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Abstract

Exploded views are powerful tools for visualizing the as-
sembly and disassembly of complex objects, widely used in
technical illustrations, assembly instructions, and product
presentations. Previous methods for automating the cre-
ation of exploded views are either slow and computationally
costly or compromise on accuracy. Therefore, the construc-
tion of exploded views is typically a manual process. In
this paper, we propose a novel approach for automatically
predicting the direction of parts in an exploded view using
deep learning. To achieve this, we introduce a new dataset,
AssemblyNet, which contains point cloud data sampled
from 3D models of real-world assemblies, including wa-
ter pumps, mixed industrial assemblies, and LEGO models.
The AssemblyNet dataset includes a total of 44 assemblies,
separated into 495 subassemblies with a total of 5420 parts.
We provide ground truth labels for regression and classifi-
cation, representing the directions in which the parts are
moved in the exploded views. We also provide performance
benchmarks using various state-of-the-art models for shape
classification on point clouds and propose a novel two-path
network architecture. Project page available at https:
//github.com/jgaarsdal/AssemblyNet

1. Introduction
Exploded views are commonly used in technical illustra-

tions to visualize the assembly and disassembly of complex
machinery or equipment. For product showcasing and in-
structional videos the exploded views are often rendered as
3D animations, and in recent years augmented- and virtual
reality technologies have been used to bring the exploded
views even closer to the observer [9, 26]. Traditionally,
these illustrations are created manually. Previous studies
have presented approaches to create exploded views auto-
matically, often using information from Computer-Aided

∗Equal contribution.

Figure 1. The assembly-by-disassembly process. An iterative
process of automatically creating an exploded view of an engine
assembly with eight exploding parts. The step retrieving a part
disassembly direction is highlighted as the focus of this paper.

Design (CAD) models and applying algorithms to calcu-
late distances and directions of parts in an iterative process,
such as the one presented in Fig. 1. However, these meth-
ods typically need a long time to process, and the time in-
creases significantly, depending on the complexity of the
assemblies [2,17,24]. Few studies have attempted to create
real-time exploded views of assemblies and they do so by
sacrificing on the technical accuracy of the visualization or
by assembly-specific configuration of parameters [2, 9].

While machine learning methods have been used in the
optimization of assembly sequences [29, 36], no previous
work has employed it in the generation of explosion lay-
outs. In this paper, we present the open-source AssemblyNet
dataset consisting of 5420 assembly part samples with an-
notated part directions. The dataset and proposed methods
compliment the iterative process by predicting valid disas-
sembly directions for parts. Our contributions are threefold:

• A publicly available point cloud dataset with annotated
directions of parts in exploded view visualizations.

• A direct comparison of commonly used point cloud
classification models for predicting part directions.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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• A novel two-path point cloud classification model for
predicting part directions.

2. Related Works
Automatic generation of exploded layouts. The con-

cept of exploded layouts has been widely used in engineer-
ing drawings and technical illustrations for decades, espe-
cially since the introduction of CAD systems. Tradition-
ally, these layouts are created manually by domain experts,
which is a time-consuming process. With advancements in
CAD systems, researchers and industry professionals have
been exploring ways to automatically generate exploded
layouts and assembly sequences since the early 1990s [23].

Much of the early work in the field relies on calculating
contact points and blocking relationships from CAD data
which takes a long time to compute even for simple assem-
blies [1, 17]. This information is then used to determine
assembly sequences by iteratively removing parts following
an assembly-by-disassembly approach. Recent work has at-
tempted to address the computation times of these methods
by simplification, either by reducing the number of direc-
tions a part may move in, or by using a simpler represen-
tation of the geometry such as a bounding box [9, 30, 35].
Each of these approaches, however, has its limitations, and
may lead to false-positive blocking constraints.

While techniques from machine learning have been stud-
ied in the context of Assembly Sequence Planning [4,6,28],
to the best of our knowledge, there has been no previous
studies on using machine learning in the process of creating
explosion layouts of assemblies. As such, there are also no
available datasets or benchmarks for this task.

Point cloud analysis. With the rapid increase of 3D sen-
sors and LiDAR technology, point cloud data has become
increasingly prevalent. In deep learning point clouds have
been explored for various applications [5, 13, 16]. 3D point
clouds are unordered sets of data points in 3D space, which
was one of the early challenges in utilizing them for deep
learning. One approach that is used in projection-based net-
works is to transform the irregular structure of the 3D point
cloud into a regular one. Some of these networks use multi-
view projection, creating several 2D images from multi-
ple viewpoints which can be processed by traditional 2D
CNNs [5, 10, 19, 25]. Another approach is to divide the 3D
space of the point cloud into a grid of voxels [18], process-
ing the volumetric data using 3D CNNs. The projection-
based methods have achieved high accuracy on classifica-
tion tasks, but they may lose important details due to the
projection. In contrast, voxel-based methods can keep the
spatial information by increasing the resolution of the grid,
but this may not be feasible due to the memory and compu-
tation costs. This limitation can be addressed by an irreg-
ular grid structure that offers adaptive resolution, such as
octrees [22], but they can still introduce significant compu-

tational overhead from tree maintenance and traversal.
Point-based networks process the point cloud directly

and retain more of the original information. In 2017, Qi et
al. [20] proposed PointNet able to directly consume point
clouds for classification and segmentation tasks. This was
followed by PointNet++ [21] which took the feature extrac-
tion on unordered sets from PointNet and employed it in
a hierarchical structure to aggregate local and global infor-
mation. Similarly, Wang et al. [32] proposed the Dynamic
Graph Convolutional Neural Network (DGCNN), which ag-
gregates local information by constructing a graph from the
k-nearest neighbours (kNN) for each point. More recently,
Zhao et al. [37] proposed Point Transformer which uses the
increasingly popular Transformer architecture [31]. In or-
der to capture the relationships between points this model
uses self-attention on pairs of neighboring points. For an
in-depth review of deep learning for 3D point clouds, we
refer to the survey by Guo et al. [12].

All of these proposed networks are typically bench-
marked for classification and segmentation tasks. For shape
classification, the dataset most commonly used is Model-
Net40 [33], which contains more than 12 thousand CAD
models and their point clouds from 40 classes. For segmen-
tation tasks, the most common datasets are S3DIS [3] and
ShapeNetPart [34]. The S3DIS dataset for semantic seg-
mentation of scenes contains 271 rooms made by 3D scan-
ning and each point in the point clouds is labeled as one of
13 classes. The ShapeNetPart dataset for object part seg-
mentation contains more than 16 thousand models from 16
model categories separated into 2-6 parts.

3. AssemblyNet
In this section we present how the data for the Assem-

blyNet dataset was collected (Sec. 3.1), how the ground
truth labels were generated (Sec. 3.2), and how the dataset
is constructed (Sec. 3.3).

3.1. Data Collection

The point clouds in the dataset are sampled from 3D
models consisting of real assemblies provided by a water
pump manufacturing company, as well as various industrial
assemblies ∗ and LEGO models ∗ from online model col-
lections. Due to licensing constraints and non-disclosure
agreements the original 3D models are not included in the
dataset, instead only the sampled point clouds are available.

The dataset includes a total of 44 assemblies with 16 real
assemblies from the manufacturing company, 14 mixed in-
dustrial assemblies, and 14 LEGO models. In order to not
confuse the neural networks by moving parts in directions
where they would be blocked, each of these assemblies were

∗TurboSquid: https://www.turbosquid.com/
∗Mecabricks: https://www.mecabricks.com/
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Figure 2. Example of subassemblies. An example of how sub-
assemblies are created iteratively by removing parts that are un-
blocked at each step. In this example, the red parts are the ones
that can be removed and that are used as samples in the dataset.
As parts are removed from one layer to the next, new parts be-
come unblocked and can be used. Parts that are not blocking other
parts can be reused as samples (e.g. the gears in this figure).

split into several layers of subassemblies using the Blender
3D editor. An example of these layers is shown in Fig. 2.
The layers were created iteratively, by manually removing
only the parts that could realistically be removed at each it-
eration. This separation into layers provides a total of 495
subassemblies with a total of 5420 parts used as the samples
in the dataset. The number of parts in a single subassembly
ranges from 2-74. Examples of assemblies and subassem-
blies are shown in the supplementary materials (supp. mat.).

Using the Unity game engine [27], two initial point
clouds are sampled for each of the 5420 parts, a point cloud
of just the part and a point cloud of the entire subassem-
bly of that sample. The point clouds are sampled using a
Monte Carlo method with 20480 points for the subassem-
bly and 10240 for the part. The two point clouds are stored
separately but normalized as a single point cloud to pre-
serve the spatial information of the part points relative to the
subassembly. In a subsequent processing step, we use the
CloudCompare 3D tool [7] to subsample the point clouds to
512 and 1024 point variants. Both variants are included in

Figure 3. Example point cloud. A part point cloud (green) and
subassembly point cloud (blue), both with 512 points, shown in
the same 3D space.

the dataset. An example of a part- and subassembly point
cloud is shown in Fig. 3.

3.2. Ground Truth

The dataset includes continuous and discrete ground
truth values for regression and for classification, respec-
tively. For regression, the ground truth are the normalized
3D directions that parts are moved in. These were created
in the Unity game engine by manually separating each part
and logging the direction from the start- to the end position.
For classification, the number of possible world space di-
rections are discretized to 26 classes representing directions
at roughly 45◦ angles to each other as shown in Fig. 4a. A
sample is assigned the class that is closest to its actual di-
rection, using the dot product between the two directions.

Although most part directions follow the global axes
(±X,±Y,±Z), there is a loss of fidelity with the reduction
of possible directions, as seen in the example in Fig. 4b,
however, we believe this could be alleviated post-inference
by mapping the predicted class to the closest local axis on
the oriented bounding box of the part [9, 35].

3.3. Dataset Construction

The dataset is created by splitting the data into a train-
ing set of 4334 samples (≈ 80%), a validation set of 542
samples (≈ 10%), and a test set of 544 samples (≈ 10%).
The splits are created manually following two rules in order
to avoid data leakage and contamination: each assembly is
represented in each split, each subassembly is only repre-
sented in one split. Subassemblies are selected randomly
for a split, based on their number of samples.

Looking at the ground truth for classification, the class
distribution of each split is shown in Fig. 5. It can be seen
that the dataset is heavily skewed towards the cardinal di-
rections, while several classes aren’t represented. While im-
balanced, this is representative of the real life use cases as
these classes represent the global axes (±X,±Y,±Z).
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(a) The 26 world space directions used as the classification ground truth labels. Here the direc-
tions are split into four planes to reduce visual clutter. Two planes are orthogonal and include the
six global axes (±X,±Y,±Z), two planes are at 45◦ angles to the first two.

(b) An example of how the regression ground truth val-
ues (yellow arrow) are mapped to world space directions
for the classification ground truth (green arrow).

Figure 4. Discretized ground truth directions. Visualizations of the classification- and regression ground truth directions.

(0
,+

Y,
0)

(0
,

Y,
0)

(0
,0

,
Z)

(+
X,

0,
0)

(0
,0

,+
Z)

(
X,

0,
0)

(
X,

0,
+Z

)
(

X,
0,

Z)
(+

X,
Y,

0)
(

X,
Y,

0)
(0

,+
Y,

Z)
(0

,+
Y,

+Z
)

(+
X,

0,
+Z

)
(

X,
+Y

,0
)

(+
X,

+Y
,0

)
(0

,
Y,

+Z
)

(+
X,

0,
Z)

(
X,

Y,
+Z

)
(

X,
+Y

,
Z)

(+
X,

Y,
+Z

)
(0

,
Y,

Z)

100

101

102

103

Co
un

t

Training
Validation
Test

Figure 5. Discretized direction distribution. The class distribu-
tion of part directions are shown across the three splits. There is a
large data imbalance, with an emphasis on the cardinal directions,
and five possible part directions not present in any of the splits.
Note that the y-axis is on a log-scale.

4. Two-path Network Architecture
In this section, we present a two-path network archi-

tecture for the AssemblyNet dataset. By adopting a two-
path approach we seek to utilize the fact that each sample
comprises two separate point clouds - one for the part and
one for the entire subassembly. By processing these point
clouds separately, we hope to capture distinct features and
spatial relations from each, which may otherwise be over-
looked when the point clouds are concatenated.

4.1. Overview

The overall two-path architecture draws inspiration from
recent work by Guo et al. [11], employing a transformer
network approach of encoder- and decoder layers, shown
to achieve state-of-the-art performance on point cloud clas-

sification and segmentation [37], as well as cross-attention
between the two paths. For our benchmarks, we have tested
this architecture using two different backbones, one us-
ing the EdgeConv layers from DGCCN (referred to as TP-
DGCNN) as the encoder layers and one using the point
set abstraction layers from PointNet++ (referred to as TP-
PointNet++) as the encoder layers. An overview of the net-
work with the DGCNN backbone is shown in Fig. 6.

4.2. Paths

The main path of the network is the part path, processing
the point cloud of the specific part in order to capture geo-
metric features and characteristics specific for that part. The
subassembly path aims to add context in the terms of the
spatial relationship between the part and the rest of the sub-
assembly. For this, we use cross-attention to collect condi-
tioned features that are then concatenated with the encoder
features. These concatenated features are then subjected to
max- and average pooling to reduce dimensions and cap-
ture global features, as in [32], before they are concatenated
with the decoder features and passed through the matching
decoder layer. For the cross-attention module, we use the
features from the part path as the query and the features
from the subassembly path as the key and value.

5. Experimental Design

In this section, we describe the approach and proto-
cols used to produce the benchmarks presented in Sec. 6.
First, we present the state-of-the-art point cloud classifica-
tion methods used for the benchmarks and ablation study
(Sec. 5.1). Second, we describe the protocol and hyperpa-
rameters used for the training of classification and regres-
sion models (Sec. 5.2). Lastly, we describe how we evaluate
the results of the classification models against the regression
models (Sec. 5.3).
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Figure 6. Overview of the proposed Two-Path Network. The TP-DGCNN two-path network architecture using the four EdgeConv
layers from DGCNN as the encoder (Point Aggregation) and four corresponding decoder layers consisting of a fully connected layer,
batch normalization and GELU activation function. The input to the decoder layers are the features from the part encoder layers, the
cross-attention between the part- and subassembly features, and the output from the previous decoder layer. The dimensions of the encoder
features and the cross-attention features are reduced by max- and average pooling. The size of a layer in the figure illustrates the number
of features at that layer. The TP-PointNet++ network shares the same overall architecture but with three encoder layers being the three set
abstraction layers from PointNet++ with three corresponding decoder layers.

5.1. Methods

To validate the effectiveness of the AssemblyNet dataset,
we present results from four models from the domain of
point cloud shape classification and segmentation. The
models are selected as they represent different approaches
to capturing spatial relationships and geometric features.
The PointNet network, proposed by Qi et al. [20], applies
a shared multi-layer perceptron (MLP) to each point inde-
pendently, capturing individual point features. Later, Qi
et al. [21] presented PointNet++, an extension that applies
PointNet recursively on nested partitions of the point cloud
in order to capture local and global structures at different
scales. Presented by Wang et al. [32], DGCNN constructs
a graph over the point cloud and applies convolutions on its
edges to capture local geometric structures. Lastly, Goyal et
al. [10] recently presented SimpleView, a simple projection-
based approach, creating several 2D images of the point
cloud from different perspectives and applies 2D convolu-
tions using the ResNet-18 network [14]. For all networks
we find that changing the standard activation functions to
the GELU activation function [15] improves performance.
Furthermore, given that the samples consist of two separate
point clouds, we also present results from two variants of a
two-path network (Sec. 4), using the best performing of the
four base models as a backbone.

5.2. Training Protocol

We base our training on the original DGCNN training
protocol [32], as it has been shown to work well for various
models [10]. Using DGCNN, for both the classification and
regression training settings, we conducted a randomized hy-
perparameter search with 300 runs per training setting, test-
ing each configuration three times to account for variance.
The investigated hyperparameters are shown in Tab. 1. The
investigated settings were trained for 20 epochs with early
stopping based on the classification validation accuracy or
the regression validation loss.

In all training runs, we train the models for 250 epochs
with a batch size of 32. For the four base models we con-
catenate the 512 point part- and subassembly point clouds
for a total of 1024 points. For the two-path models we use
the 1024 point part- and subassembly point clouds, such that
both paths receive 1024 points. The reasoning for this is
that each path contains the complete feature extraction from
either DGCNN or PointNet++, and PointNet++ in particu-
lar is designed for 1024 points as the input. Furthermore,
1024 points is the most widely used input scheme [10].
We train classification networks using a Label-Smoothed
Cross-Entropy (LS-CE) loss with a smoothing factor of 0.1,
whereas regression networks are trained with an L1 loss.

Previous studies have shown that rotation augmentation
generally lowers accuracy and is primarily used for rota-
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Hyperparameters Range Initial Final (cls) Final (reg)

Optimizer [SGD, Adam] Adam Adam Adam
Learning Rate (SGD) [0.1, 0.05, 0.01, 0.005, 0.001] 0.1 0.01 0.01
Learning Rate (Adam) [0.01, 0.005, 0.001, 0.0005, 0.0001] 0.001 0.0005 0.0001
Momentum (SGD) [0.9, 0.98] 0.98 0.9 0.9
Epsilon (Adam) [10−4, 10−6, 10−8] 10−8 10−4 10−6

Weight Decay [10−4, 10−5, 10−6] 10−5 10−4 10−5

kNN value (DGCNN, TP-DGCNN) [20, 25, 30] 20 20 20
Views (SimpleView) [6, 9, 12] 6 6 6

Table 1. Considered hyperparameters and search ranges. Overview of the searched hyperparameters, the initial values, and the final
values for both classification (cls) and regression (reg).

tion invariance [10]. However, as our labels are world space
directions, different orientations of the point cloud should
yield different predicted directions. To this effect, we use
rotation augmentation on both point clouds and ground
truth. For classification, we select a random class as the new
ground truth and rotate the point cloud from the original di-
rection to the new one. For regression we simply rotate both
the point cloud and ground truth by the same random axis
and angle. For both, we use a probability of 30%. For other
data augmentations, we use random translation, scaling, and
dropout, as used in the original DGCNN protocol.

5.3. Evaluation Metrics and Protocol

Due to the intrinsic difference of the classification and
regression tasks we report performance using different met-
rics. For classification models, we use the macro-accuracy,
which assigns equal weight to all classes, C, see Eq. (1)

Macro Accuracy =
1

C

C∑
i

Acci, (1)

where Acci is the accuracy for the ith class, and C is the
total number of considered classes.

For regression models, we measure the performance us-
ing the average angular similarity measure, see Eq. (2)

Average Angular Similarity =
1

N

N∑
i

1− θi
π
, (2)

where θi is the angle between the predicted and ground truth
directions, and N is the number of data points considered.
The angular similarity measure was chosen over the cosine
similarity, as it assigns more distinguishable values when
two vectors are nearly parallel.

In order to compare the classification and regression
models, we map the predictions of the regression models
to one of the 26 classes using the same method used for the
ground truth labels (as described in Sec. 3.2).

Additionally, due to the unique nature of the Assem-
blyNet dataset, it is possible to rotate each datapoint to all
possible 26 classes, and thereby check how well the net-
works generalize to all classes. Therefore, for the classifi-
cation task we use both the original direction distribution
(denoted Original-Dir.), as well as the equalized direction
distribution (denoted Equal-Dir.) where each data point is
evaluated for all 26 orientations.

6. Experimental Results

We report the metric performance for the classification
task in Tab. 2 and the regression task in Tab. 3. For the
classification setting, we find that the PointNet++ based
networks outperform all other networks. In the Original-
Dir. evaluation setting the standard PointNet++ performs
best, followed by the standard DGCNN. However, when
considering the more generalized Equal-Dir. setting we find
that the TP-DGCNN and TP-PointNet++ networks outper-
form their standard variations. This is a clear sign that the
two-path networks have merit when predicting the part di-
rections. We also find that the PointNet and SimpleView
networks perform poorly. This makes sense as the PointNet
network lacks any form of global information, whereas the
SimpleView network is limited by only being able to extract
global information from fixed perspectives.

In order to better understand the mistakes made by TP-
PointNet++, we evaluate the distribution of angular similar-
ities, see Fig. 7. We find that the most common mistakes are
either predicting the direct opposite or orthogonal direction
of the ground truth, and show examples of this in supp. mat.

For the the regression setting, we find that the standard
variants of the PointNet++ and DGCNN networks outper-
form the two-path variants. This is similar to how the
standard variations outperform the two-path networks in
the Original-Dir. distribution setting. When casting the re-
gression predictions into the classification settings we find
that the performance drops significantly, see Tab. 4. How-
ever, we find for all but the Original-Dir. test split, the TP-
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Table 2. Macro accuracy of classification networks. We eval-
uate all networks for the classification task across both validation
and test splits, as well as the Original-Dir. and Equal-Dir. distribu-
tions. We highlight the best performing model per split in bold.

Model Original-Dir. Equal-Dir.
Val. Test Val. Test

PointNet 35.67 53.28 37.74 40.27
PointNet++ 84.02 90.20 60.88 62.82
DGCNN 72.36 87.43 55.76 58.55
SimpleView 67.14 65.84 43.97 45.29

TP-DGCNN 62.25 85.61 58.91 62.20
TP-PointNet++ 79.19 78.97 65.13 69.49

Table 3. Angular similarity of regression networks. We eval-
uate all networks trained for the regression task across both the
validation and test splits using the angular similarity measure. We
highlight the best performing model per split in bold.

Model Angular Similarity
Val. Test

PointNet 0.724 0.740
PointNet++ 0.902 0.906
DGCNN 0.875 0.874
SimpleView 0.772 0.755

TP-DGCNN 0.857 0.855
TP-PointNet++ 0.874 0.900

Table 4. Macro accuracy of regression networks. We evaluate
all networks trained for the regression task across both the valida-
tion and test splits, as well as the Original-Dir. and Equal-Dir. data
distributions. The output of the regression networks are mapped to
one of the 26 discrete classes as described in Sec. 3.2. We high-
light the best performing model per split in bold.

Model Original-Dir. Equal-Dir.
Val. Test Val. Test

PointNet 19.01 18.38 5.59 5.60
PointNet++ 39.13 38.66 9.65 9.47
DGCNN 44.02 43.24 7.35 7.26
SimpleView 18.06 21.96 6.18 5.71

TP-DGCNN 36.58 34.02 8.27 8.29
TP-PointNet++ 45.51 41.68 13.62 14.30

PointNet++ network again outperform all other networks.

7. Ablation Studies
We conduct three ablation studies in order to determine

the effect of the proposed rotation augmentation, consid-
ering the classification task as an ordinal regression task,
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Figure 7. Distribution of angle similarities for TP-PointNet++
classification predictions. The angular similarity between pre-
dicted and true classes for TP-PointNet++ on the Equal-Dir. eval-
uation protocol. Note that the y-axis is on log-scale. Most errors
occur due to predicting the direct opposite or orthogonal direction.

and the total point cloud sizes. Unless otherwise noted, all
training settings are kept fixed as described in Sec. 5.2 and
evaluated using the validation split.

7.1. Effect of Rotation Augmentation

As mentioned in Sec. 5.2, using rotation augmentation
has previously been found to lower the accuracy of point
cloud models [10]. However, since the considered task of
predicting directions is distinct from the typical point cloud
classification and segmentation task, we find it necessary
to verify the use of rotations. We find that by applying ro-
tation augmentation during training it is possible to cover
the rarer (and even nonexistent) classes. This leads to a di-
rect improvement in the Equal-Dir. evaluation setting, see
Tab. 5. However, we also find that not using rotation aug-
mentation, improves performance for all networks except
for the PointNet++ variants in the Original-Dir. setting.

7.2. Effect of SORD Ordinal Regression Loss

When discretizing the possible part directions into 26
classes an inherent relative ordering exists between the dif-
ferent classes, as the severity of an incorrect prediction is
linked to how many degrees the prediction is off (e.g. an
error of 180◦ is worse than an error of 45◦). Therefore,
the classification task could be interpreted as an ordinal re-
gression task. To check whether the ordinal regression per-
spective leads to improved metric performance, we compare
the LS-CE loss with the SORD loss proposed by Dı́az and
Marathe [8] using the Cosine Distance as the distance func-
tion. As shown in Tab. 6 we find that across all networks
the LS-CE loss objective results in a better macro accuracy.
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Table 5. Effect of rotation augmentation. We determine the
effect of using rotation augmentations in the classification set-
ting. We find that when applying rotation augmentation the per-
formance increases for all tested networks for the more general
Equal-Dir. direction distribution.

Model Original-Dir. Equal-Dir.
w/o aug w/ aug w/o aug w/ aug

PointNet 43.48 35.67 6.56 37.74
PointNet++ 74.95 84.02 7.96 60.88
DGCNN 76.03 72.36 8.68 55.76
SimpleView 76.02 67.14 8.48 43.97

TP-DGCNN 80.22 62.25 7.59 58.91
TP-PointNet++ 69.89 79.19 12.06 65.13

Table 6. Effect of SORD ordinal regression loss. We com-
pare the performance in the classification setting when using the
classification-based LS-CE loss or the ordinal regression-based
SORD loss. We find that the LS-CE loss outperforms SORD
across all networks and direction distributions.

Model Original-Dir. Equal-Dir.
SORD LS-CE SORD LS-CE

PointNet 23.48 35.67 7.98 37.74
PointNet++ 51.72 84.02 25.35 60.88
DGCNN 60.56 72.36 20.76 55.76
SimpleView 33.55 67.14 10.45 43.97

TP-DGCNN 51.27 62.25 25.16 58.91
TP-PointNet++ 58.04 79.19 36.09 65.13

7.3. Effect of Point Cloud Size

As described in Sec. 5.2 the four state-of-the-art net-
works are trained with point clouds consisting of 1024
points, while the two-path networks are fed two point
clouds each consisting of 1024 points i.e. a total of 2048
points. In order to ensure that the improved performance
of the two-path networks was not solely from the increase
in point cloud sizes we compare the standard and two-path
DGCNN and PointNet++ variants when trained with a total
of 1024 and 2048 points, see Tab. 7. We find that the two-
path networks outperforms the standard variations under the
more general Equal-Dir. setting for both point cloud sizes,
whereas for the Original-Dir. setting the standard variants
perform better. This indicates to us that the improved per-
formance of the two-path networks is from the proposed
architecture, and not from a difference in point cloud sizes.

8. Conclusion
Exploded views are integral to effectively visualize com-

plex assemblies, but creating them has been predominantly
a manual, time-consuming process, as automated methods

Table 7. Effect of point cloud size. We compare the performance
in the classification setting when using a total point cloud size of
1024 and 2048 points, i.e., 2× 512 and 2× 1024. We find that for
both point cloud sizes the two-path networks achieves best perfor-
mance in the more general Equal-Dir. setting.

Model Original-Dir. Equal-Dir.
1024 2048 1024 2048

DGCNN 72.36 72.31 55.76 57.01
PointNet++ 84.02 79.49 60.88 64.14

TP-DGCNN 68.62 62.25 59.64 58.91
TP-PointNet++ 63.92 79.19 65.85 65.13

have faced challenges in terms of balancing speed and accu-
racy. Addressing this, we introduce AssemblyNet, a novel
dataset containing point cloud data of 44 assemblies, di-
vided into 495 subassemblies with a total of 5420 parts from
a combination of industrial 3D models and LEGO models.

The dataset is benchmarked using six different models,
four state-of-the-art models for processing 3D point clouds
as well as a two variations of a novel two-path network ar-
chitecture using either DGCNN or PointNet++ as a back-
bone. This two-path network approach is designed to put
an emphasis on the spatial relationship between a part and
its subassembly. We present benchmarks for both classifica-
tion and regression, using macro accuracy and angular sim-
ilarity, respectively. For classification we consider both the
original and an equalized distribution of directions, made
possible by rotating each datapoint to all 26 directions. For
regression we have also converted predictions and ground
truth to the nearest of the 26 classification directions for a
better comparison between the two approaches.

When evaluating using the more general equalized di-
rection distribution we find that the best performing model,
the TP-PointNet++, achieves an accuracy of 69.49%, out-
performing the second best model, PointNet++, by nearly
7 percentage points. We find that a majority of incorrect
predictions made by TP-PointNet++ are due to predicting
opposite or orthogonal directions. These results clearly in-
dicate that predicting part directions is a non-trivial task,
which the current methods cannot handle sufficiently.

By open-sourcing AssemblyNet, the code, and the mod-
els, we aim to further the research and development in au-
tomated generation of exploded views, an important step
in advancing technical illustrations, assembly instructions,
and assembly visualization.
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