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Abstract

Diabetic retinopathy (DR) is caused by long-standing
diabetes and is among the fifth leading cause for visual
impairment. The prospects of early diagnosis and treat-
ment could be helpful in curing the disease, however, the
detection procedure is rather challenging and mostly te-
dious. Therefore, automated diabetic retinopathy classifi-
cation using deep learning techniques has gained interest in
the medical imaging community. Akin to several other real-
world applications of deep learning, the typical assumption
of i.i.d data is also violated in DR classification that relies
on deep learning. Therefore, developing DR classification
methods robust to unseen distributions is of great value. In
this paper, we study the problem of generalizing a model
to unseen distributions or domains (a.k.a domain gener-
alization) in DR classification. To this end, we propose a
simple and effective domain generalization (DG) approach
that achieves self-distillation in vision transformers (ViT)
via a novel prediction softening mechanism. This predic-
tion softening is an adaptive convex combination of one-hot
labels with the model’s own knowledge. We perform ex-
tensive experiments on challenging open-source DR clas-
sification datasets under both multi-source and more chal-
lenging single-source DG settings with three different ViT
backbones to establish the efficacy and applicability of our
approach against competing methods. For the first time, we
report the performance of several state-of-the-art domain
generalization (DG) methods on open-source DR classifi-
cation datasets after conducting thorough experiments. Fi-
nally, our method is also capable of delivering improved
calibration performance than other methods, showing its
suitability for safety-critical applications, including health-
care. We hope that our contributions would instigate more
DG research across the medical imaging community. Code
is available at github.com/Chumsy0725/SPSD-ViT.

1. Introduction
Diabetic retinopathy (DR) is a global medical problem

over the last few decades; it arises from a complication

in Diabetes Mellitus. In DR, the development of glucose
in blood vessels can block them, thereby causing possi-
ble swelling and/or leaking of blood or fluid which could
eventually lead to visual impairment [45, 46]. Approxi-
mately 33% of 285 million people with diabetes mellitus
across the globe have signs of DR [30]. The prevailing
practice requires doctors to manually examine the fundus
images of the eye to understand the severity of DR. How-
ever, this is a time-consuming process and also there is a
scarcity of medical professionals compared to the number
of patients. Therefore, without much surprise, the devel-
opment of AI-powered tools capable of accurately detect-
ing DR has gained importance in the recent past. Several
studies in this pursuit utilize fundus images, which visu-
ally depict the current ophthalmic appearance of a person’s
retina [54]. The existence of DR symptoms in these fun-
dus images can be used to classify them using several steps
such as retinal blood vessel segmentation, lesion segmen-
tation, and DR detection [51]. We can detect DR and its
current stage by examining the presence/absence of sev-
eral lesions. The lesions that are important for diagnosis
are microaneurysms (MAs), superficial retinal hemorrhages
(SRHs), exudates (Exs) both soft exudates (SEs) and hard
exudates (HEs) intraretinal hemorrhages (IHEs), and cotton
wool spots (CWSs) [54]. According to recent studies, DR
can be classified into five different categories: namely no
DR, mild DR, moderate DR, severe DR, and proliferative
DR [25].

The typical assumption of i.i.d data which belong to
training and testing sets is often violated in many real-world
applications of deep learning, e.g., methods for DR classi-
fication [3]. Unsupervised domain adaptation is a line of
research for handling domain shift [16,23,39,58,69], but it
requires the availability of unlabelled data and an adaptation
phase, which typically consists of model re-training. Such
requirements are often difficult to fulfill in most medical
diagnosis applications. A viable direction is domain gen-
eralization (DG), which does not require the availability of
target domain data and any adaptation phase and therefore it
is more rewarding but also challenging [6,26,31,33,42,73].
Unfortunately, very little attention is paid to the develop-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7685

https://github.com/Chumsy0725/SPSD-ViT


Figure 1. Attention heatmaps obtained from the final ViT block. We can observe that the baselines: ERM-ViT and SD-ViT are suspectible
to relying on non-generalizable domain-specific features such as the background. On the other hand, our method (SPSD-ViT) is capable
of exploiting cross-domain generalizable features which mostly correspond to haemorrhages, microaneurysms, exudates and cotton wool
spots.

ment of DG methods for DR classification [3], which will
play a pivotal role in realizing robust DR classification sys-
tems. To this end, we explore the problem of generalizing
to unseen domains (DG) for the DR classification tasks. We
summarise our key contributions as follows:

Contributions: (1) Owing to the increasing popularity of
vision transformers (ViTs) [13, 59, 61, 67], to our knowl-
edge, we propose a first ViT-based DG approach for DR
classification that self-distills the knowledge of the full net-
work to its intermediate blocks via a new prediction soft-
ening mechanism. (2) We construct softened predictions
by formulating an adaptive convex combination of one-hot
labels with the model’s own knowledge. It strengths inter-
mediate representations and induces model regularization
to alleviate the overfitting to source domains, thereby en-
couraging the learning of more robust (typically domain-
invariant) features and reduces reliance on non-robust (typ-
ically domain-specific) features (Fig. 1). (3) We conduct
experiments on challenging DR datasets following Do-
mainbed [17] protocol under both multi-source and single-
source DG settings with three different ViT backbones. Re-

sults show the efficacy and applicability of our approach
against baselines and established methods. (4) For the first
time, we report the performance of several state-of-the-art
DG methods on open-source DR classification datasets.

2. Related Work

Domain Generalization: Domain generalization [6,26,31,
33, 41, 64] utilizes data from multiple source domains for
training to generalize to a new (unseen) domain. Some DG
methods explicitly aimed at reducing domain gap in the
feature space [12, 15, 36, 43, 71]. Another class of meth-
ods attempted the learning of generalizable model parame-
ters through variants of meta-learning [4, 8, 14, 32, 33, 50].
Through leveraging different auxiliary tasks, some meth-
ods were proposed to robustify the model against domain
shifts [6,65]. Furthermore, various DG methods resorted to
devising data augmentation techniques for improving cross-
domain generalization [24, 26, 55, 73] while some employ
test time adaptation methods [9, 21]. Recently, Gulrajani et
al. [17] proposed a new benchmark for DG, named “Do-
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mainbed”, which includes a rigorous evaluation protocol
that ensures a fair comparison between different DG algo-
rithms. It showed that even a simple Empirical Risk Min-
imization (ERM) method can be competitive with many of
the current state-of-the-art DG approaches. As such, the
Domainbed protocol has quickly gained popularity and is
now considered a standard for evaluating DG algorithms.
In this study, we have also adopted the Domainbed protocol
to report results. By using this protocol, we can provide a
reliable and fair comparison of our DG approach with other
state-of-the-art methods. Our results demonstrate the effec-
tiveness of our approach, even under the strict evaluation
criteria of the Domainbed benchmark.

A few methods have proposed variants of teacher-student
formulation [19] to tackle the DG problem. [66] proposed a
CNN-based teacher-student distillation scheme along with
a gradient filter as an efficient regularization term. Re-
cently [57] developed a self-distillation strategy to improve
the DG capabilities of ViTs. It scales the logits of both the
full network and a randomly sampled block with a fixed
temperature parameter prior to distillation. We adapt this
self-distillation for ViTs in DG for DR classification and
propose a new prediction softening mechanism, featuring
an adaptive convex combination of zero-entropy labels with
the model’s own knowledge. We empirically show that it is
more effective in improving the model’s generalizability to
unseen domains in DR classification.

DG in medical image analysis: The distribution of data
originating from different hospitals or even different sensors
could be sparingly different and hence it is important that a
model should generalize to a different data distribution than
it is trained on. Despite carrying significant importance, DG
for medical imaging analysis remains largely unexplored.
Among a few DG methods, [35] developed a meta-leaning
approach based on episodic training with task augmenta-
tion for medical image classification, and [34] leveraged
variational encoding to realize a characteristic feature space
through linear-dependency regularization. DG in medical
imaging has also been explored in the context of Federated
Learning (FL). To allow privacy-protected distribution of
information among clients, [38] presented episodic learn-
ing in Continuous Frequency Space (ELCFS) approach. We
note that there is very little work on studying domain gen-
eralization for DR classification. Recently, [3] proposed the
very first approach for robustifying the model under data
from unseen domains in DR classification. It achieves flat-
ness during the training of convolutional neural network
(CNN) and also employs domain-level gradient variance
regularization. We also propose a new DG approach for
DR categorization which transfers the model’s (ViTs) full
knowledge to its intermediate feature routes by a new pre-
diction softening scheme.

3. Proposed Method

3.1. Preliminaries

DG problem settings: In the typical domain generaliza-
tion (DG) setting, as outlined in [17], we assume access
to data from a set of training (source) domains, denoted as
D = {D}Nn=1. Each domain Dn represents a distribution
over the input space X , and there are a total of N training
domains. From each domain Dn, we sample K training
images consisting of pairs of inputs xk

n ∈ X and labels
ykn ∈ Y , where k ranges from 1 to K. Moreover, we as-
sume the existence of a set of target domains, denoted as
{T }Tt=1, where T is the total number of target domains and
is typically 1. The core objective in DG is to learn a func-
tion Fθ : X → Y , parameterized by θ which is capable
of predicting accurate labels for input data from an unseen
target domain Tt.
ViT-based ERM for DG: We first briefly revisit empirical
risk minimization (ERM) in the context of DG and then de-
scribe the ViT-based ERM in DG for DR classification task.
We assume the availability of a loss function L that can
measure the discrepancy between the predicted label and
the desired label. The ERM for DG accumulates data from
all training (source) domains and trains a classifier that finds
a predictor by minimizing [62]: 1

M

∑M
i=1 L(Fθ(x

i, yi)).
Where M = N × K denotes the total number of images
from all training (source) domains. The work of [17] es-
tablished that this simple ERM-based DG baseline reveals
competitive performance against many preceding state-of-
the-art DG methods under a fair evaluation protocol.

Now we assume that the model Fθ in ERM-DG (for DR
classification) contains J intermediate blocks/layers and a
final classifier h, which can be written as: F = (f1◦f2◦f3◦
. . . fJ)◦h, where fj denotes an intermediate block/layer. If
this model is a ViT (e.g., DeIT-Small [59]), then fj is a
self-attention transformer block. An important character-
istic of this network design is that any intermediate trans-
former block generates features of the same dimensions:
Rm×d, where m denotes the number of input features or
tokens and each lies in d dimensions.
Self-Distilled (SD) ViT for DG: Owing to the monolithic
design of ViT it is possible to create several intermediate
classifiers. For instance, the output of each transformer
block can be provided to the final classifier h to obtain an
intermediate classifier: Fj = fj ◦ h. Whereby each in-
termediate classifier manifests a feature route through the
network.

Through exploiting the ability to seamlessly create in-
termediate classifiers, [57] developed a technique that ran-
domly samples an intermediate classifier from all the pos-
sible ones at each training iteration. The output of the final
classifier is then distilled to this randomly sampled interme-
diate classifier. Specifically, the discrepancy between the
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Figure 2. Overall architecture of our proposed self-distilled ViT with the prediction softening mechanism.

final and randomly sampled intermediate classification clas-
sifier outputs is computed by comparing the KL divergence
between their logit distributions:

LKL(z∥zj) =
C∑

c=1

σ (z/τ)c log
σ (z/τ)c
σ (zj/τ)c

, (1)

where z, zj ∈ RC are the logit vectors produced by F and
Fj , respectively, and C is number of classes. σ denotes
the softmax operation and τ represent temperature used to
rescale the logit vector [19]. The model is optimized by
jointly minimizing the Eq.(1) and LCE:

L = LCE + λLKL, (2)

where λ balances the contribution of LKL towards the over-
all loss L.

3.2. Softening Predictions for Self-distillation
(SPSD)

We notice that, in Eq.(1), the τ is a fixed hyperparame-
ter during training, which is used to rescale the logits from
both the full classifier and the sampled intermediate classi-
fier. This can likely act as a bottleneck towards fully har-
nessing the potential of self-distillation. For instance, it ig-
nores the fact that during self-distillation: (1) the full clas-
sifier is not static and it is learning and, (2) during early
training, the predictions from both the full and intermediate
classifiers are unreliable. It can lead to model overfitting to
source domains causing more reliance on the brittle, non-
generalizable domain-specific features (Fig. 1).

To this end, inspired by [27], we propose to replace this
fixed rescaling with an adaptive convex combination of log-
its vector (from the full classifier or sampled intermediate
classifier) with one-hot ground truth vector. As training
evolves, this combination gradually increases the influence
of the model’s own knowledge in the self-distillation pro-
cess. Fig. 2 displays the overall architecture of our method.
We believe that this would better allow enhancing the in-
termediate feature routes via the process of self-distillation

(Fig. 3), thereby facilitating the learning of cross-domain
generalizable features.
Adaptive convex combination: Let z be the logit vector
produced by the full/intermediate classifier and let y be
the one-hot vector representation corresponding to ground-
truth label y. We propose an adaptive convex combination
of both z and y to generate the soft prediction from the
full/intermediate classifier as: βz + (1 − β)y, where β is
a mixing coefficient that determines how much the model
should trust its own prediction from the full network or in-
termediate classifier.

We now discuss how to set the value of β. The full classi-
fier along with the intermediate classifier does not stay fixed
during training and they are constantly evolving. Any fixed
value of β would become sub-optimal at some iteration dur-
ing training. As discussed earlier, a model is mostly unreli-
able during the early phases of the training since it has not
gone through the data enough times to be able to generate
reliable predictions. Therefore, we make β as a function
of training evolution. The β is gradually increased as the
training progresses to reflect the increasing reliability of the
model. Specifically, the β at tth training iteration is com-
puted as: βt = βT × t

T where T is the total number of
training iterations and βT is the βt at final iteration. Note
that, βT is the only hyperparameter to be sought using the
validation set. With βt, our proposed convex combination
becomes adaptive and is now expressed as: βtz+(1−βt)y.
After including our proposed soft prediction, the KL diver-
gence between the outputs of the full classifier and the ran-
domly sampled intermediate classifier can be computed as:

LKL(z∥zj) =
C∑

c=1
σ (βtz+ (1− βt)y)c log

σ(βtz+(1−βt)y)c
σ(βtzj+(1−βt)y)c

.

(3)

4. Experiments
Datasets: Following the DG method for DR classification
[3], we evaluate the effectiveness of our proposed method
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Figure 3. Block-wise accuracy (top-1 %) for SDViT and ours (SPSD-ViT) on Messidor 2 as target domain.

Figure 4. Sample of Images taken from the aptos dataset. Images contain many artefacts such as being out of focus, underexposed,
overexposed to light, etc.

on four existing datasets namely, APTOS [1], EYEPACS
[22], MESSIDOR and MESSIDOR2 [10]. It should be
noted that each dataset has a high class imbalance (e.g. ’No
DR’ class itself takes up to 74% of the EYEPACS dataset).
Each offers 3662, 88702, 1200, and 1744 fundus images,
respectively. Also, each dataset has a set of retina images
taken under a variety of imaging conditions belonging to 5
classes: no DR, mild DR, moderate DR, severe DR, and
proliferative DR. Images contain many artefacts such as be-
ing out of focus, underexposed, overexposed to light, etc.
Note that, the images in these datasets are collected under
multiple clinical settings using various cameras over an ex-
tended period of time which introduces more noise and vari-
ations (Fig. 4). We consider each dataset as a separate do-
main to conduct our experiments. We also report results
on WildCamelyon [5] dataset which contains histopatho-
logical images of breast cancer metastases in lymph node
sections taken over 5 hospitals. Each hospital is consid-
ered a domain. There are significant variations in each do-
main that arise from sources such as differences in patient
populations, slide staining, and equipment of image acqui-
sition [28,63]. Each domain has two classes, namely tumor-
ous and non-tumorous.
Implementation & training/testing details: We follow the

rigorous training and evaluation protocol of DomainBed
[17] to allow a fair comparison among methods. We use
the same data augmentations proposed in DomainBed [17]:
crops of random size and aspect ratio, resizing to 224 ×
224 pixels, random horizontal flips, random color jitter,
grayscaling the image with 10% probability, and normal-
ization. We consider each dataset as a domain and use
the standard training/validation split of 80%/20%. We use
AdamW [40] optimizer with its default hyperparameters as
in DomainBed [17] for ERM, with a learning rate of 5e-05
and a batch size of 32. We conduct hyperparameter search
only for our model-specific hyperparameters λ and β in the
range of {0.1 0.3 0.5 0.7 0.9} and {0.2 0.4 0.6 0.8}, respec-
tively. We report classification top-1 accuracy (%) on each
target domain averaged over three different trials with 3 dif-
ferent seeds. Following [17], we use the training domain
validation settings (IID) as our model selection criteria. Ini-
tially, each training domain is split into a subset of training
and validation and then we pool all the validation subsets of
each training domain to create an overall validation set. The
model maximizing the accuracy on the overall validation set
is selected as the best model. We use PyTorch [49] for im-
plementation and train on 2 V100 GPUs. Table 2 shows that
our method adds very little training overhead while signifi-
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Method Backbone(#Param) Aptos Eyepacs Messidor Messidor 2 Avg.
ERM [62] ResNet50(23.5M) 47.6±1.7 71.3±0.3 63.0±0.4 69.0±1.5 62.7
IRM [2] ResNet50 52.1±1.7 73.2±0.3 51.3±3.8 57.2±1.7 58.4
ARM [72] ResNet50 45.6±1.5 71.7±0.5 62.4±1.0 60.0±3.4 59.9
Fish [56] ResNet50 44.6±2.2 72.7±0.7 62.1±0.7 66.4±1.7 61.4
Fishr [52] ResNet50 47.0±1.8 71.9±0.6 63.3±0.5 66.4±0.2 62.2
GroupDRO [53] ResNet50 44.9±3.8 72.0±0.4 63.1±0.9 67.8±1.9 62.0
MLDG [32] ResNet50 44.1±1.6 71.9±0.5 62.7±0.6 64.4±0.4 60.8
Mixup [69] ResNet50 47.3±1.7 72.0±0.3 59.8±2.8 65.8±1.4 61.2
Coral [58] ResNet50 44.8±2.2 71.7±0.9 58.6±2.8 68.2±0.6 63.2
MMD [36] ResNet50 49.3±0.1 69.3±1.1 64.6±1.4 69.6±0.6 60.8
DANN [15] ResNet50 54.4±0.8 72.9±0.4 57.0±1.1 58.6±1.7 60.7
CDANN [37] ResNet50 48.1±0.7 73.1±0.3 55.8±1.8 61.2±1.3 59.5
VREX [29] ResNet50 49.6±2.3 73.2±0.3 58.5±0.6 65.4±1.6 61.7
SagNet [47] ResNet50 41.4±3.5 70.9±0.9 60.8±0.3 66.1±0.7 59.8
RSC [20] ResNet50 46.7±0.6 71.7±0.9 62.5±0.3 66.4±1.5 61.8
SWAD [7] ResNet50 43.8±2.2 71.6±1.3 58.9±1.7 67.7±2.0 60.5
DRGen [3] ResNet50 51.2±2.1 72.6±0.8 59.1±1.8 65.2±0.6 62.1
ERM-ViT [62] DeitSmall(22M) 48.5±0.9 70.7±0.7 62.7±1.6 69.5±2.5 62.9
ERM-ViT [62] T2T-14(21.5M) 54.0±3.0 73.2±0.4 60.8±1.7 72.0±0.2 62.5
ERM-ViT [62] CvT-13(20M) 49.3±3.8 69.3±0.1 65.2±0.5 70.6±1.8 63.6
SD-ViT [57] DeitSmall(22M) 48.2±2.5 69.6±1.5 61.5±0.2 69.4±0.2 62.2
SD-ViT [57] T2T-14(21.5M) 46.5±0.8 71.7±0.7 63.9±0.9 71.4±0.2 63.4
SD-ViT [57] CvT-13(20M) 47.8±2.3 70.9±0.8 63.9±1.4 72.4±0.6 63.1
SPSD-ViT(ours) DeitSmall(22M) 51.6±1.1 73.3±0.3 64.0±0.4 72.9±0.1 65.5
SPSD-ViT(ours) T2T-14(21.5M) 50.0±2.8 73.6±0.3 65.2±0.3 73.3±0.2 65.5
SPSD-ViT(ours) CvT-13(20M) 51.7±1.2 73.3±0.2 64.8±0.5 72.4±0.6 65.6

Table 1. Multi-Source Domain Generalization Results.

cantly improving the DG capabilities.

Method Average step time
ERM-ViT [62] 0.353
SD-ViT [57] 0.361
SPSD-ViT(ours) 0.368

Table 2. Training overhead in terms of average step time (secs.),

Evaluation with different ViT backbones: We con-
duct experiments with three different ViT-based backbones,
namely DeiT [60], CvT [68], and T2T-ViT [70] to establish
the applicability and generalizability of our method. DeiT is
a data-efficient image transformer trained on ImageNet [11]
using a student-teacher strategy. Note that, we do not utilize
the distillation token and the student-teacher formulation
settings in our experiments. We use the DeiT-small model
having 22M parameters as our default ViT backbone, unless
otherwise specified. The DeiT-small model can be regarded
as the ViT counterpart of the ResNet-50 [18] which has
23.5M parameters. CvT [68] improves vision transformer

performance and efficiency by introducing convolutions to
ViTs to get the best out of both designs. We consider CvT-
13 trained on ImageNet [11] for our experiments which has
20M parameters in size. T2T-ViT [70] propose a method
to encode the local structure of the surrounding token and
to reduce the length of tokens iteratively by relying on pro-
gressive tokenization. The T2T-14 model trained on Ima-
geNet [11] containing 21.5M parameters is adopted as the
backbone in our experiments. Table 1 shows that our pro-
posed method achieves superior results over all other exist-
ing methods irrespective of the backbone architecture used.

Multi-source DG results: We report an extensive compar-
ison with the existing SOTA methods in DG literature on
DR datasets as shown in Table 1. We believe that our exper-
iments will offer insights into how the existing SOTA DG
methods on natural datasets behave on DR datasets. More-
over, we compare our proposed method with existing SOTA
methods [3] in the DR context. We report ERM results with
both CNN and ViT backbones as a baseline as it shows
competitive performance against many existing DG meth-
ods [17]. We achieve a notable +2.1% increase in (overall)
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Method Hosp. 0 Hosp. 1 Hosp. 2 Hosp. 3 Hosp. 4 Average
ERM-ViT [62] 97.4±0.5 93.5±0.8 94.5±0.4 96.2±0.3 92.7±0.9 94.9
SD-ViT [57] 97.3±0.1 93.6±0.5 96.2±0.6 96.3±0.3 91.6±1.3 95.0
SPSD-ViT(ours) 97.4±0.1 95.3±0.2 95.8±0.4 96.4±0.2 93.5±0.9 95.7

Table 3. Multi-Source Domain Generalization Results (IID) on WildCamelyon [5] dataset.

Method Aptos Eyepacs Messidor 2 Average
DRGen [3] 41.7±4.3 43.1±7.9 44.8±0.9 43.2
ERM-ViT [62] 45.3±1.3 52.4±3.2 58.2±3.2 51.9
SD-ViT [57] 44.3±0.9 53.2±1.6 57.8±2.4 51.7
SPSD-ViT(ours) 48.3±1.1 57.4±2.1 62.2±1.6 55.9

Table 4. Single-source domain generalization results on Messidor
dataset.

Method Aptos Eyepacs Messidor Average
DRGen [3] 40.9±3.9 69.3±1.0 61.3±0.8 57.7
ERM-ViT [62] 47.9±2.1 67.4±0.9 59.6±3.9 58.3
SD-ViT [57] 51.8±0.9 68.7±0.6 62.0±1.7 60.8
SPSD-ViT(ours) 52.8±2.0 72.5±0.3 61.0±0.8 62.1

Table 5. Single-source domain generalization results on Messidor
2 dataset.

average accuracy over the second-best contestant.

Method Eyepacs Messidor Messidor 2 Average
DRGen [3] 67.5±1.8 46.7±0.1 61.0±0.1 58.4
ERM-ViT [62] 67.8±1.4 45.5±0.2 58.8±0.4 57.3
SD-ViT [57] 72.0±0.8 45.4±0.1 58.5±0.2 58.6
SPSD-ViT(ours) 71.4±0.8 45.6±0.1 58.8±0.2 58.6

Table 6. Single-source domain generalization results on Aptos
dataset.

Method Aptos Messidor Messidor 2 Average
DRGen [3] 61.3±1.9 54.6±1.5 65.4±0.1 60.4
ERM-ViT [62] 69.1±1.4 50.4±0.3 62.8±0.2 60.8
SD-ViT [57] 69.3±0.3 50.0±0.5 62.9±0.2 60.7
SPSD-ViT(ours) 75.1±0.5 50.5±0.8 62.2±0.4 62.5

Table 7. Single-source domain generalization results on Eyepacs.
dataset.

Single-source DG results: In the single-source DG setting,
we train our model only on one dataset and evaluate on the
other 3 datasets. The results in Table 4,5,6,7 show that our
method achieves superior performance in all the datasets

even under heavy class-imbalance. Single-source DG is
even more challenging in messidor dataset as the model
does not have any data for class id 4 (proliferative DR). Ta-
ble 4 shows that our method can generalize to new unseen
domains even under a heavy class-imbalanced scenario with
a significant improvement in the performance (+4.2%).
DG capability in other medical images: We also show re-
sults for multi-source domain generalization results on the
WildCamelyon dataset [5]. This dataset constitutes an ex-
tensive collection of histopathological images representing
breast cancer metastases. The detailed results can be found
in Table 3. Our method SPSD-ViT achieves superior re-
sults with 95.7% accuracy over both ERM-ViT and SD-
ViT. These results underscore the versatility of our proposed
SPSD-ViT method. While the core scope of our study in-
cludes only the Diabetic Retinopathy (DR) data, we found
that the method’s application is not limited to this area.
Calibration performance: We also evaluate the calibra-
tion performances of our proposed method under multi-
source settings, utilizing two widely accepted evaluation
metrics to measure the miscalibration of a model - Expected
Calibration Error (ECE) [48], and Static Calibration Er-
ror (SCE) [44]. The calibration performance of a predic-
tive model is crucial in decision-making processes, which
are an important part of healthcare applications. It estab-
lishes the credibility and reliability of the model’s predic-
tions. Table 8 illustrates the superior performance of our
method compared to established baselines. Notably, our
method not only exceeds the baselines in domain general-
ization (DG) performance, but also shows superior calibra-
tion performance. This dual achievement underscores the
method’s robustness, reinforcing the reliability of its pre-
dictions while maintaining high performance levels. This
makes our method a promising tool for effective, reliable
decision-making in various applications e.g., healthcare.
Ablations on prediction softening and hyperparameter
analysis: We show results with possible ablations of our
prediction softening in Table 9. In the final classifier only
case, logits are softened at the final block only using our
adaptive convex combination, and in the intermediate clas-
sifier only case, logits are softened at the randomly selected
intermediate block. Results show that our prediction soft-
ening on both full and intermediate classifier, as proposed,
achieves superior results compared to applying only on ei-
ther the full or the intermediate classifier. In Table 10, we
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Dataset Aptos Eyepacs Messidor Messidor 2

ECE SCE ECE SCE ECE SCE ECE SCE

ERM-ViT [62] 33.80± 2.60 16.21± 1.40 22.66± 1.18 9.88± 0.34 25.40± 3.69 10.94± 1.11 16.88± 2.74 8.19± 1.02
SD-ViT [57] 27.13± 1.03 15.04± 2.20 16.97± 1.77 8.31± 0.14 22.22± 1.73 10.12± 0.83 12.67± 1.92 7.08± 0.40
SPSD-ViT(ours) 23.20± 4.00 14.11± 1.41 17.06± 2.12 7.88± 0.99 20.86± 1.84 9.41± 0.47 11.36± 2.77 6.41± 0.47

Table 8. Calibration performance in SCE [44] and ECE [48] (in scale of 10−2).

Method Aptos Eyepacs Messidor Messidor 2 Average

None 48.2±2.5 69.6±1.5 61.5±0.2 69.4±0.2 62.2
Final classifier only 51.5±0.4 73.5±0.1 60.7±0.7 69.7±1.7 63.9
Interm. classifier only 49.1±0.4 71.7±0.5 63.0±2.4 68.4±3.4 63.0
Final & interm. classifier (SPSD-ViT) 51.6±1.1 73.2±0.3 64.0±0.4 72.9±0.1 65.5

Table 9. Ablation studies on proposed prediction softening.

Hyper-parameters Aptos Eyepacs Messidor Messidor 2 Average

λ = 0.1 47.7±0.7 70.9±1.2 63.3±0.2 71.9±0.7 63.5
λ = 0.3 50.6±1.2 73.2±0.3 60.2±2.0 71.0±0.7 63.7
λ = 0.5 52.7±0.8 73.5±0.2 61.2±2.8 71.9±0.3 64.8
λ = 0.7(Default) 51.6±1.1 73.3±0.7 64.0±0.4 72.9±0.1 65.5
λ = 0.9 50.5±0.7 73.4±0.4 64.5±0.3 72.2±0.5 65.2

Fixed β = 0.5 44.2±1.9 71.6±1.0 62.0±1.4 71.3±0.3 62.2
β = 0.2 48.2±0.4 69.6±0.9 63.9±0.2 72.6±0.6 63.5
β = 0.4 47.3±1.6 68.1±0.7 62.9±1.2 71.7±0.6 62.5
β = 0.6 53.1±0.6 72.5±0.3 63.4±0.9 71.9±0.8 65.2
β = 0.8(Default) 51.6±1.1 73.3±0.7 64.0±0.4 72.9±0.1 65.5
β = 0.1 49.7±0.8 73.2±0.2 63.5±0.6 72.3±0.6 64.7

Table 10. Detailed results on the sensitivity of SPSD-ViT(ours) to λ and β.

present a detailed analysis focusing on the sensitivity of two
key parameters in our method: λ derived from Equation (2),
and β which features in our adaptive convex combination.
We note that, our method is relatively resilient to minor per-
turbations in the β and λ parameters, continuing to deliver
comparable performance even when these variables deviate
slightly from the best-found values. This highlights the sta-
bility of our method and suggests that it is not overly reliant
on hyperparameter fine-tuning. However, it is notable that
constraining the value of β to a fixed level tends to lead to
sub-optimal performance, emphasizing the importance of
this adaptive parameter. Note that, all these experiments are
conducted using the DeiT-small backbone.

5. Conclusion

We present a new DG approach for DR classification
based on distilling the model’s own knowledge to its in-
termediate blocks by constructing a new prediction soften-

ing scheme, which is an adaptive convex combination of
one-hot labels and the model’s own knowledge. We re-
ported comprehensive results derived from multiple Dia-
betic Retinopathy (DR) datasets, with both multi-source and
single-source domain generalization (DG) settings, in con-
junction with various Vision Transformer (ViT) backbones.
These wide-ranging experiments corroborate the effective-
ness and versatility of our method against previously estab-
lished techniques. Beyond delivering superior DG perfor-
mance (top-1 accuracy), our method also shows improved
out-domain calibration performance (ECE and SCE). No-
tably, the importance of these improved calibration perfor-
mances cannot be overstated in a number of safety-critical
applications, with healthcare being a prime example. In
such critical fields, the reliability of a model’s prediction
is of paramount importance.
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