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Abstract

Perceptually Aligned Gradients (PAG) refer to an in-
triguing property observed in robust image classification
models, wherein their input gradients align with human
perception and pose semantic meanings. While this phe-
nomenon has gained significant research attention, it was
solely studied in the context of unimodal vision-only ar-
chitectures. In this work, we extend the study of PAG to
Vision-Language architectures, which form the foundations
for diverse image-text tasks and applications. Through an
adversarial robustification finetuning of CLIP, we demon-
strate that robust Vision-Language models exhibit PAG in
contrast to their vanilla counterparts. This work reveals
the merits of CLIP with PAG (CLIPAG) in several vision-
language generative tasks. Notably, we show that seam-
lessly integrating CLIPAG in a “plug-n-play” manner leads
to substantial improvements in vision-language generative
applications. Furthermore, leveraging its PAG property,
CLIPAG enables text-to-image generation without any gen-
erative model, which typically requires huge generators.

1. Introduction
Adversarial robustness is an essential objective in deep

learning, requiring models to be insensitive to small mali-
cious input perturbations, referred to as adversarial attacks.
Tsipiras et al. [59] discovered a surprising property of ad-
versarially robust models, commonly referred to as Per-
ceptually Aligned Gradients (PAG). According to this trait,
the input gradients of the model with respect to a specific
class are semantically related to it, being significantly more
aligned to human perception than non-robust ones. An im-
plication of this is that models with PAG have generative
capabilities that can be leveraged using pixel space opti-
mization. Specifically, the outputs of strong targeted ad-
versarial attacks lead to modifications that perceptually cor-
relate with the target class (see Figure 1). This exciting phe-
nomenon has gained much research attention, with attempts
at better understanding it [17, 24, 33, 57] and harnessing it
for various computer vision applications [5, 23, 53]. Inter-
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Figure 1. Unimodal Perceptually Aligned Gradients. Visual-
izations of large-ϵ targeted adversarial attacks on non-robust and
robust ResNet-50, trained on ImageNet. Such attacks lead to se-
mantically meaningful modifications in the robust model, indicat-
ing the generative capabilities of models with PAG. Contrary, the
modifications done by the “vanilla” one are entirely meaningless.

estingly, PAG has been explored so far solely in the context
of unimodal vision-only applications.

In contrast to the existing PAG literature that primar-
ily focuses on unimodal vision-only applications, our work
delves into the domain of Vision-Language (VL) models,
which is gaining significant research and attention these
days [25, 36, 37, 44, 50, 61, 62, 67]. Our exploration focuses
on CLIP [44] – Contrastive Language-Image Pretraining – a
powerful Vision-Language model that learns a joint feature
space for images and their captions. Building upon the un-
derstandings from the unimodal PAG research [11, 33, 59],
we consider an adversarial finetuning of the visual part of
CLIP as a method that can potentially induce gradient align-
ment. We demonstrate that while “vanilla” CLIP does not
possess PAG at all, its robust counterpart does (see Fig-
ure 3). We denote the resulting model as CLIPAG – CLIP
with Perceptually Aligned Gradients, and show experimen-
tally that adversarial training in this VL model implies PAG,
as in unimodal ones.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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A group of adorable animals having 
a picnic in a sunny meadow.

A cozy cabin nestled in a 
snowy mountain 

landscape.

A magical castle 
surrounded by lush 

gardens and a moat.

A mysterious cave with 
glowing crystals and 

hidden treasures.

A tranquil garden with 
blooming flowers and a 

peaceful pond.

A picturesque mountain range 
with snow-capped peaks and a 

winding river.

A bustling marketplace with 
vendors selling a variety of goods.

A tranquil lakeside retreat 
with a wooden dock and 

rowboats.
A vibrant street market with stalls 
selling exotic fruits and spices.

A charming cottage with a 
thatched roof and blooming 

flower garden.

A peaceful park with green 
lawns, shade trees, and 

families picnicking.

A mystical underwater cave with glowing 
plants and curious sea creatures.

A hidden waterfall in a 
lush jungle with exotic 

plants and wildlife.

A cozy fireplace with 
crackling fire and 

comfortable armchairs.

A mystical enchanted forest with glowing 
mushrooms and mythical creatures.

A tranquil mountain retreat 
with a log cabin and 
breathtaking views.

A futuristic underwater city with 
domed structures and marine life.

A charming cafe with outdoor 
seating and blooming flowers.

A peaceful countryside cottage with a 
thatched roof and a vegetable garden.

A magical underwater palace with 
mermaids and colorful coral reefs.

A tranquil mountain lake with 
crystal-clear water and 

towering peaks.

A bustling city square with 
cafes, street musicians, 

and outdoor seating.

A peaceful countryside picnic 
with a checkered blanket and 

homemade treats.

A vibrant fiesta with dancing, music, 
and traditional costumes.

A bustling spice market with 
colorful displays and enticing 

aromas.

A cozy art studio with 
easels, paints, and 
creative inspiration.

A tranquil lake surrounded 
by lush green forests.

A majestic waterfall cascading down a 
rocky cliff. A bustling harbor with 

boats and ships of all 
sizes.

A quaint village with 
cobblestone streets and 

historic architecture.

A vibrant street art mural 
covering the side of a 

building.

A scenic coastal path with 
cliffs and crashing waves.

A serene garden with 
neatly trimmed hedges 
and blooming flowers.

Figure 2. CLIPAG generator-free text-to-image generation.

Ever since its introduction, CLIP has become a founda-
tional model for a wide range of text-to-image generative
tasks [12, 20, 22, 31, 34, 41, 43, 45, 60]. These often involve
modifying images to maximize the alignment with a given
text prompt, achieved by deriving CLIP’s vision encoder
and updating the image to maximize the cosine similarity
with the text. However, CLIP is known to be vulnerable to
adversarial attacks [19] and lacks PAG, which poses a sig-
nificant challenge in achieving the desired meaningful vi-
sual modifications. Indeed, CLIPDraw [20], a CLIP-based
text-to-drawing framework, acknowledged this limitation,
stating “synthesis through-optimization methods often re-
sult in adversarial images that fulfill the numerical objec-
tive but are unrecognizable to humans”. To mitigate this,
researchers have developed ad-hoc techniques and tricks to
regularize and improve CLIP gradients, such as optimizing
a generator’s latent space [12, 22, 34, 43] or utilizing Bézier
curves rather than operating in the pixel-domain [20,60]. In
this context, our proposed CLIPAG is a natural solution to
this limitation, as discussed next.

We embark on demonstrating the benefits of CLIPAG by
seamlessly integrating it into existing CLIP-based genera-
tive frameworks in a “plug-n-play” manner. Specifically, we
consider both text-to-image generative tasks using CLIP-
Draw [20] and VQGAN+CLIP [12] and text-based styliza-
tion using CLIPStyler [34]. We show that replacing CLIP
with CLIPAG leads to improved performance in all these
fronts. Interestingly, CLIPAG alleviates the need for gra-
dient regularization techniques, offering a more straightfor-
ward approach for leveraging CLIP in such tasks.

Inspired by the above, we propose a novel text-to-image
generation via a simple iterative framework using CLIPAG.
Unlike the above-described experiments in which CLIPAG
is merged into existing solutions, this synthesis framework
is a direct pixel-domain-based approach. Amazingly, and in
contrast to existing text-to-image methods that rely on huge
generative networks (e.g., diffusion and GANs), CLIPAG
enables high-quality pixel-space image generation (see ex-
amples in Figure 2) without any explicit training of a gen-
erative model and while using a small pretrained network.
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Figure 3. PAG in CLIP. A demonstration of the PAG phenomenon using CLIP. We present the input-gradients w.r.t. a given text of both the
“vanilla” CLIP, randomized-smoothed CLIP, and CLIPAG in a zero-shot setting for natural images from ImageNet [13] (left) and cartoons
(right). While the former’s gradients are completely meaningless, the latters lead to gradients that better align perceptually with the given
text. Specifically, the adversarially robust CLIP leads to better alignment.

To summarize, the main contributions of this work are as
follows: (i) We introduce CLIPAG - an adversarially fine-
tuned version of the visual encoder of CLIP that exhibits
perceptually aligned gradients; (ii) We integrate CLIPAG
into existing text-to-image frameworks, substantially im-
proving their performance while also simplifying these al-
gorithms; and (iii) We leverage CLIPAG to propose a sim-
ple, generator-free text-to-image synthesis solution, produc-
ing high-quality synthesized images.

2. Related Work
2.1. Adversarial Attacks and Robustness

Adversarial Attacks Given an image classifier fθ(x), ad-
versarial examples are crafted by attackers in order to fool it
and divert the classification decision. It was discovered that
adding a small imperceptible noise δ to an image can lead to
misclassification [26, 58]. In practice, the adversarial noise
is constrained within a defined threat model ∆, often de-
fined as a small norm ball (e.g., ∆ = {δ : ∥δ∥∞ ≤ 8

255}).
Formally, given an input sample x, its true label y, and a
threat model ∆, a valid adversarial example x̂ satisfies the
following conditions: x̂ = x + δ s.t. δ ∈ ∆ and ypred ̸= y,
where ypred is the predicted label by the classifier fθ for x̂.
The process of generating such examples is called adver-
sarial attacks, and numerous methods have been developed
for this purpose [7, 15, 26, 39]. This work focuses on the
Projected Gradient Descent (PGD) method [39].

Adversarial Robustness The above-described vulnera-
bility of classifiers sparked research dedicated to enhancing
their robustness against such attacks. A commonly consid-
ered solution is adversarial training [26, 39], which approx-
imates the solution of the following min-max optimization:

min
θ

∑
(x,y)∈D

max
δ∈∆

L(fθ(x+ δ), y), (1)

in which the classifier is trained to correctly classify the
most challenging adversarial examples allowed by the
threat model ∆. An additional effective technique for ro-
bustifying neural networks is randomized smoothing [11],
in which the classifier is smoothed by convolution with
Gaussian noise. Specifically, in the L2 case, the robust clas-
sifier f̂θ,σ is a smoothed version of fθ,

f̂θ,σ = En∼N (0,σ2I)[fθ(x+ n)], (2)

where σ controls the robustness-accuracy tradeoff.

2.2. Perceptually Aligned Gradients

Perceptually aligned gradients (PAG) [17,18,59] refer to
classifier input-gradients, ∇xfθ(y|x), that are semantically
aligned with human perception. Consequently, when an im-
age is altered to maximize the probability of a specific class
in a model with PAG, the modifications made to the image
are semantically meaningful, as demonstrated in Figure 1.
PAG has been found to exist in adversarially trained models
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Figure 4. Vision-Language Contrastive Adversarial Training.
According to Equation 3, we first craft adversarial perturbation δ
to minimize the similarity between the corresponding image-text
pairs, i.e., reduce the values on the main diagonal of the depicted
matrix. Next, we train the CLIP model to align the adversarial
examples and their matching text, i.e., to maximize the values on
the main diagonal. Repeating these steps results in adversarially
robust CLIP that possesses Perceptually Aligned Gradients.

but not in “vanilla” ones [59], indicating that the features
learned by the former are more aligned with human vision.

PAG has recently drawn significant research attention.
Theoretically oriented studies have focused on better un-
derstanding this trait and the circumstances for its appear-
ance. By demonstrating PAG in randomized smoothed clas-
sifiers, it has been established that PAG is a general prop-
erty of robust models and not solely an artifact of adver-
sarial training [33]. Furthermore, Ganz et al. [24] demon-
strated the bidirectional relationship between PAG and ro-
bustness, revealing that PAG implies robustness and vice-
versa. Additionally, Srinivas et al. [57] recently shed some
light on the cause of PAG via off-manifold robustness anal-
ysis. Applicative-oriented studies aimed at leveraging PAG
for generative tasks, such as image generation and image-
to-image translation [53], improving state-of-the-art image
generation results [23]. PAG has also been explored for im-
proved robust classification [5].

Despite this extensive line of work and the growing in-
terest in multimodal networks among the computer vision
research community, PAG has only been studied within the
context of unimodal vision-only architectures and has never
been explored in the vision-language domain. In this work,
we aim to close this gap and investigate the existence of
PAG in Vision-Language multimodal architectures and its
connection to adversarial robustness using both adversarial
training and randomized smoothing. Armed with this, we
explore the potential of multimodal PAG in improving mul-
tiple text-to-image generative applications.

2.3. CLIP in Vision-Language Generative Tasks

CLIP (Contrastive Language-Image Pretraining) [44] is
a multimodal Vision-Language model pretrained to align a
massive corpus of 400 million pairs of images and their cap-
tions. The outstanding richness of CLIP’s visual and textual

space has been leveraged for various text-to-image genera-
tive tasks. Several studies have focused on image genera-
tion conditioned on textual descriptions, mainly by guiding
the visual result to be aligned with the given text in CLIP’s
space [12, 20, 31, 41, 45, 48]. VQGAN+CLIP [12] pro-
posed a training-free method to generate images from text
by optimizing the latent code of a pretrained VQGAN [65]
to output an image that matches the textual description in
the CLIP space. Similarly, Ponce et al. introduced Clip-
DRAW [20], a method that combined CLIP and Bézier
curves for generating drawings from texts by optimizing
the parameters of such curves for best alignment. Interest-
ingly, [20] has identified CLIP’s susceptibility to adversar-
ial attacks: “A key issue in synthesis through optimization
is that the produced images often leave the space of natu-
ral images, or fool the system through adversarial means”.
Thus, such works mitigated this by avoiding pixel-domain
optimization and performing multiview augmentations.

Another line of work involving CLIP is text-guided
style transfer and image editing. StyleCLIP [43] and
StyleGAN-NADA [22] proposed to leverage a pretrained
StyleGAN [32] model with CLIP to adjust the style of im-
ages to match a given textual descriptions. CLIPStyler [34]
tackles a similar task using a framework that consists of
several CLIP-based losses, augmentation pipes, and a style
network being trained for each image. CLIP was also used
for localized text-based image-editing using internal learn-
ing [3]. These studies demonstrate the broad applicability
of CLIP in text-to-image generative tasks.

3. Obtaining Vision-Language PAG
In this paper, we delve into the concept of Perceptually

Aligned Gradients (PAG) within vision-language models.
We focus on the image encoder’s input gradients with re-
spect to a given textual input, aiming for structured content
that is semantically correlated with the text. To this end,
we leverage the well-established observation that both ad-
versarial training and randomized smoothing lead to aligned
gradients in unimodal vision-only models [33,59]. First, we
explore the gradients of “vanilla” CLIP, using the publicly
available CLIP ViT-B/32 [29], using both natural images
from ImageNet [13] and arbitrary cartoon ones. To this end,
we obtain input gradients by deriving the image encoder to
maximize the cosine similarity with a given text in CLIP’s
feature space. As can be seen in Figure 3, the standard CLIP
model has no alignment with the semantically meaningful
features while also exhibiting a strong blockiness effect due
to the Vision Transformer (ViT) architecture [16].

Next, we examine the gradient alignment of the same
CLIP model with randomized smoothing. This approach
mitigates the blockiness effect and improves the alignment,
as seen in Figure 3, but only to some extent. Hence, we pro-
pose to adversarially finetune the CLIP model to improve
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Figure 5. CLIPDraw results. Visualization of CLIPDraw outputs with CLIP and CLIPAG using different textual prompts styles (artistic
in blue, abstract concepts in purple, and realistic in green. The top two rows represent results without augmentation. As can be seen, in this
case, CLIP completely fails to guide the optimization process toward meaningful outputs. However, CLIPAG significantly outperforms it,
leading to improved drawings that align with the textual description. Moreover, when applying augmentations (bottom rows), CLIPAG still
leads to better visual outputs, as also indicated in the quantitative evaluation presented in Table 1.

the PAG property. To this end, we adopt adversarial train-
ing techniques [39], as illustrated in Figure 4. We denote
the Text Encoder and Image Encoder as fT

θT
and f I

θI
, re-

spectively, where θT and θI represent the models’ parame-
ters. Given an image x and its corresponding caption t from
an image-text dataset D, we first craft adversarial example
x+ δ aimed to minimize the similarity between matching
image-caption pairs. Subsequently, we update the model
weights to maximize the similarity between the adversarial
examples and their corresponding captions. Formally, we
propose solving the following optimization problem, which
extends adversarial training to the multimodal case:

min
θI ,θT

∑
(x,t)∈D

max
δ∈∆

LSIM (f I
θI (x+ δ), fT

θT (t)), (3)

where LSIM represents cosine similarity loss calculated in
CLIP’s feature space. We visualize the optimization pro-
cess described in Equation 3 in Figure 4 while taking into
account the fact that CLIP is trained over batches of pairs
via contrastive learning.

Conducting such training brings several challenges and
design choices. First, CLIP was originally trained on mas-
sive 400 million image-text pairs with a humongous batch
size of 32, 768, using hundreds of GPUs. The combination
of the training set size, which introduces a huge diversity,
and the large mini-batches contributing to the effectiveness

of contrastive training led to unprecedented capabilities.
Finetuning such an architecture using academic resources
might potentially lead to catastrophic forgetting [21] and
deteriorate performance. Moreover, when finetuning on ad-
versarial examples, this could be further exacerbated. The
vulnerability of CLIP to adversarial attacks might force a
massive change of parameters during the finetuning, result-
ing in significant degradation of the generalization capa-
bilities of CLIP, which are necessary for a wide range of
downstream generative tasks. However, recall that our ob-
jective is not to robustify CLIP but rather to align its gradi-
ents. Considering the challenges mentioned above, and the
observation that in the unimodal case, adversarial training
with even a low maximum perturbation bound can lead to
perceptually aligned gradients [2], we focus on adversarial
training using a small threat model. We hypothesize that
this strategy will lead to PAG with less detrimental effects
than applying adversarial training with the common robus-
tification threat models. In practice, we use a threat model
of ∆ = {δ : ∥δ∥2 ≤ 1.5} for images of 224 × 224 × 3,
which is approximately equivalent to a mean pixel change
of 1

255 , which is much smaller than the ones used in adver-
sarial robustness research.

In our approach, we focus on aligning the gradients of
the image encoder, and thus, we choose to freeze the param-
eters of the pretrained text encoder when solving Equation
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Figure 6. VQGAN+CLIP results. Visualization of VQAGAN + CLIP results using both CLIP and CLIPAG on various text prompts using
the same hyperparameters and seed. As can be seen, seamlessly integrating CLIPAG to VQGAN+CLIP improves the generated images.

3. By doing so, we not only reduce computational costs
(freezing half of the model’s parameters) but also intro-
duce a valuable stabilizing mechanism during the adversar-
ial finetuning of the image encoder. This is particularly ef-
fective because the pretrained text encoder generates mean-
ingful representations, and aligning the image encoder with
it can significantly enhance its performance. Furthermore,
we conduct comprehensive experiments to thoroughly eval-
uate the impact of various design choices, which we discuss
in the supplementary materials. Specifically, we investigate
the effects of different architectures, including both convo-
lutional networks and Vision Transformers (ViT) [16], as
well as different threat models, such as L2 and L∞ norms.
In our practical implementation, we mainly focus on CLIP’s
ViT-B/32 architecture, which is widely utilized in down-
stream tasks and thus enables a fair comparison. We train
it using a concatenated dataset that combines SBU [42],
CC3M [56], CC12M [8] and LAION-400M [54] and we
subsample them to obtain a uniform dataset (i.e., the distri-
bution to draw from each source is approximately the same).
We perform a short finetuning with a low learning rate for
the model using eight A40 GPUs while keeping the text en-
coder frozen (implementation details listed in Appendix A).

After adversarially finetuning CLIP, we assess whether
it achieves greater gradient alignment than the “vanilla”
model and the randomized smoothed one. As illustrated
in Figure 3, the robustly trained variant exhibits the highest
alignment with the provided texts. These findings indicate
that similar to the unimodal case, robustification yields PAG
in the context of VL models. Due to its superiority, we fo-
cus hereafter on the adversarially trained model.

4. CLIPAG as a Generative Model

In this section, we explore the benefits of CLIPAG (CLIP
with Perceptually Aligned Gradients) in various generative

tasks in two main settings – CLIP-based generative frame-
works and generator-free text-to-image generation.

4.1. Text-to-Image Generative Frameworks

Due to its strong vision-language alignment, CLIP is
used as a fundamental block in various text-to-image gen-
erative tasks and applications, such as text-based edit-
ing [4, 22, 34, 43, 60] and generation [12, 20, 31, 41, 45, 48].
In this section, we demonstrate that CLIPAG can be inte-
grated into existing text-to-image generation applications in
a “plug-n-play” manner by simply replacing the “vanilla”
CLIP with its robust counterpart. Specifically, to thor-
oughly explore the effects of leveraging CLIPAG, we ex-
periment with it in text-based image editing and genera-
tion frameworks by integrating it into CLIPDraw [20], VQ-
GAN+CLIP [12] and CLIPStyler [34]. We focus mainly
on CLIPDraw due to its simplicity and lack of a generative
model, which enables us to explore the generative capabil-
ities of CLIPAG compared to the standard CLIP. In addi-
tion, in Appendix B, we demonstrate that besides generative
tasks, CLIPAG can lead to improved explainability.

Text-based Image Generation In this setting, we con-
sider both CLIPDraw [20] and VQGAN+CLIP [12]. CLIP-
Draw proposed a CLIP-based approach for text-to-drawing
generation by optimizing a set of Bézier curves to mini-
mize the cosine distance in the CLIP space between gen-
erated images and description prompts. Additionally, to
overcome the issue of the non-aligned gradients of CLIP,
the authors utilized a multiview augmentation pipeline. As
stated in their paper, “without image augmentation, synthe-
sis through-optimization methods often result in adversarial
images that fulfill the numerical objective but are unrecog-
nizable to humans.” We study the effect of replacing CLIP
in CLIPDraw with CLIPAG in two configurations – with
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“Cubism” “Oil painting” “Burning” “Ice”

CLIPStyler

+ CLIPAG
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Figure 7. CLIPStyler results. Visualization of applying CLIP-
Styler [34] using both CLIP and CLIPAG, with and without the
style network (bottom and top, respectively). As can be seen,
while CLIP struggles to guide the style transfer process without
a style network, CLIPAG leads to much better results, attesting to
its improved gradients. Additionally, even with the introduction of
the style network, the outputs of CLIPAG are more convincing.

Method Aug. Aesthetics Caption consistency
ConvNext ViT-H/14

Score Pref. Sim. R-Prec Sim. R-Prec
CLIPDraw [20] ✗ 3.70 22% 27.1 2% 18.1 1%

+ CLIPAG ✗ 3.98 78% 32.1 19% 26.3 32%
CLIPDraw [20] ✓ 4.14 34% 35.4 31% 31.6 70%

+ CLIPAG ✓ 4.31 66% 36.0 52% 32.0 72%

Table 1. CLIPDraw quantitative results. CLIPDraw results us-
ing CLIP and CLIPAG using aesthetic and caption consistency
metrics, with and without augmentation pipeline. As can be seen,
simply replacing CLIP with CLIPAG leads to a substantial im-
provement in terms of aesthetics and caption similarity, attesting
to the benefits of CLIP with Perceptually Aligned Gradients.

and without the augmentation pipe. The rationale behind
omitting the augmentation is to compare the generative ca-
pabilities of CLIP and CLIPAG. First, we analyze the per-
formance qualitatively and present the results in Figure 5.
As can be seen, CLIPAG leads to improved performance
compared to the baseline and is also capable of operating
without augmentation, unlike the baseline, due to PAG.

In order to quantitatively analyze performance, we adopt
an automatic procedure for aesthetics assessment. To this
end, we generate 100 artistic prompts using ChatGPT [6]
by conditioning on prompt examples from CLIPDraw’s pa-
per as a prefix. Next, we generate 100 images using CLIP-
Draw with the baseline and CLIPAG. Finally, we propose
two main empirical metrics for assessing the performance –

(i) Utilize a linear-probed CLIP model on AVA dataset [40],
a human-annotated dataset of aesthetics containing over
250, 000 images (the aesthetic scores are between 1 to 10).
A similar technique was also adopted in [45]. Based on this
model, we report the mean aesthetic score and the Prefer-
ence rate between CLIPDraw using CLIP and CLIPAG. (ii)
We utilize two publicly-available CLIP models [29] (Con-
vNext1 and ViT-H/142) and report two metrics aimed at cap-
turing the caption consistency – the cosine similarity (Sim.)
and the retrieval precision (R-Prec). R-Prec is averaged pre-
cision of a retrieval task where, for each generated image,
the model predicts the most probable prompt among all the
100 generated prompts. We report the above scores in Ta-
ble 1 both with and without augmentation. As can be seen,
CLIPAG significantly outperforms the baseline in all met-
rics when omitting the augmentations due to the PAG prop-
erty. Interestingly, even with the augmentations aimed at
mitigating CLIP’s susceptibility to adversarial attacks, CLI-
PAG leads to much-improved performance.

An additional evidence of the benefits of CLIPAG in
text-based generative frameworks is provided by using VQ-
GAN+CLIP [12]. In Figure 6, we qualitatively demon-
strate the effectiveness of replacing CLIP with CLIPAG in
the VQGAN+CLIP framework on different prompts. To
quantitatively evaluate the effect of CLIPAG in the VQ-
GAN+CLIP framework, we randomly sample 100 captions
from the validation set of MS-COCO captions [10], gener-
ate images accordingly with both CLIP and CLIPAG and
calculate their cosine similarity using OpenCLIP ViT-H/14.
Despite the fact that OpenCLIP is not robust and probably
more aligned with the “vanilla” one, CLIPAG obtains 34.3
cosine similarity, surpassing CLIP’s 33.4. We provide ad-
ditional details regarding these experiments in Appendix A,
along with additional qualitative results.

Text-based Image Editing For image editing tasks, we
adopt CLIPStyler [34] as our framework, which leverages
a pretrained CLIP model for text-based image style trans-
fer. CLIPStyler addresses the issue of meaningless CLIP
gradients by incorporating a style network and employing a
multiview augmentation pipeline. In this study, we compare
the performance of CLIPStyler using the standard CLIP
and CLIPAG model in two settings: (i) the “plug-n-play”
approach and (ii) without the style network (to isolate the
guidance capability of CLIPAG and CLIP in style-transfer).
As can be seen in Figure 7, seamlessly replacing CLIP with
CLIPAG leads to marked improvement. In addition, while
utilizing CLIP without the style network completely fails,
CLIPAG’s results are substantially better, showcasing its ca-
pabilities in guiding a text-based style transfer process.

1CLIP-convnext-base-w-320-laion-aesthetic-s13B-b82K
2CLIP-ViT-H-14-laion2B-s32B-b79K
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Figure 8. Generator-free text-to-image framework. Visualiza-
tion of the proposed method to harness CLIPAG for text-to-image
generation without any generative model. Specifically, we iter-
atively update the pixels of an image to better align to a textual
description. Due to PAG, such a process leads to meaningful im-
ages that align with the text.

4.2. Generator-Free Text-to-Image Generation

In recent years, text-to-image generation has gained sub-
stantial attention, leading to the development of various
methods aimed at tackling this challenging task [12, 35, 45,
47,49,51]. While these methods employ diverse techniques,
they all rely on powerful generative models. In this sec-
tion, we present a novel approach that breaks away from
traditional text-to-image pipelines by leveraging CLIPAG,
a compact, non-generative model with approximately 150
million parameters. To this end, we introduce a simple yet
effective generator-free text-to-image synthesis framework,
as depicted in Figure 8, which employs an iterative pixel-
space optimization technique to align an input image with
a target text, leveraging the Perceptually Aligned Gradients
of CLIPAG. Notably, our approach does not involve train-
ing any of CLIPAG’s components. The proposed frame-
work consists of three key blocks: (i) Initialization – Sam-
pling the input for the generation process. To achieve this,
we model a low-resolution dataset as a Gaussian Mixture
Model and select the candidate image with the best align-
ment to the given text based on CLIP; (ii) Multiview aug-
mentations – in each iteration, we duplicate the image and
perform differential random augmentations. In practice, we
use DiffAugment [68] and random cropping; (iii) CLIPAG-
based Loss – in every step, we update the input image using
the input gradients of CLIPAG to better align with the text.
We provide the implementation details in Appendix A.

To qualitatively demonstrate the capabilities of our
generator-free framework, we visualize generated images
corresponding to various textual descriptions in Figure 2
and Appendix D. The images produced by CLIPAG ex-
hibit a high level of visual fidelity and consistency with
the given text, despite the absence of a traditional gener-
ative model. For quantitative assessment, we conduct ex-
periments on the MS-COCO dataset. First, we synthesize

Method #Params. ZS IS↑ FID↓ CLIPScore↑
Stack-GAN [66] - ✗ 8.5 74.1 -
AttnGAN [64] 230M ✗ 23.3 35.5 27.7
CogView [14] 4,000M ✗ 18.2 27.1 33.2
DALL-E [47] 12,000M ✓ 17.9 27.5 -
GLIDE [41] 6,000M ✓ - 12.2 -
Ours 150M ✓ 18.7 42.3 34.7

Table 2. MS-COCO text-to-image generation results. Inception
score, CLIPScore (higher is better), and Frechet Inception Dis-
tance (lower is better) results, along with model sizes.

the same 100 prompts used in the VQGAN+CLIP exper-
iments and calculate the CLIPScore using OpenCLIP ViT-
14/H. Our framework achieves an impressive score of 36.8,
surpassing the performance of the generator-based frame-
work. Specifically, we outperform VQGAN with CLIP by
↑ 3.4 and VQGAN with CLIPAG by ↑ 2.5. Next, to further
evaluate the performance, we generate 30,000 images from
MS-COCO validation captions in a zero-shot (ZS) setting.
We calculate the CLIPScore [27], Inception Score (IS) [52],
and Frechet Inception Distance (FID) [28], and compare
our results against strong baselines in Table 2. Notably,
while using a significantly smaller non-generative model,
our approach outperforms DALL-E [47] and CogView [14]
in Inception Score. However, our FID metric is relatively
weaker, potentially attributed to CLIPAG’s tendency to gen-
erate colorful and artistic images, which deviate from the
characteristics of the MS-COCO. We hypothesize that this
can be mitigated via prompt tuning but leave this for fu-
ture work. In addition, we explore different aspects of our
proposed scheme, in Appendix D. While our results do not
yet rival state-of-the-art methods [41,46,51], they highlight
the remarkable generative capabilities of CLIPAG and po-
tentially pave the way for a new family of generator-free
text-to-image generation techniques.

5. Discussion and Conclusions
In this paper, we explore the concept of PAG in the con-

text of Vision-Language architectures using CLIP. Our find-
ings highlight several significant contributions. First, we es-
tablish the presence of PAG in CLIP by adversarially fine-
tuning it. This demonstrates that the phenomenon of PAG
is not limited to unimodal vision-only architectures but ex-
tends to multimodal models. Second, we demonstrate that
CLIPAG can be seamlessly integrated into existing text-to-
image existing frameworks, leading to substantial improve-
ments. Lastly, we showcase that CLIPAG can be used for
generator-free text-to-image synthesis, which typically re-
lies heavily on generative models. Our results demonstrate
the practical implications and potential of harnessing PAG
in real-world Vision-Language applications. We believe the
insights and findings presented in this paper will inspire fur-
ther exploration and advancements in harnessing PAG in
multimodal research.
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Farinella, and Tal Hassner, editors, Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October
23-27, 2022, Proceedings, Part XXXVII, volume 13697 of
Lecture Notes in Computer Science, pages 88–105. Springer,
2022. 2, 4, 6, 7, 8

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3, 4

[14] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-
image generation via transformers, 2021. 8

[15] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun
Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Conference on Computer Vision
and Pattern Recognition, CVPR, 2018. 3

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021. 4, 6

[17] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Brandon Tran, and Aleksander Madry. Adversar-
ial robustness as a prior for learned representations. arXiv,
2019. 1, 3

[18] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola
Schoenlieb. On the connection between adversarial robust-
ness and saliency map interpretability. In International Con-
ference on Machine Learning, ICML, 2019. 3

[19] Stanislav Fort. Adversarial examples for the openai clip in
its zero-shot classification regime and their semantic gener-
alization, Jan 2021. 2

[20] Kevin Frans, Lisa B. Soros, and Olaf Witkowski. Clipdraw:
Exploring text-to-drawing synthesis through language-image
encoders. In NeurIPS, 2022. 2, 4, 6, 7

[21] Robert M French. Catastrophic forgetting in connectionist
networks. Trends in cognitive sciences, 3(4):128–135, 1999.
5

[22] Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans.
Graph., 41(4):141:1–141:13, 2022. 2, 4, 6, 13

[23] Roy Ganz and Michael Elad. BIGRoc: Boosting image
generation via a robust classifier. Transactions on Machine
Learning Research, 2022. 1, 4

[24] Roy Ganz, Bahjat Kawar, and Michael Elad. Do percep-
tually aligned gradients imply robustness? In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett, editors, Interna-
tional Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pages 10628–10648.
PMLR, 2023. 1, 4

[25] Roy Ganz, Oren Nuriel, Aviad Aberdam, Yair Kittenplon,
Shai Mazor, and Ron Litman. Towards models that can see
and read. CoRR, abs/2301.07389, 2023. 1

[26] I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
Harnessing Adversarial Examples. In International Confer-
ence on Learning Representations, ICLR, 2015. 3

[27] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning, 2022. 8

3851



[28] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium, 2018. 8

[29] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip, July 2021. If you use this software, please cite it as
below. 4, 7, 12

[30] Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion:
Text-to-svg by abstracting pixel-based diffusion models,
2022. 12

[31] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park,
Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling
up gans for text-to-image synthesis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 2, 4, 6

[32] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan, 2020. 4

[33] Simran Kaur, Jeremy M. Cohen, and Zachary C. Lipton. Are
perceptually-aligned gradients a general property of robust
classifiers? CoRR, 2019. 1, 4

[34] Gihyun Kwon and Jong Chul Ye. Clipstyler: Image style
transfer with a single text condition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18062–18071, June 2022. 2, 4,
6, 7, 13

[35] Dongxu Li, Junnan Li, and Steven C. H. Hoi. Blip-diffusion:
Pre-trained subject representation for controllable text-to-
image generation and editing, 2023. 8

[36] Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H.
Hoi. BLIP-2: bootstrapping language-image pre-training
with frozen image encoders and large language models.
CoRR, abs/2301.12597, 2023. 1

[37] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. BLIP: bootstrapping language-image pre-training for
unified vision-language understanding and generation. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
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