be an interesting prospect for future research.

5. Conclusion
We presented a few-shot learning method for skeleton-

based motion synthesis. To our knowledge, our method is
the first for learning generative models of motion with few
samples. It is based on cross-domain regularization and en-
tropy regularization, which are effective for transferring the
diversity of the large dataset of the source domain to the
target domain. Experimental results demonstrated that the
generated samples had high diversity even with very limited
training samples, and they could be used as augmented data
to train action recognition models.
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(a) Run on the spot (b) Side kick (c) Stretch oneself

Figure 5. (Top) Real samples and (bottom) 10-shot human action synthesis results. We generated 25 different samples for each action
and visualized one frame from the skeletal sequences of these samples. We selected the same frame across the same action. We observed
diversity in the generated samples, which also differs from the real samples used as training data.

(a) Run on the spot: (Top) Real, (Bottom) Generated

(b) Side kick: (Top) Real, (Bottom) Generated

(c) Stretch oneself: (Top) Real, (Bottom) Generated

Figure 6. Sequences of real and generated samples. Temporal order is from left to right in the horizontal direction.
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