Few-shot generative model for skeleton-based human action synthesis using cross-domain adversarial learning

Kenichiro Fukushi Yoshitaka Nozaki Kosuke Nishihara
Kentaro Nakahara
Biometrics Research Laboratories, NEC Corporation, Japan
{k-fukushi, yoshitaka-nozaki, koske, k-nakahara}@nec.com

Abstract

We propose few-shot generative models of skeleton-based human actions on limited samples of the target domain. We exploit large public datasets as a source of motion variations by introducing novel cross-domain and entropy regularization losses that effectively transfer the diversity of the motions contained in the source to the target domain. First, target samples are divided into patches, which are a set of short motion clips. For each patch, we search for a reference motion from the source dataset that is similar to the patch. Next, in adversarial training, our cross-domain regularization encourages the generated sequences to resemble the reference motion at the patch level. Entropy regularization prevents mode collapse by forcing the generator to follow the distribution of the source dataset. Experiments are performed on public datasets where we utilize three action classes from NTU RGB+D 120 as the target and all data of 60 action classes in NTU RGB+D as the source. Ten samples for each target action class, 30 in total, are selected as target data. The results demonstrate that data augmented with the proposed method improve recognition accuracy by 28% using a ST-GCN classifier.

1. Introduction

Human action recognition (HAR) has been in the midst of rapid advancement, benefiting from the progress of artificial intelligence such as deep learning. HAR involves many applications such as human-behavior monitoring, human-computer interaction in different areas of education, entertainment, medical, and sports.

Recognizing human actions from a video (i.e., a sequence of RGB images) has become an area of particular
Convolutional neural networks (CNNs) became widely used for vision-based HAR. Tran et al. [41] proposed a spatio-temporal convolution network called a 3D CNN. 3D CNNs were further extended using other image recognition techniques such as Inception-v1 [3] or ResNet [16], and by training with large datasets, recognition has improved greatly. A video of a person contains a large amount of information on his or her body positioning; thus, high accuracy recognition should be possible with video-based HAR. However, training deep networks with large datasets tends to be computationally intensive due to the data size of videos. In addition, changes in illumination and occlusion reduce the robustness of recognition.

Skeleton-based models are being increasingly utilized for HAR [31, 47]. Skeletons are expressed as a sequence of two- or three-dimensional coordinates of the joints in the human body. Skeletons are a compact but complete representation of human poses; thus, minimal computation is required to process skeleton data without sacrificing accuracy. Spatial temporal graph convolutional network GCN (ST-GCN) [47] is the most well-known skeleton-based model for HAR, which made it possible to apply deep learning to skeletons by extending a GCN so as to model temporal dynamics of human actions. Additionally, the emergence of pose estimation methods from RGB images [2, 10, 21, 38] and related preprocessing methods [15, 25] have enhanced the applicability of skeleton-based models by enabling calculation of skeletons from any videos without special equipment such as depth cameras or motion capture devices.

Few-shot scenarios are often the case when training HAR models; this is considered a major obstacle to practical use because collecting human action data and annotating labels correctly are time consuming and labor intensive. Researchers have made significant efforts to disclose a variety of large public datasets: daily behaviors [9, 17, 26, 36], dancing [4], sports [37], gait [20], and work-specific motion such as logistics [29] and nurse care [23]. But what if you want to build a model applicable to a target domain that is not covered by the above datasets? In many cases, domains of interest have a very limited collection of data, or it is necessary to obtain training and validation data by yourself where you may want to begin with just a few samples. However, small datasets potentially do not cover the entire distribution of the target domain, which will result in a reduction of recognition accuracy, known as overfitting.

Thus, augmenting few-shot training samples is fundamental in HAR. Some studies have utilized model-based approaches where they implement physical simulators to synthesize physically plausible human motion [1, 18, 34]. Cabrera et al. proposed a one-shot augmentation of hand gestures where arm movements are simulated as a set of inverse kinematic solutions with the constraints of minimum jerk and energy expenditure. Jiang et al. [18] considered musculotendon characteristics of the body to produce realistic behaviors. The difficulty with the model-based approaches is scalability and versatility because they rely on the hand-crafted formulation of the human body using domain knowledge.

In our work, we will explore generative approaches, which automatically find the patterns of human motion variation from training data. The limitation of state-of-the-art generative models for human action synthesis [6, 8, 11, 33, 40, 42, 46] is that they are validated with a large number of training samples. In few-shot scenarios, they suffer from overfitting problem resulting in generated samples of low quality. Hence, we aim at realizing a method to train generative models with limited target samples.

The proposed method leverages a large public dataset as a source domain and transfer the information on diversity of motion from source to target. The contributions of our study are as follows:

- The first few-shot generative models of human actions, to the best of our knowledge
- Novel cross-domain and entropy regularization losses from exploiting the variation within large public datasets
- Improved recognition accuracy using data augmented by the proposed method

2. Related work

Approaches for human action synthesis include video- and skeleton-based approaches, analogous to HAR. As previously mentioned, our approach is skeleton-based, though video generation is also an important research field because it has inspired skeleton-based methods. We begin by reviewing the video-based generative models and discussing studies related to few-shot generation, followed by skeleton-based generative models.

2.1. Video-based generative models

There has been a growing interest in using deep networks for generative modeling of visual data, particularly images and videos. Prior studies have been focused on video prediction that predicts future frames given some of the previous frames. Kalchbrenner et al. [19] proposed an encoder-decoder architecture where CNN encoders compute the temporal dependencies of the video tensor, and the PixelCNN decoder computes dependencies along the space and color dimensions. To generate new sequences rather than predict them, subsequent studies have used adversarial approaches. Saito et al. [35] proposed a two-phase model consisting of temporal and image generators. Tulyakov et al. [43] modeled the latent spaces for content and motion separately from which video frames are synthesized. Clark

2.2. Few-shot generation approaches

The purpose of few-shot generation is to successfully train generative models while avoiding overfitting. Most studies use an adaptation strategy, where a pre-trained model is guided to the target domain with a small number of real samples while inheriting the diversity of the source domain. Wang et al. [45] employed a transfer learning approach to fine-tune pre-trained GANs with as few as 1000 target images. Noguchi and Harada [30] proposed another transfer method where only scale and shift parameters in the generator are updated using ~100 target images. Liu et al. [27] connected a detector and a GAN to explicitly improve the produced images for the downstream object detection task. Wang et al. [44] introduced the process of mining of GANs where subregions of the pre-trained generators are identified to generate samples close to the target domain. Mo et al. [28] showed that the freezing lower layers of the discriminator improved the effectiveness of fine-tuning. Li et al. [24] demonstrated image generation with less than 10 samples by regularizing the changes of the weights at each layer of the network. Subsequent studies have utilized cross-domain adversarial learning. Ojha et al. [32] used only ten training samples for image generation by introducing cross-domain consistency. Kwon and Ye [22] improved [32] by exploiting the CLIP space to achieve one-shot adaptation.

2.3. Skeleton-based generative models

Previous studies mostly involved autoregressive models, such as RNN [8,11] and LSTM [42], which generate frames one by one. Subsequent studies have shown that generating entire sequences from latent vectors improves the quality of generated motion by capturing the long-term temporal structure using generative adversarial networks (GANs). Yan et al. [46] proposed a CNN-based model where the skeleton sequence is generated using latent vectors from a Gaussian process. Degardin et al. [6] proposed Kinetic-GAN, which uses ST-GCN to produce the generated samples from the latent space representation of a noise vector. Petrovich et al. [33] designed a Transformer-based architecture. Tevet et al. [40] devised a diffusion-based model.

Historically, most of these studies emerged from the field of computer graphics, so data augmentation is not necessarily their main research interest. However, some studies validated the effectiveness of generative models for data augmentation in HAR. Tu et al. [42] reported that the HAR accuracy increased by 4.2% when their augmented data was used to train a recognition model. Petrovich et al. [33] found that the augmented training is especially effective on low-data regimes. However, these methods are designed for scenarios that contain thousands of training motion samples.

3. Proposed Method

Our approach is to extend an existing generative model by introducing a novel regularization that is effective in few-shot scenarios. One of the state-of-the-art models, Kinetic-GAN [6], is used as a generative model in this paper. Thus, we start with the problem formulation on the basis of Kinetic-GAN and then describe the objective function using our method. WGAN-GP [12] is used in [6], which is expressed as:

$$\mathcal{L}_{adv}(G, D) = D(G(z)) - D(x)$$

$$\mathcal{L}_{gp}(D) = (\|\nabla_{\hat{x}} D(\hat{x})\| - 1)^2$$

where D_t is the target dataset, and $p_{\hat{x}}$ is sampled uniformly along straight lines between pairs of points sampled from the target dataset D_t and generator distribution. The loss weight λ_{gp} for gradient penalty is set to 10 in all experiments.

Our goal is to successfully train a generator G on a small target dataset D_t, given a large source dataset D_s which is different from the target domain. With D_t only, the training samples can be memorized by a discriminator. This causes overfitting where the discriminator forces the generator to make the samples from D_t.

The key idea is to make the generator use the source dataset as a hint for valid motion variations. We hypothesize that, if the target motion is similar to the motion contained in the source dataset (we call this motion the reference motion), then the variations in the target motion should also be similar to that of the reference motion. We will handle target and source motion at the patch level, i.e., short motion clips, and find the reference motion patches for each target motion patch.

Before explaining the modified objective function, we will define the reference motion patches as illustrated in Fig. 2. For the k-th patch motion of the target samples, we first calculate $p^*(k)$ as a nearest neighbor of the source patch motion:

$$p^*(k) = \arg\max_{p \in \{W(D_t, k), p\}} \text{sim}(W(D_t, k), p)$$

...
where \mathcal{D}_t is the mean target motion and $\mathcal{D}_s(i)$ is the mean source motion for the action class i, which are also formulated as $\mathcal{D}_t = \mathbb{E}_{x_t \sim \mathcal{D}_t(x_t)}$ and $\mathcal{D}_s(i) = \mathbb{E}_{x_s \sim \mathcal{D}_s(i)}(x_s)$, respectively. Given the motion sample $x = \{x_1, x_2, \cdots \}$, the sampling function $W(x, k) = \{x_m | x_m \in x, k \leq m < k + K\}$ enumerates a subset of x starting at the k-th frame with sliding window length K. sim represents the cosine similarity. Then the reference motion patches for the k-th patch of the target sample are defined as follows:

$$P_k = \{W(x, j) | x \in \mathcal{D}_s(i)\}$$

for i, j s.t. $p^*(k) = W(\mathcal{D}_s(i), j)$ \hspace{2cm} (5)

The proposed method transfers diversity from P_k, a subspace of the source domain conditioned on the target samples, while the existing method \cite{32} transfers from an entire space of the source domain conditioned on the target sample. Then the reference motion patches for the k-th action class $\mathcal{D}_s(i)$ are defined as follows:

$$W(\mathcal{D}_s(i), j) = \{x_m | m \in \mathbb{N}, j \leq m < j + K\}$$

By transferring the variation in the reference motion patches to the target domain, overfitting should be prevented, and learning should be feasible with few target samples. To carry this out in GAN training, we propose two regularization terms in the loss function. Cross-domain regularization guides the generator to remain consistent with the reference motions at the patch level. Entropy regularization encourages the generator to capture the distribution of the reference motions to enhance diversity. The concept of the two regularizations is illustrated in Fig. 3. Note that Ojha et al. \cite{32} also employ patch-based loss; however, they apply it to the discriminator while we use it for the generator.

3.3. Cross-domain regularization

We encourage the generated samples to resemble the reference motion at the patch level. We formulate this as

$$L_{cd}(z_n) = \min_{p \in P_k} \{1 - \text{sim}(W(G(z_n), k), p)\}$$

where z_n is a noise vector, P_k is the set of reference motion patches, sim is the cosine similarity, and W denotes the sliding window. The loss function is expressed as:

$$L_{cd}(G) = \sum_k \min_{p \in P_k} \{1 - \text{sim}(W(G(z_n), k), p)\}$$

(6)
As the generated motion becomes closer to the reference motion at the patch level, the loss become smaller. This causes the generator to be guided by the source dataset.

3.2. Entropy regularization

We encourage the generated samples to follow the distribution of reference motion patches. With the cross-domain regularization only, the generator may fall into using a small subset of reference motion patches. This results in limited variations of the target samples, i.e., mode collapse. We formulate the variability of the target samples as entropy:

$$L_{\text{entropy}}(G) = \frac{1}{N-K+1} \sum_{k} e^{-H(P_k;G)}$$

where $q(x_i)$ is the distribution of nearest-neighbor reference motion patches, which can be expressed as:

$$H(P_k;G) = -\sum_{p \in P_k} q(p;G) \cdot \ln q(p;G)$$

When entropy H is high, it means target samples have different nearest-neighbor reference motion patches. Consequently, a high H value results in small loss, which corresponds to capturing the distribution of the reference motion in the generated samples. This approach is similar to Prescribed GAN [7], where the distribution of the target domain is considered, while ours considers that of the source domain.

3.3. Final objective

Our final objective consists of these three terms: L_{adv} for the appearance of the target, L_{cd}, which directly leverages the diversity contained in the source dataset, and L_{entropy}, which prevents mode collapse:

$$G = \mathbb{E}_{z \sim p_z(z), x \sim D_1, \hat{x} \sim \mathbb{P}_z} \left\{ \arg \min \max_{G, D} \mathbb{E}_{D_{adv}}(G, D) + \lambda_{\text{cd}} L_{\text{cd}}(G) + \lambda_{\text{entropy}} L_{\text{entropy}}(G) \right\}$$

We determined the optimal loss weight by grid search, and used loss weight $\lambda_{\text{cd}} = 1.0, \lambda_{\text{entropy}} = 1.5$ in all experiments except for the ablation study.

4. Experiments

In this section, we evaluate our method by training ST-GCN as a standard action recognition model using our generated sequences.

4.1. Dataset

NTU RGB+D [36] This dataset contains RGB videos, depth videos, and skeleton data calculated by Kinect for 60 action classes. The total number of samples is 56,880. The dataset is split into training and validation data on the basis of the authors’ definition of “cross-subject.” We utilize all data of 60 action classes (A001 – A060) of the training data as the source dataset.

NTU120 RGB+D [26] This dataset is a superset of NTU RGB+D where additional 60 action classes (A061 – A120) are collected, altogether amounting to 120 action classes. The total number of samples is 114,480. The dataset is split into training and validation data on the basis of the authors’ definition of “cross-subject.” We utilize three characteristic action classes from the training data that include upper body-dominant, lower body-dominant, and fast movements — *Run on the spot* (A099), *Side kick* (A102), and *Stretch oneself* (A104) — as the target dataset. The validation data for these three action classes is used in accuracy evaluation of the ST-GCN classifier (Sec. 4.3).

Preprocessing Due to the inaccuracy of 3D joint annotations in the original NTU RGB+D dataset, we re-estimate the 3D joint rotations extracted from only RGB videos using the VIBE method [21].

4.2. Architecture and training

We configure the discriminator and generator networks on the basis of Kinetic-GAN with two exceptions. One of them is that, for simplification of implementation, we disable the action conditioning of Kinetic-GAN by removing the embedded class representation y from its mapping network. Instead, we train individual networks for each action class. The second exception is that we use the rotation representation for datasets, while the original Kinetic-GAN is trained with the position of each joint calculated by Kinect from depth images. We use VIBE [21] to obtain the rotation representation of each joint using the RGB images.

Networks are trained using the Adam optimizer with learning rate 0.0002 and weight decay parameters $b1 = 0.5$ and $b2 = 0.999$. For the target samples, we manually checked and excluded samples with estimation errors of 3D joint rotations by VIBE, then picked ten samples for each action class A099, A102, and A104. These 30 samples are then sampled randomly to compose 38400 samples to be used as training data. Training was performed with a batch size of 32 for 10 epochs using a single NVIDIA Quadro RTX 5000 GPU.

4.3. Data augmentation for ST-GCN classifier

We validate our method by applying it to data augmentation for action recognition models.
4.3.1 Recognition model

We use a standard model, ST-GCN [47], for action recognition. We train the model with the concatenated data of the real and generated samples. The real samples are identical to that used in Sec. 4.2. In data augmentation, A total of 1149 samples are generated (i.e., 383 samples for each action class), which is as big as the original real samples. For the training parameters, we follow their implementation on GitHub\(^1\) with learning rate 0.1, weight decay 0.0001, momentum 0.9, batch size 64, and number of epochs 80. The tests are performed on the validation data three times with different random seeds, and the median of resultant accuracy is reported.

4.3.2 Comparison methods

The state-of-the-art methods Kinetic-GAN [6] and ACTOR [33] are compared with our method. Since the problem of few-shot human action synthesis is new and we could not find any existing few-shot learning methods, these methods are not designed for few-shot scenarios and do not have the capability for cross-domain learning. Therefore, these models are trained using target samples only.

We additionally perform an ablation study to investigate the effect of the proposed loss functions: Cross-domain only (λ_{cd} is set to zero) and Entropy only (λ_{entropy} is set to 0). Note that Kinetic-GAN can be considered as a part of the ablation study since it is equivalent to setting the weight of both regularization terms to zero (i.e., $\lambda_{\text{cd}} = \lambda_{\text{entropy}} = 0$) in our method.

4.3.3 Results

Tab. 1 summarizes the results. When trained with only real training data, the top-1 accuracy is 58.4\% (w/o augmentation). All the results with data augmentation show better accuracy. This indicates that when there are few real samples, ST-GCN suffers from overfitting, which causes low accuracy; however, the accuracy improves when generated samples are added.

The best accuracy of 86.4 \% (Ours) is obtained with the proposed method. This confirms that the proposed method can successfully augment motion data to improve recognition accuracy even in few-shot scenarios. Ablation results suggest that both the cross-domain and entropy losses are essential for effective augmentation. We will analyse the role of these losses later in Sec. 4.4.1.

We further investigate how the effectiveness of data augmentation changes with the number of real samples. In Fig. 4, the dotted red line indicates the top-1 accuracy without augmentation, i.e., real data only. The accuracy is 58.4 \% when the amount of real data is 30, as already shown in Tab. 1. As the number of real data increases, the accuracy also increases. When 150 samples (i.e., 50 samples per action class) are used, the accuracy improves to 85 \%. With more than 300 samples (i.e., 100 samples per action class), the accuracy, 95\%, is almost at the maximum. This demonstrates that ST-GCN recognition models are poorly trained in the few-shot scenarios, which can be attributed to overfitting. However, augmented learning with the proposed method lessen the accuracy reduction. The solid red line indicates the accuracy with augmentation where real data and 1149 generated samples are used for training. Even when only 30 real samples are used, augmentation is effective and the accuracy increases by 28 \%. The variability of the generated samples may have prevented overfitting. The difference in accuracy between with and without augmentation decreases as the number of real data increases. Hence,

\(^1\)https://github.com/open-mmlab/mmskeleton
Table 2. Diversity evaluation: Diversity measures the overall variance across all action classes. Multimodality measures the variance within each action class. Refer to [13] for the definition.

<table>
<thead>
<tr>
<th></th>
<th>Diversity</th>
<th>Multimodality</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o augmentation</td>
<td>29.7</td>
<td>24.9</td>
</tr>
<tr>
<td>Kinetic-GAN</td>
<td>27.6</td>
<td>23.9</td>
</tr>
<tr>
<td>Ours (Cross-domain only)</td>
<td>29.9</td>
<td>24.7</td>
</tr>
<tr>
<td>Ours (Entropy only)</td>
<td>30.1</td>
<td>25.4</td>
</tr>
<tr>
<td>Ours</td>
<td>29.7</td>
<td>25.8</td>
</tr>
</tbody>
</table>

our method can be considered more effective in scenarios with few data.

4.4. Diversity evaluation

4.4.1 Quantitative analysis

We examine the diversity and multimodality, which are employed in [13], for the real and augmented training data used in Sec. 4.3. For both metrics, the motion sample \(x \) itself is used as a feature vector. In Tab. 2, we observe the highest multimodality for our method. The highest accuracy of the proposed method (in Tab. 1) should be attributed to this. The ablation results suggest that the proposed cross-domain and entropy losses successfully transfer the variation of source domain to the generated samples. With only cross-domain loss, less diversity is observed. With only entropy loss, greater diversity is obtained. However, the reference motion is not taken into account without the cross-domain loss, which prevents accuracy improvement. Our method combines both losses, resulting in generations which can contribute to effective augmentation.

4.4.2 Qualitative analysis

We qualitatively analyze the generated samples to demonstrate that our method is capable of injecting both spatial and temporal diversity. Fig. 5 shows the resulting 25 generated samples for each action class Run on the spot, Side kick, and Stretch oneself. Our method successfully synthesizes different ways to produce a given action. They inherit the motion from real samples of the target domain while also maintaining spatial diversity. We found that the results for Stretch oneself were more varied; this may have been because most of the actions in the source dataset involve the upper body, which is also the case for stretching. Fig. 6 shows the skeletal sequences of real and generated samples for each action, representing both the temporal variation and plausibility of the output.

It should be noted that the generated samples are not completely different each other. This, however, does not necessarily mean the limitation of our method. Because the goal of our model is to serve as a data augmentation method for HAR, the generated samples should follow the variation of the target domain. In this context, the motion that is likely to appear in the target domain should be generated more frequently.

4.4.3 Target ↔ source correspondence

The diversity transferred to the target domain is based on the distribution of reference motion patches drawn from a certain action class of the source dataset. Tab. 3 lists the correspondence between target and source action classes in our experiments. Note that there exist multiple source action classes in the list, because a source motion is searched individually for each patch of the mean target motion divided by a sliding window, as shown in Fig. 2. As in the “Side kick” ↔ “Kicking something” or “Stretch oneself” ↔ “Cheer up”, we can observe intuitive mapping examples. On the other hand, in some cases irrelevant actions appear to be selected, such as “Run on the spot” ↔ “Touch head” or “Side kick” ↔ “Drop”. This may be due to the paucity of actions involving lower body movements in NTU RGB+D, suggesting the need for sufficient diversity in the source data set. Also, the current action classes, which follow the definition of NTU RGB+D, may not be optimal for effective cross-domain learning. Redefining optimal action classes could be an interesting prospect for future research.

5. Conclusion

We presented a few-shot learning method for skeleton-based motion synthesis. To our knowledge, our method is the first for learning generative models of motion with few samples. It is based on cross-domain regularization and entropy regularization, which are effective for transferring the diversity of the large dataset of the source domain to the target domain. Experimental results demonstrated that the generated samples had high diversity even with very limited training samples, and they could be used as augmented data to train action recognition models.
Figure 5. (Top) Real samples and (bottom) 10-shot human action synthesis results. We generated 25 different samples for each action and visualized one frame from the skeletal sequences of these samples. We selected the same frame across the same action. We observed diversity in the generated samples, which also differs from the real samples used as training data.

Figure 6. Sequences of real and generated samples. Temporal order is from left to right in the horizontal direction.
References

[27] Lanlan Liu, Michael Muelly, Jia Deng, Tomas Pfister, and Li-Jia Li. Generative modeling for small-data object detection.

