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Abstract

Whilst contrastive learning yields powerful representa-
tions by matching different augmented views of the same in-
stance, it lacks the ability to capture the similarities between
different instances. One popular way to address this limi-
tation is by learning global features (after the global pool-
ing) to capture inter-instance relationships based on knowl-
edge distillation, where the global features of the teacher
are used to guide the learning of the global features of
the student. Inspired by cross-modality learning, we ex-
tend this existing framework that only learns from global
features by encouraging the global features and intermedi-
ate layer features to learn from each other. This leads to
our novel self-supervised framework: cross-context learn-
ing between global and hypercolumn features (CGH), that
enforces the consistency of instance relations between low-
and high-level semantics. Specifically, we stack the interme-
diate feature maps to construct a “hypercolumn” represen-
tation so that we can measure instance relations using two
contexts (hypercolumn and global feature) separately, and
then use the relations of one context to guide the learning of
the other. This cross-context learning allows the model to
learn from the differences between the two contexts. The ex-
perimental results on linear classification and downstream
tasks show that our method outperforms the state-of-the-art
methods.

1. Introduction

Representation learning has become a challenging and

active topic in computer vision, capable of learning rep-

resentations that can be transferred to various downstream

tasks, such as classification, object detection, segmentation,

etc [12, 22, 27, 28, 46]. Due to the capability of leverag-

ing massive amounts of data without requiring annotations,

self-supervised representation learning, in particular, has

shown the potential to learn representations that generalize

well on various downstream tasks.

Contrastive learning has shown promising results in the

self-supervised representation learning [14, 16, 19, 42, 44,

48]. Contrastive learning aims to learn invariant represen-

tations for different views of the same image instance (aug-

mented views should have similar features while different

instances are forced to have dissimilar features). Therefore,

it lacks the ability to capture similar semantics shared be-

tween different instances [17,49]. As a result, it suffers from

the so-called “class collision problem” [5,33]. Recent meth-

ods aim to alleviate this limitation by capturing similarity

relationships among instances based on the knowledge dis-

tillation framework where the student is trained to predict

the target similarity distribution from the teacher [15, 49].

The similarity relationships are typically measured with the

cosine similarities between the input and the samples in the

memory bank, which are normalized with a softmax opera-

tion. This leads to a probabilistic distribution where similar

instances are emphasized so that the student is trained to

produce correlated features for similar samples. However,

these methods are limited to use the global features (after

the global average pooling) of the teacher to guide the learn-

ing of the global features of the student. We term this line

of works as “global-context learning” in this paper.

Works in cross-modality learning [1,38] have shown that

the learning paradigm of one modality can benefit from

cross-modal information from multiple modalities. While

an additional modality is not available when considering

visual-only data, we argue that whilst features from the
intermediate layers and global features from the final
layer are correlated, they encode semantics at different
levels of abstraction – the earlier layers capturing lower-

level details while the latter layers capturing higher-level

semantics. The differences between intermediate layers

and global features can facilitate the learning of both com-

pared with global-context learning in current works. In-

spired by this, we treat the intermediate layers and global

features as two contexts and propose a cross-context learn-

ing strategy where these two contexts learn from each other.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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More specifically, we construct a “hypercolumn” represen-

tation [18] by stacking the concatenation of intermediate

feature maps as the context of the intermediate layers. Then

we measure similarity relationships among instances using

two contexts (hypercolumn and global feature) separately,

and use the similarity relationships of one context as su-
pervision to guide the learning of the other. This leads

to a novel self-supervised framework–cross-context learn-

ing between global and hypercolumn features (CGH)–that

learns representations by capturing cross-context informa-

tion from global features and hypercolumns.

We highlight our proposed CGH framework degenerates

to ReSSL [49] as a special case of global-context learning

when the hypercolumn only uses the last layer. The linear

classification results on ImageNet show that the proposed

CGH outperforms MoCo-v2 [8] and ReSSL [49] by 3.0%
and 1.2% respectively with 200 epochs pre-training.

The contributions of this paper can be summarized as

follows:

• We address the class collision problem in contrastive

learning by capturing similarity relationships among

instances with the knowledge distillation framework.

In contrast to previous methods that are limited to

global feature-based instance relations, we propose a

novel cross-context learning scheme in which two con-

texts, one constructed from intermediate layers (hyper-

column) and one from global features, are used to su-

pervise each other.

• We show that using the proposed hypercolumn-based

representations to capture instance relationships is

beneficial and leads to learning better global represen-

tations. Precision-recall graphs on the similarity dis-

tributions show that this leads to significantly higher

recall at very similar precision levels (Sec. 4.6).

• Our method is simple and effective. The experimental

results on self-supervised benchmarks show that our

method achieves superior performance on linear eval-

uation and downstream tasks compared with state-of-

the-art methods, which demonstrates the effectiveness

of the cross-context learning strategy.

2. Related work
2.1. Contrastive learning

Contrastive learning based on the Siamese structure aims

to learn representations by ensuring positive pairs stay

close in the latent space and keeping the negative pairs

far away [6–8, 19, 21, 34, 39, 41]. To achieve this, con-

trastive learning maximizes the correlation between differ-

ent transformed versions of the same image in the latent

space and minimizes that of negative pairs [6]. MoCo [19]

performs contrastive learning through a dictionary lookup,

whilst SimCLR [6] simplifies MoCo’s sampling strategy by

generating negative samples from the current batch instead

of maintaining a memory bank. However, it can be a chal-

lenge to generate meaningful negative samples. Therefore,

non-contrastive methods without negative pairs are devel-

oped [9,16] by using techniques like stop-gradient and pre-

diction head to prevent collapsing so that the Siamese net-

work doesn’t produce a constant output.

2.2. Deep clustering

Contrastive learning forces every instance to be assigned

to a distinct class by pushing different instances apart. By

contrast, deep clustering based methods [17, 33] map sim-

ilar instances to the same class to solve the class collision

problem. Typically, deep clustering based methods lever-

age clustering algorithms like K-Means [36] to assign a

pseudo label for each instance so that similar instances can

be clustered into the same clustering centroid. DeepClus-

ter [2] uses K-means to generate labels for the samples,

which are used as pseudo labels to provide supervisory sig-

nals for learning representations. SwAV [3] proposes an

online clustering algorithm and enforces the consistency of

cluster assignments between different views of the same im-

age. The previous methods only establish a single hierarchy

of the images, PCL-v2 [33] discovers the multiple semantic

hierarchies of the images and performs instance-wise and

instance-cluster contrastive learning to solve the class colli-

sion problem. HCSC [17] extends the work of PCL-v2 [33]

by selecting high-quality positive and negative pairs based

on the similarity between the samples and the centroids.

However, most of these works are based on a strong as-

sumption that the labels must induce an equipartition of the

data [49].

2.3. Inter-sample relations

Further works try to alleviate class collision by ex-

tending the positive sample pair to a set of positive sam-

ples [12,31,37]. NNCLR [12] generates an additional posi-

tive pair by finding the nearest neighbor of the input image.

MSF [31] compares the input image with several nearest

neighbors stored in a memory bank. CMSF [37] further

generalizes the idea in MSF by refining the search space

of nearest neighbors so that the search space is correlated

to the query image yet has sufficient variances. A close

line of works to this paper aim to solve the class colli-

sion problem by capturing instance relations based on self-

distillation [29,47]. OBoW [15] trains the student to predict

the similarity distribution over the vocabulary generated by

the teacher, which is built upon the local views of the fea-

ture maps and works as a codebook. Instead of using the

quantized feature map to generate the target, ReSSL [49]

uses different views for the teacher and student based on the
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Figure 1. Overview of the proposed CGH framework. We adopt a knowledge distillation framework where the teacher is the exponential

moving average of the student. A heavily corrupted view x1 is fed into the student Es to obtain both a hypercolumn embedding zh1 and a

global embedding zg1 while a weakly augmented view x2 is passed to the teacher Et to obtain a hypercolumn embedding zh2 and a global

embedding zg2 . The embeddings are used to measure the similarity relationships between the augmented views x1, x2 and the samples in

the memory bank – this leads to a similarity distribution. We enforce two instance relations alignments: “global-hypercolumn alignment”
and “hypercolumn-global alignment”, which are detailed in the text.

weak-contrastive augmentation strategy. The view through

weak augmentation is fed into the teacher to provide a reli-

able target while the other view (via contrastive augmenta-

tion) is passed to the student for prediction. The consistency

between different views is enforced. These methods are

limited to only learn from global features after the global

pooling layer. By contrast, we propose to enforce cross-

context learning by using the one of the context (e.g., inter-

mediate layers) as guidance to learn the other (e.g., global

features).

3. Methodology

3.1. Overview

An overview of the proposed approach is shown

in Fig. 1. The core idea of our scheme is to learn from

cross-context information, one context derived from the

global features after the global average pooling and one

context derived from a hypercolumn that is constructed by

the concatenation of intermediate feature maps. To achieve

that, we enforce two instance relations alignments: “global-
hypercolumn alignment” and “hypercolumn-global align-

ment”. The global-hypercolumn alignment aims to use the

hypercolumn of the teacher Et to generate a target similar-

ity distribution to guide the learning of the similarity distri-

bution based on the global feature of the student Es while

hypercolumn-global alignment uses the global feature of the

teacher to create a target distribution for guiding the learn-

ing of the similarity distribution based on the hypercolumn

for the student. The effectiveness of the cross-context learn-

ing is analysed in Sec. 4.6. We provide the training cost

analysis in the supplementary material.

3.2. Cross-context learning

Given an image x, we generate a weakly augmented

view x2 through weak augmentation for the teacher and a

heavily augmented view x1 through contrastive augmenta-

tion for the student as in [15, 49]. Compared with the weak

augmentation, the contrastive augmentation is more aggres-

sive and generates heavily corrupted views. The student is

trained to adapt to the heavy disturbance and noise intro-

duced by the contrastive augmentation to learn robust repre-

sentations. By contrast, the teacher generates a stable target

based on the less aggressive weak augmentation.
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We then proceed to generate the contexts of global fea-

ture and hypercolumn for the teacher and the student sep-

arately, as shown in Fig. 1. First, x2 is passed to the

teacher encoder Et to produce the “global feature con-
text” (after the global average pooling) hg

2 = Et(x2).
Then hg

2 is transformed by a global projector Ht to pro-

duce a low-dimensional global embedding by zg2 = Ht(h
g
2)

as in [8, 49]. As for the hypercolumn of the teacher, let

El
t(x2) ∈ R

cl×hl×wl be the intermediate feature maps of

the l-th convolutional block, l ∈ {0, . . . , L}, where cl de-

notes the number of channels, hl is the height and wl is

the width. The intermediate feature maps {El
t(x2)}, which

are downsampled to the same spatial size as the output of

the last convolutional block EL
t (x2) to reduce GPU mem-

ory consumption, are concatenated first and then mapped to

a d-dimensional latent space through a 1 × 1 convolution

followed by average pooling to obtain the “hypercolumn
context” hh

2 ∈ R
d. hh

2 is transformed by another pro-

jector Hh
t to obtain the hypercolumn embedding by zh2 =

Hh
t (h

h
2 ). Thus the contexts of the global feature hg

2 and

hypercolumnn hh
2 are obtained for the teacher. Likewise,

for the student, we produce the global feature context hg
1 =

Es(x1), hypercolumnn context hh
1 and the corresponding

embeddings zg1 = Hs(h
g
1) and zh1 = Hh

s (h
h
1 ) for the heav-

ily corrupted view x1.

Next we measure the similarity relationships between

the augmented views (x1 and x2) and the samples in the

memory bank. Following [8, 49], the embeddings are used

to maintain two queue-based memory banks separately: a

global memory bank Q based on zg2 and a hypercolumn

memory bank Qh based on zh2 . To guide the learning of the

global feature context hg
1 for the student, we use the sim-

ilarity relationships between hh
2 and the embeddings ẑhi in

the hypercolumn memory bank Qh as the target. The rela-

tionships are measured using the cosine similarity between

zh2 and ẑhi . We normalize the similarities with a softmax

operation and produce a target probabilistic distribution yh
2

for the teacher:

yh
2 [i] =

exp (sim(zh2 , ẑ
h
i )/τh)

∑M
k=1 exp (sim(zh2 , ẑ

h
k)/τh)

, (1)

where yh
2 [i] is the i-th element of the target similarity dis-

tribution generated by hypercolumn context hh
2 , ẑhi is the

i-th embedding in the hypercolumn memory bank Qh, τh is

the temperature parameter for the hypercolumn context, M

is the size of the memory bank and sim(u,v) = u�v
‖u‖2‖v‖2

denotes the cosine similarity between the vectors u and v.

Similarly, the predicted distribution from the student is ex-

pressed as follows:

yg
1[i] =

exp (sim(zg1, ẑi/τs))
∑M

k=1 exp (sim(zg1, ẑk)/τs)
, (2)

where yg
1[i] is the i-th element of the predicted similar-

ity distribution generated by global feature context hg
1, ẑi

is the i-th embedding in the memory bank Q and τs is

the temperature for global feature context of the student.

The global-hypercolumn alignment predicts the hypercol-

umn based similarity distribution yh
2 from the global feature

based distribution yg
1 by minimizing the cross-entropy loss:

Lgh = CE(yg
1,y

h
2 ), (3)

where CE(y1,y2) = −∑M
k=1 y2[k] logy1[k].

Similarly, for hypercolumn-global alignment, we guide

the learning of the hypercolumn context hh
1 for the student

using the global feature context hg
2 as target. The distribu-

tions generated by hh
1 and hg

2 are obtained as follows:

yh
1 [i] =

exp (sim(zh
1 ,ẑ

h
i /τh))∑M

k=1 exp (sim(zh
1 ,ẑ

h
k)/τh)

,

yg
2[i] =

exp (sim(zg
2 ,ẑi)/τt)∑M

k=1 exp (sim(zg
2 ,ẑk)/τt)

,
(4)

where τt is the temperature for the global feature context

of the teacher. The objective for hypercolumn-global align-

ment is expressed as:

Lhg = CE(yh
1 ,y

g
2). (5)

Altogether, we enforce the cross-context learning be-

tween the global feature context and hypercolumn context

with the following objective:

L = Lgh + Lhg = CE(yg
1,y

h
2 ) + CE(yh

1 ,y
g
2). (6)

3.3. Momentum update

The teacher is updated by the exponential moving aver-

age of the student:

Et ← mEt + (1−m)Es,
Ht ← mHt + (1−m)Hs,
Hh

t ← mHh
t + (1−m)Hh

s ,
(7)

where m is the momentum coefficient, which is set to 0.999
in all experiments following [8, 49].

3.4. Architecture

Following the common settings in self-supervised rep-

resentation learning with Siamese structure [8, 16], we use

ResNet as the online encoder and its momentum-updated

version as the momentum encoder. In our framework, the

momentum encoder is used as the teacher and the online en-

coder is used as the student. As in [8, 49], a two-layer MLP

is adopted as the projector Hs for transforming the global

feature from the global average pooling layer. Additionally,

we adopt another two-layer MLP, which has the same ar-

chitecture as Hs, as the projector Hh
s for transforming the

hypercolumn. Both projectors consist of two linear layers
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with a ReLU non-linear activation in between. Following

ReSSL [49], the hidden and output dimension of both pro-

jectors are set to 4096 and 512, respectively. When trans-

forming the concatenation of feature maps to generate the

hypercolumn vector, we use a 1×1 convolutional layer fol-

lowed by Batch Normalization (BN) [26], ReLU activation

and global average pooling. In our experiments, we use the

outputs of the four convolutional blocks of ResNet as inter-

mediate feature maps.

4. Experiments

In this section, we perform performance evaluation on

widely used self-supervised learning benchmarks, includ-

ing classification dataset ImageNet-1k [11] (also known as

IN-1K) and detection datasets (i.e, PASCAL VOC [13] and

COCO [35]). The visualization results are provided in the

supplementary material.

4.1. Experimental setups

4.1.1 Implementation details

We adopt the same encoder backbone for all methods. The

experiments on non-ImageNet datasets adopt ResNet-18

while the experiments on IN-1K use ResNet-50. For con-

trastive augmentation, we use the same strategy as in con-

trastive learning [8]. For weak augmentation, we use ran-

dom resized crop and random horizontal flip, which is also

the practice in ReSSL.

The teacher temperature and student temperature for

global feature are set to τt = 0.04 and τs = 0.1 respec-

tively, following ReSSL. The hypercolumn temperature is

set to τh = 0.08. The outputs of the third and fourth convo-

lutional block are used for generating the hypercolumn. For

a fair comparison, the other hyper-parameters are kept the

same as ReSSL in all experiments. In the revised version

of ReSSL [50], an additional predictor is used to further

improve performance (denoted as ReSSL-pred). We also

report our results with a predictor (denoted as CGH-pred)

using the same pre-training details as discussed above. Note

that 2x backprop methods update the encoder parameters

twice at each training step using the two augmented views,

which means more samples are used within the same epochs

and much higher training cost than 1x backprop meth-

ods [25, 49] like ours.

4.1.2 Training details

By default, the pre-training is performed on the training set

of IN-1K with 2 NVIDIA A100 GPUs. In ablation stud-

ies, we perform the pre-training on Tiny-ImageNet [32] and

STL-10 [10] for 400 epochs. The training recipes are de-

tailed as follows.

Tiny-ImageNet/STL-10. Following ReSSL, we pre-

train for 400 epochs, using the SGD optimizer with 0.06

learning rate, 5e-4 weight decay, and 0.9 momentum. The

batch size is set to 256. Following the linear evaluation pro-

tocol in [30], we train the classifier for 100 epochs with a

batch size of 256, 3.0 learning rate, no weight decay, 0.9

momentum and cosine learning rate decay.

IN-1K. Following ReSSL, we pre-train the model for

200 epochs, using the SGD optimizer with 0.05 learning

rate, 1e-4 weight decay, and 0.9 momentum. The batch size

is set to 256. As in ReSSL, for linear evaluation, we use 0.3

learning rate, no weight decay, 0.9 momentum and cosine

learning rate decay.

4.2. Linear classification and KNN evaluation

In this section, following the linear evaluation proto-

col [6, 8], we evaluate the learned representations by learn-

ing a linear classifier on top of the frozen pre-trained en-

coder for classification task. The encoder is pre-trained

on the training set of the dataset first and then the linear

classifier is trained on the training set with labels. The

classification accuracy on the validation set is reported.

For KNN evaluation, we follow the protocol in [17, 43]

by evaluating the learned encoder with K-nearest neigh-

bor (KNN) classifier using several nearest neighbor settings

{10, 20, 100, 200} and reporting the highest accuracy.

The linear and KNN classification results on IN-1K us-

ing 200 pre-training epochs are provided in Tab. 1. The pro-

posed method outperforms MoCo-v2/ReSSL by 3.0%/1.2%
on linear classification and 7.0%/1.6% on KNN classifica-

tion, respectively. The consistent improvement compared

with the baselines shows the effectiveness of the proposed

cross-context learning strategy.

To further demonstrate our performance, we provide the

classification results on IN-1K with multi-crop strategy [23]

and longer pre-training epochs in Tab. 2. As we can see, the

proposed CGH outperforms previous state-of-the-art meth-

ods. Note that our method also outperforms strong base-

lines that learn from multi-level signals (intermediate fea-

tures), such as OBoW [15] and CsMl [45]. The difference
between our CGH and these multi-level methods are dis-
cussed in the supplementary material.

4.3. Semi-supervised classification

We report the semi-supervised learning results by fine-

tuning the self-supervised pre-trained ResNet-50 using 1%
and 10% labelled data in IN-1K. We follow the semi-

supervised protocol of [6,49] and report the results in Tab. 3.

We use SGD optimizer with batch size of 256, weight de-

cay of 0, and momentum of 0.9 for fine-tuning. For 1% set-

ting, we train for 50 epochs using initial learning rate of 0.5
and 0.0001 for the classification head and feature extractor

backbone, respectively, which are decayed by a factor of 0.1

1777



Table 1. Linear and KNN evaluation results on IN-1K with ResNet-50 backbone. All methods are evaluated with the single-crop

setting. Top-1 and Top-5 validation accuracy are reported. †: our reproduction using the official codes. ∗: results cited from [9].

Method Backprop Epochs Batch Size
Linear

Acc.

KNN

Acc.

Supervised 1x 100 256 76.5 -

Asymmetric loss.
MoCo-v2 [8] 1x 200 256 67.5 55.9

PCL-v2 [33] 1x 200 256 67.6 58.1

HCSC [17] 1x 200 256 69.2 60.7

OBoW [15]† 1x 200 256 69.5 57.2

ReSSL [49]† 1x 200 256 69.3 61.3

ReSSL-pred [50] 1x 200 1024 72.0 -

CGH 1x 200 256 70.5 62.9
CGH-pred 1x 200 256 72.3 65.8

Symmetric loss. 2× FLOPS
SimCLR [6]∗ 2x 200 4096 68.3 -

SwAV [3]∗ 2x 200 4096 69.1 -

SimSiam [9]∗ 2x 200 256 70.0 -

BYOL [16]∗ 2x 200 4096 70.6 -

NNCLR [12] 2x 200 4096 70.7 -

Table 2. Linear evaluation on IN-1K with multi-crop strategy [3, 23] and different pre-training epochs.

Method Backprop Multi-Crop Epochs Batch Size
Linear

Acc.

CMSF [37] 1x � 200 256 74.4

OBoW [15] 1x � 200 256 73.8

ReSSL [49] 1x � 200 256 74.7

CGH-pred 1x � 200 256 75.7

SwAV [3] 2x � 800 4096 75.3

HCSC [17] 1x � 800 256 74.2

CsMl [45] 2x � 300 1024 75.3

DINO [4] 1x � 800 4096 75.3

NNCLR [12] 2x × 1000 4096 75.4

MAST [24] 2x × 1000 2048 75.8

CGH-pred 1x � 400 256 76.0

after 30 and 40 epochs. In the 10% setting, we fine-tune for

50 epochs and set the initial learning rate to 0.2 and 0.0002
for the classification head and feature extractor backbone,

respectively, which are decayed by a factor of 0.1 at the

30-th and 40-th epoch. Our method outperforms the other

methods significantly with 200 pre-training epochs. More-

over, we also report the results with multi-crop in the last

section of Tab. 3. In this case, our method achieves better

performance than ReSSL on 1% split and comparable re-

sults on 10% split. Furthermore, our method outperforms

2x backprop methods with more pre-training epochs.

4.4. Transfer learning

We evaluate the transfer learning performance of the

learned representations on the object detection and instance

segmentation task. We fine-tune the model pre-trained on

IN-1K on two widely used benchmarks PASCAL VOC [13]

and COCO [35]. The same protocol and setups as MoCo-

v2 are adopted. For PASCAL VOC object detection, we

adopt Faster R-CNN [40] as the detector backbone, which

is fine-tuned on training and validation splits of VOC 2007

and VOC 2012 and then tested on test set of VOC 2007;

for COCO detection and segmentation, we use the Mask R-
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Table 3. IN-1K semi-supervised classification using ResNet-50 pre-trained on IN-1K. Multi denotes the results with multi-crop. Top-1

and Top-5 validation accuracy are reported. †: our reproduction using the official codes. ∗: results cited from [25].

Method Epochs Batch Size
1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5

Asymmetric loss.
MoCo-v2 [8]∗ 200 256 43.8 72.3 61.9 84.6

HCSC [17] 200 256 48.0 75.6 64.3 86.0

ReSSL [49]† 200 256 51.1 77.3 65.0 87.1

CGH 200 256 53.2 78.9 66.4 88.0

Symmetric loss. 2× FLOPS
SimCLR [6] 1000 4096 48.3 75.5 65.6 87.8

SwAV [3] 800 4096 53.9 78.5 70.2 89.9

BYOL [16] 1000 4096 53.2 78.4 68.8 89.0

Multi-crop
ReSSL (Multi) [49] 200 256 57.9 - 70.4 -

CGH (Multi) 200 256 58.4 82.4 70.3 90.3

Table 4. Transfer learning on PASCAL VOC object detection.

All models are pre-trained for 200 epochs on IN-1K using ResNet-

50 as the encoder. ResNet-50-C4 is used as the fine-tuning back-

bone. The bounding-box detection score (APbb) is reported. †: our

reproduction using the official codes. ∗: results cited from [9].

Method APbb APbb
50 APbb

75

Asymmetric loss.
MoCo-v2 [8] 57.0 82.4 63.6

ReSSL [49]† 56.1 82.2 62.5

CGH 56.8 82.6 63.4

CGH (Multi) 57.1 82.6 63.8

Symmetric loss. 2× FLOPS
SimCLR [6]∗ 55.5 81.8 61.4

SwAV [3]∗ 55.4 81.5 61.4

SimSiam [9]∗ 56.4 82.0 62.8

BYOL [16]∗ 55.3 81.4 61.1

CNN [20] backbone, which is trained on the training set and

then evaluated on the validation set. The results on PAS-

CAL VOC are reported in Tab. 4 while the performance on

COCO can be found in the supplementary material. As we

can see, the proposed method achieves competitive perfor-

mance compared with the state-of-the-art methods, which

demonstrates the generality of the learned representations.

4.5. Ablation studies

4.5.1 Comparison of different context variants

In contrast to global-context learning, we leverage the sim-

ilarity relationships of one context (e.g., hypercolumn) as

a supervisory signal for the other context (e.g., global

Table 5. Comparison of different context variants.

Method Tiny-ImageNet STL-10

CGH (global-context) 48.9 90.7

CGH (same-context) 51.6 91.0

CGH (cross-context) 53.8 92.0

Table 6. Effect of hypercolumn temperature on Tiny-ImageNet.

τh 0.02 0.04 0.06 0.08 0.1

Acc. 52.1 52.8 53.1 53.8 51.8

Table 7. Effect of combinations of intermediate layers.

Layers
Tiny-ImageNet STL-10

L1 L2 L3 L4

- - - � 48.9 90.7

� - - � 53.6 91.8

- � - � 54.1 92.2

- - � � 53.8 92.0

� � � � 54.4 92.3

feature). Alternatively, in addition to the consistency of

the global features used in global-context learning frame-

work, we could incorporate the context of hypercolumn

by enforcing the consistency of the hypercolumns between

the teacher and the student, which is termed as same-

context. We compare global-context, same-context and

cross-context in Tab. 5. Note that global-context is iden-

tical to ReSSL here. We find that by incorporating the con-

1779



text from intermediate layers, both same-context and cross-

context outperform the global-context baseline. More-

over, cross-context achieves the best results. This suggests
that cross-context provides a superior supervisory sig-
nal compared with global-context learning because of
the use of the other contexts for supervision.

4.5.2 Hypercolumn temperature

We use a temperature to control the smoothness of the gen-

erated similarity distribution. Therefore, the temperature is

an important hyper-parameter in our framework. In order to

evaluate the effect of the temperature, we evaluate the val-

ues of τh from set {0.02, 0.04, 0.06, 0.08, 0.1}. As shown

in Tab. 6, we observe an inverted U-shaped trend on the per-

formance when we increase τh.

Note that when τh → 0, the distribution from the hy-

percolumn becomes extremely sharp. If it is used for tar-

get generation, the target turns into one-hot distribution

where the goal is to match the query with the most simi-

lar sample from the memory bank instead of capturing the

instance relations. In other words, the framework degrades

to NNCLR [12], except NNCLR doesn’t use hypercolumn

or memory bank for generating candidate samples. By con-

trast, when τh → 0.1, the distribution becomes flat and fails

to focus on similar samples. Therefore, the performance

tends to be better when τh is within [0.06, 0.08].

4.5.3 Intermediate layers for hypercolumn

It is interesting to explore the effectiveness and sensitivity

of different combinations of the intermediate layers. We

use one of the layers from layer1 to layer3, along with the

layer4 to generate hypercolumn and analyze the effect. The

results are provided in Tab. 7. We have the following ob-

servations: 1) The proposed CGH achieves the best result

by using all four layers for hypercolumn generation. 2) Hy-

percolumn based on layer2 and layer4 achieves the second

best result, which suggests that layer2 provides a better bal-

ance between low-level and high-level semantics compared

with layer1 and layer3. 3) Regardless of different combina-

tions of the intermediate layers, all variants outperform the

baseline ReSSL (first row), which shows our method is ro-

bust to the choice of the intermediate layers. Note that when

we only use the fourth convolutional block for hypercolumn

generation, our model will be identical to ReSSL – this is

the first row of Tab. 7.

4.6. Effectiveness of hypercolumn context

In this section, we demonstrate the benefits of using hy-

percolumn representations for learning global representa-

tions from the perspective of (soft-) selection of positive

samples, following the protocol in [17]. To do so, we note

that learning the student under the guidance of the teacher
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Figure 2. Performance of positive sample selection on IN-1K.

can be viewed as training with soft pseudo-labels provided

by the teacher. By thresholding the similarity distribution

of the teacher, the predicted positives and negatives in the

memory bank are obtained. Since the labels of the dataset

are publicly available, the ground-truth for the positives and

negatives in the memory bank can also be obtained (the

sample is positive if it belongs to the same class as the

input). Therefore, we can calculate the recall and preci-

sion which indicate the true positive and false positive se-

lected by the teacher’s similarity distribution. In Fig. 2,

we provide the plots of recall and precision on IN-1K dur-

ing pre-training based on the hypercolumn distribution from

the teacher, and the corresponding plots of ReSSL based on

global-context distribution. It’s shown that our method has

considerably better recall than ReSSL for the duration of

the training while maintaining similar precision levels (right

hand side plot). In summary, the results show that the pro-

posed scheme can find more correct positive samples corre-

sponding to the same class as the input (true positives), and

maintain a low false positive rate at the same time.

5. Conclusion

In order to solve the class collision problem in con-

trastive learning, inspired by cross-modality learning [1,

38], we present a novel framework based on knowledge

distillation, cross-context learning between global and hy-

percolumn features (CGH) that learns representations by

capturing cross-context information from the context of

global features and hypercolumns. The cross-context learn-

ing strategy allows the model to identify more similar sam-

ples (true positives) in the memory bank and keep low false

positives. The extensive experiments on classification and

downstream tasks demonstrate the effectiveness and gener-

ality of our method.
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