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Figure 1. SphereCraft: we present a new dataset for spherical keypoint detection, matching and camera pose estimation. (a) Scene model
and its 3D mesh. (b) Two rendered images from the scene in (a) (note the wide baseline and severe distortions on the second image), (c) their
associated depth maps and (d) the ground truth keypoint correspondences colored according to confidence (red = high, blue = low).

Abstract

This paper introduces SphereCraft, a dataset specifically
designed for spherical keypoint detection, matching, and
camera pose estimation. The dataset addresses the limita-
tions of existing datasets by providing extracted keypoints
from various detectors, along with their ground truth cor-
respondences. Synthetic scenes with photo-realistic ren-
dering and accurate 3D meshes are included, as well as
real-world scenes acquired from different spherical cam-
eras. SphereCraft enables the development and evalua-
tion of algorithms targeting multiple camera viewpoints,
advancing the state-of-the-art in computer vision tasks
involving spherical images. Our dataset is available at
https://dfki.github.io/spherecraftweb/.

1. Introduction

Spherical images have gained significant attention in com-
puter vision and deep learning due to their unique ability to
provide information about the entire visible scene from a
single vantage point. Previous studies have demonstrated the
advantages of using panoramic images for scene understand-
ing tasks, such as object detection [7, 35], semantic segmen-
tation [5, 6] and room layout prediction [37], by leveraging

the richer contextual information they offer.

However, current approaches rely on a single view to
perform these tasks and neglect information provided by
nearby views. We argue that reasoning about the underlying
scene can be significantly improved when multiple images
are available and the relative poses between the cameras are
known. Therefore, spherical keypoint detection, matching
and Structure from Motion (SfM) play a central role.

In this paper, we present SphereCraft, a novel dataset for
keypoint detection, matching, and SfM on spherical images,
which are critical for advancing the state-of-the-art in various
computer vision tasks. Unlike existing datasets, SphereCraft
includes extracted keypoints from a selection of popular
handcrafted and learned detectors along with their ground
truth correspondences, enabling researchers to develop and
evaluate algorithms targeting multiple camera viewpoints.
Following [17, 36], we leverage the computational power of
graphics cards to generate photo-realistic scenes and over-
come the limitations of scanning real-world scenarios. In
addition, we provide highly accurate 3D meshes for all syn-
thetic scenes (see Fig. 1). We also release a set of real
scenes acquired with two different spherical cameras, thus
providing both synthetic and real data for training and test-
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ing. Finally, we propose a standard set of rendered scenes
and a train-test split, facilitating evaluation and comparison
of different approaches within the research community.

While this paper focuses primarily on keypoint detection
and matching on spherical images, we emphasize the broader
applicability of SphereCraft in diverse research areas, in-
cluding single or multi-view depth prediction [18, 32, 33],
geometric dense 3D reconstruction [25], indoor room layout
prediction [35, 37], spherical novel view synthesis [14], and
spherical light fields [13]. To encourage collaboration and
reproducibility, we use free software [11] and openly acces-
sible scene models, along with the code required to render
images, depth maps, and camera poses.

2. Related Work

We start with an overview of relevant indoor and outdoor
datasets. Then, we justify why none of them qualify as a
dataset for spherical keypoint matching. Finally, we show
that SphereCraft fulfills all necessary requirements.

Indoor Datasets. Using a Matterport camera [22], Ar-
meni et al. [5] created the 2D-3D-S dataset. It comprises 6
large indoor areas aiming to support learning perception and
the development of embodied agents. It was later included
in the GibsonV2 dataset [16]. The Matterport3D dataset [6]
captured 90 different rooms and along with [16] can be
obtained through the Pano3D project [3]. Alternatively, one
could use Replica [28]. Similar to [16], it supports the de-
velopment of embodied agents and is compatible with AI
Habitat [21, 29]. Nonetheless, Replica has many drawbacks
and the provided SDK does not natively support the render-
ing of spherical images.

Instead of scanning real environments, [17, 31, 36] opted
for completely synthetic scenes to bypass the effort of acquir-
ing real-world data. Li et al. [17] created a photo-realistic
renderer (ExaRenderer) to produce the InteriorNet dataset.
The Structured3D dataset [36] aims to replace the human
annotator by leveraging global or semi-global structures and
symmetries. Won et al. [31] aim at omnidirectional stereo
depth estimation. For that they used Blender [11] to create
the OmniThings and OmniHouse datasets. However, the
resolution of the images, among other limitations, is too low.

Addressing object detection, [7, 35] show the benefits
of using 360◦ field of view images. Zhang et al. [35] use
500 images from SUN360 [34] to propose a whole-room
3D context model that outputs 3D bounding boxes and the
detected objects along with their semantic classes. Chou et
al. [7] created and released the 360-Indoor dataset with more
than 3000 spherical images annotated with bounding boxes.

Outdoor Datasets. Targeting semantic segmentation
of typical urban environments, [24] released a set of 600
outdoor spherical images annotated with semantic masks.
The SUN360 dataset [34] offers a vast collection of indoor

and outdoor spherical images obtained from the Internet 1

and grouped into place categories.
Discussion. All datasets discussed above are valuable

contributions, but lack the required data for spherical key-
point matching and SfM in one way or another. For instance,
some datasets [7,24,34,36] are “single image per scene”, i.e.
it is impossible to establish meaningful feature correspon-
dences between pairs of images, hence they are not suitable
for keypoint matching and SfM. InteriorNet [17] offers sev-
eral camera trajectories rendered as panoramic images, but
lack the required ground truth depth maps and camera poses.
In other cases [6, 16], apart from missing camera poses, the
depth maps are not accurate enough to determine ground
truth keypoint correspondences. Moreover, textures are often
blurred 2 and impair keypoint detection and description.

The task of keypoint matching networks is to find cor-
respondences between two sets of features extracted from
a pair of images. To prevent bias and achieve robustness,
the training data must contain a wide range of geometric
transformations. In the context of spherical images, these
transformations cause strong distortions in the distribution
of the keypoint locations, which must be handled by the
neural network. Even though [6,16,17] offer a large number
of scenes, their panoramic images lack the required range
of distortions. We offer an unprecedented wide range of
geometric transformations, as described in Sec. 3.1. Ad-
ditionally, considering the wide baseline between images
in [6, 16], the amount of meaningful image pairs—i.e. those
sharing a minimum number of correspondences—is signif-
icantly smaller than that provided by SphereCraft, which
thanks to the use of anchor and satellite cameras, provides
over 1.5M image pairs for training (see Table 2).

SphereCraft. The proposed dataset solves all afore-
mentioned issues. We generate indoor and outdoor syn-
thetic scenes with high-resolution RGB spherical images
along with their depth maps and ground truth camera poses
(Sec. 3.1). A selection of popular handcrafted and learned
keypoints is then extracted from each image (Sec. 3.3) and
accurate ground truth keypoint correspondences are estab-
lished (Sec. 3.4). A highly accurate 3D mesh from each
synthetic scene is also included. The resulting data (RGB
images, depth maps, camera poses, 3D meshes, keypoints
and their correspondences) is released along with a suggested
train-test split to allow future approaches to be trained and
evaluated on the same data. Additionally, we release all
Blender [11] projects along with code so other researchers
can easily render the same scenes at different resolutions or
create their own version of the data according to their needs.
Finally, we include a set of 9 real-world scenes acquired with
two different spherical cameras for the evaluation on real
data. Keypoints (handcrafted and learned) were extracted

1https://www.360cities.net/de
2https://aspis.cmpt.sfu.ca/scene-toolkit/scans/matterport3d/houses
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Dataset Keypoints GT Correspondences Depth Maps GT Camera Poses Indoors/Outdoors Synthetic/Real Semantic Masks 3D Meshes Num. Scenes
Matterport3D [6] - - 1024x512 - Indoor Real ✓ ✓ 90
GibsonV2 [16] - - 1024x512 - Indoor Real ✓ ✓ 572
Replica [28] - - - ✓ Indoor Real ✓ ✓ 18
InteriorNet [17] - - -* - Indoor Synthetic ✓ - 704✠
Structured3D [36] - - 1024x512 - Indoor Synthetic ✓ - 3500⋆
SUN360 [34] - - - - Both Real - - unknown⋆
360-Indoor [7] - - - - Indoor Real - - 3335⋆
CVRG-Pano [24] - - - - Outdoor Real ✓ - 600⋆
SphereCraft (ours) ✓ ✓ 2048x1024 ✓ Both Both† - ✓ 30

Table 1. Comparison of related datasets (GT = ground truth). SphereCraft is the only dataset with detected keypoints and their ground truth
correspondences. In contrast to 16-bit depth maps from [36], like [6, 16] we offer 32-bit float depth maps, but at four times the resolution.
* It is possible to render spherical depth maps with ExaRenderer [17], but they are not provided. ✠This is the number of rooms. The actual
number of scenes may be significantly smaller as one scene may contain several rooms. ⋆ “Single image per scene” datasets. See text for
details. †Although we provide synthetic and real scenes, the latter is reserved for testing as only images and keypoints are available for them.

and are also made available. Table 1 summarizes the differ-
ences between the discussed datasets.

3. Dataset Description
In this section, we provide details on how the scenes in-

cluded in our dataset were rendered or captured. We also
explain the strategy used to extract keypoints and map them
onto the sphere, as well as how ground truth keypoint corre-
spondences are established (in the case of synthetic scenes).

3.1. Synthetic Scenes

Our dataset comprises 21 synthetic scenes of different
types, sizes, and complexity. A sample from each scene is
shown in Fig. 5. In the following, we explain in detail how
data from these scenes is created. For simplicity, we omit
the index identifying the scene.

Anchor and satellite cameras. We start by manually
placing a set of cameras throughout a scene to homoge-
neously cover it. We refer to this initial set as anchor cam-
eras. For each anchor camera, we randomly generate a set
of satellite cameras in its vicinity. Akin to data augmen-
tation, the idea is to automatically produce several novel
views of the scene from many different positions and orien-
tations. With this, we generate the necessary data to train
deep models robust to geometric transformations, especially
regarding—but not limited to—spherical keypoint matching.

The procedure to create satellite cameras is as follows.
Using the position of an anchor camera as the starting point,
a random direction—expressed as unit 3D vector—and a
random displacement in the range (0, rmax] are selected to
determine the location of the satellite camera. Next, using
the orientation of the same anchor camera as reference, we
combine rotations around x, y and z axes to define the orien-
tation of the satellite camera. While rotations around the z
axis (vertical) are randomly selected in the range [−π, π], ro-
tations around x and y axes are limited to the range [−π

4 , π
4 ].

This yields images with severe distortions and is sufficient to
represent the deformations resulting from geometric transfor-
mations, as shown in Fig 2. Together, the new position and

Figure 2. Anchor image (top left) and 3 (out of 9) of its satellites.

orientation define the pose of the satellite camera. This is
repeated for the desired number of satellites before moving
on to the next anchor camera. In summary, it creates a set
of satellite cameras with random poses distributed within a
sphere of radius rmax centered at the anchor camera, forming
a cluster. For NA anchors and NS satellites per anchor, this
procedure generates a total of N = NA(1 +NS) cameras
per scene. While NA depends on the target scene, NS = 9
is kept at all times. As a result, all scenes are covered by NA

possibly overlapping clusters of (1 +NS) = 10 cameras.
Rendering. For each of the N cameras in a scene, we

use Blender [11] to render a full panoramic (360◦ × 180◦)
RGB image Ii and depth map Di, with i = {0, .., N − 1}.
To ensure accuracy, depth maps are stored as lossless 32-bit
float exr images [15]. To strike a good balance between
resolution and total size of the dataset, we chose to render
all images and depth maps at 2048 × 1024 pixels. However,
all Blender projects are included in the dataset. Along with
each project, we also provide one or more configuration files.
Together, Blender projects and configuration files enable
researchers to render their own version of a specific scene or
the entire dataset by simply manipulating the configuration
files. See Supplemental Material for more details.

Camera poses. The pose of each camera Ci is given by
[Ri|ti], where Ri and ti are the rotation matrix and trans-
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lation vector, respectively. In this paper, camera poses are
used to establish ground truth keypoint correspondences and
evaluate two-view pose estimation, but can also be used in
multi-view pose estimation, novel-view synthesis, etc.

Local neighborhood. For each camera, we compute
a set of neighbor cameras based on two factors: distance
and number of ground truth keypoint correspondences. We
first select a subset of cameras whose distance to the target
camera is less than rn. Next, we remove from this subset
all cameras for which the number of ground truth keypoint
correspondences with the target camera is below a threshold
τn. While rn is adjusted according to the scene, we keep
τn = 100 fixed. The remaining cameras are then regarded as
neighbors of the target camera. This local camera neighbor-
hood prevents training neural networks using several camera
pairs that are unrelated, i.e. do not share enough visual in-
formation about the underlying scene, and would increase
training time without necessarily improving the model.

This is especially useful in large and/or complex scenes,
e.g. cameras in different rooms in a multiroom apartment or
on opposite sides of a large outdoor scene. In the case of
small scenes, rn is chosen so that all or nearly all cameras
fall within the desired range.

Train-test split. For each synthetic scene, we report its
type (indoor/outdoor/mixed), the total number of cameras
N , the scene area, camera density (ratio between number of
cameras and area) and a score defined as the ratio between
the average number of neighbor cameras—computed as de-
scribed above—and the total number of cameras in the scene.
We refer to this score as Normalized Direct Connectivity
(NDC). While camera density conveys a sense of coverage,
NDC encodes scene scale (size) and complexity and can be
used to infer how challenging for multi-view SfM a scene
is. The reason is as follows. For scenes with relatively wide
open areas, typically outdoors or rooms with simple lay-
out, the majority of cameras within rn from a target camera
will be regarded as its neighbors as they share significant
visual information of their surroundings. In this case, smaller
scenes tend to have higher NDC values whereas large scenes
normally display lower NDC. On the other hand, for scenes
with many rooms, narrow passages such as doors and corri-
dors or cluttered environments, many cameras within rn will
be rejected due to a lower number of ground truth keypoint
correspondences as they do not share enough visual infor-
mation. This is a more challenging scenario for multi-view
SfM and even small scenes may have low NDC values.

Based on the measurements outlined above, we suggest a
train-test split. The idea is to prevent biases in training or test-
ing data and to offer a standard and easy way for researchers
to compare different learned models on our dataset. Tables 2
and 3 present the training and testing scenes, respectively.

Scene Type N Num. Pairs Area Density NDC
Bank I 930 91,037 264.92 3.51 0.21
Barbershop I 80 2652 35.39 2.26 0.83
Berlin I 280 28,608 30.92 9.06 0.73
Classroom I 370 57,073 51.10 7.24 0.83
Garage M 1090 31,702 2823.37 0.39 0.05
Italian Flat I 270 25,486 52.60 5.13 0.70
Kartu I 640 65,687 70.87 9.03 0.32
Lone Monk M 670 25,571 588.52 1.14 0.11
Medieval Port O 2160 111,151 2093.38 1.03 0.05
Passion I 600 56,545 95.74 6.27 0.31
Rainbow I 930 47,755 2325.75* 0.40 0.11
Seoul I 330 17,414 35.74 9.23 0.32
Simple I 310 29,886 60 5.17 0.62
Urban Canyon O 4090 870,718 133.84* 30.56 0.10
Vitoria I 550 54,292 105.01 5.24 0.36
Warehouse I 900 48,595 798.74 1.13 0.12

Table 2. Synthetic training scenes: we report type (I = Indoor, O
= Outdoor, M = Mixed), total number of cameras N , number of
training camera pairs, area (in m2), density (cameras / m2) and
NDC. In total we provide over 1.5M training image pairs.
*Scales used for Rainbow and Urban Canyon in their original
Blender projects are unfortunately over- and undersized, respec-
tively. We included their areas for the sake of completeness. This
is, however, not an issue as SfM is anyway up to scale.

Scene Type N Num. Pairs Area Density NDC
Tokyo I 90 3976 15.22 5.91 0.98
Harmony I 380 54,577 44.43 8.55 0.76
Shapespark I 860 184,764 119.20 7.21 0.50
Showroom I 1340 134,701 295.87 4.53 0.15
Middle East M 4300 211,750 4634.98 0.93 0.02

Table 3. Synthetic testing scenes. See Table 2 for details.

3.2. Real Scenes

Along with synthetic scenes, we provide another 9 real
scenes, captured with Civetta [2] and Ricoh Theta-S [8]
cameras. They contain 4 indoor and 5 outdoor scenes of
different sizes and complexity, with resolutions considerably
higher than the synthetic images. Images captured with
Civetta are 7070 × 3535 pixels, whereas those acquired
with Theta-S are 5376 × 2688 pixels. Fig. 6 displays a
representative image from each real scene. Unlike synthetic
scenes, here ground truth depth maps, camera poses and
keypoint correspondences are not available, but we provide
keypoints extracted at the resolutions aforementioned.

3.3. Keypoint Detection

For all scenes in our dataset (synthetic and real), we
extract both handcrafted and learned keypoints: Sift [20],
Akaze [4], KP2D [30] and SuperPoint [9]. However, none of
these keypoint detectors were designed for spherical images.
Applying them directly to the equirectangular images would
certainly yield suboptimal keypoints mostly due to the strong
distortions near the poles. In the following, we describe a
generic strategy that allows detecting virtually any keypoint
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Figure 3. Shard images (left) and local keypoint detection (right).
Blue and red dots indicate inlier and outlier keypoints, respectively.

on the sphere, especially suited for high-resolution images.
Shard images. To ensure that a variety of keypoints can

be reliably detected on the sphere, we adopt a divide and
conquer strategy. We follow [10] and produce a tessellation
of the unit sphere to approximate the spherical image with
multiple perspective images computed as local planar pro-
jections. We refer to these local projections as shard images.
They are then fed into each keypoint detector to extract local
keypoints that are later mapped back onto the sphere.

The advantages of this strategy are threefold. First, it
practically removes the influence of distortion on keypoint
detection, making it possible to include in this dataset both
traditional (handcrafted) and recent learn-based detectors
that have been originally devised for perspective images,
such as those listed above. Second, it leads to an uniform
and consistent way to extract keypoints, allowing the exten-
sion of this dataset by adding other keypoint detectors as
new approaches are proposed. Finally, it is scalable. While
handcrafted keypoint detectors scale well with image resolu-
tion, current learn-based models face technical issues when
the resolution of the images increases. They tend to allocate
significant amounts of hardware resources—especially GPU
RAM—and become impractical if applied directly on the
full image. Our tessellation algorithm automatically adapts
to the resolution of the spherical images, increasing the num-
ber of subdivisions as necessary to keep the shard images
free of distortion and limited in size.

The tessellation algorithm produces vertices on the unit
sphere, which in turn define triangular facets. Each facet is
used to compute a corresponding shard image. As illustrated
in Fig. 3, consider a facet formed by vertices Va, Vb and Vc

on the surface of the unit sphere. The centroid of these ver-
tices defines the tangent point for the plane that will contain
the associated shard image. However, before projecting the
facet onto this tangent plane, it is necessary to ensure that
keypoints lying near the border of the facet have enough
visual context (pixel neighborhood) so that their descriptors
can be properly computed. Then, we define a “descriptor
border” as a sufficiently wide region surrounding the facet.
The projection of the facet and the descriptor border onto the
tangent plane creates the shard image.

Note that as long as the resolution of the spherical images
remains constant, the tessellation only needs to be computed
once. The resulting vertices are then reused to generate shard
images for all available spherical images—for instance, in a
given scene rendered or captured with the same camera.

Local keypoint detection. Each shard image is processed
independently by the keypoint detectors. We used OpenCV
to extract Sift [20] and Akaze [4] keypoints. For KP2D [30]
we used the code released by the authors. SuperPoint [9]
keypoints are extracted using two implementations: the Py-
torch [26] demo provided by the authors and an alternative
TensorFlow [1] implementation 3.

Filtering. Naturally, when extracting keypoints on shard
images, some will be located in the descriptor border, i.e.
they fall outside the facet. Fortunately, it is straightforward
to filter them out. If a keypoint is inside the triangle formed
by va, vb and vc—the projections of the facet vertices Va, Vb

and Vc—a keypoint is regarded as inlier (shown in blue in
Fig. 3); else it is an outlier (red). This simple but effective
procedure guarantees that only keypoints lying inside the
original triangular facet are mapped onto the sphere and
prevents duplicated keypoints.

Mapping keypoints onto the sphere. Once keypoints
are detected and filtered on all shard images, they are mapped
onto the sphere. Essentially, keypoint locations are back-
projected from shard images to the sphere. This is achieved
by associating each shard image with the vertices (Va, Vb

and Vc in Fig. 3) used to create it so that the locations of
the keypoints can be described in the spherical camera coor-
dinate system. Finally, the resulting keypoint locations are
converted to spherical coordinates and become independent
of the image resolution. Hence, keypoints extracted from im-
ages with different resolutions can be seamlessly integrated
into training of learn-based models.

Non-maxima Suppression. The last step is to account
for keypoints that are too close to each other and are thus
redundant and ambiguous. This can happen for two reasons:
1. the keypoint detector itself does not perform non-maxima
suppression; and/or 2. keypoints detected on neighbor shard
images land close to each other after the mapping performed
in the previous step. We then apply non-maxima suppres-
sion directly on the unit sphere using the geodesic distance
between keypoints and their associated scores (strength or
keypoint response). For the geodesic distance we use a
threshold of 15.34× 10−3 radians, equivalent to 5 pixels at
2048 × 1024 resolution.

3.4. Ground Truth Keypoint Correspondences

Computation of ground truth keypoint correspondences
requires depth maps and pose of both cameras. Hence,
this computation is performed exclusively for the synthetic
scenes. Assuming the distance between a pair of cameras Ci

3https://github.com/rpautrat/SuperPoint
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Architecture Tokyo Harmony Shapespark Showroom Middle East

MS P R MS P R MS P R MS P R MS P R
SuperGlue [27] 21.49 43.44 22.94 26.03 42.33 27.66 21.04 27.36 23.52 23.12 40.65 24.21 34.89 46.58 36.33
SphereGlue [12] 44.87 59.10 51.00 55.85 65.40 62.05 53.65 65.89 58.96 51.16 66.24 56.20 64.62 71.88 68.74

Table 4. Matching Score (MS), Precision (P) and Recall (R), in percent, measured on the proposed synthetic testing scenes (see Table 3)
using the SuperPoint [9] detector. SphereGlue consistently outperforms SuperGlue as it properly models keypoints on the sphere.

Architecture Tokyo Harmony Shapespark Showroom Middle East

5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦ 5◦ 10◦ 20◦

SuperGlue [27] 83.28 88.42 92.36 74.66 80.60 85.93 36.31 42.10 51.07 63.47 70.05 76.39 81.83 84.00 86.33
SphereGlue [12] 89.35 93.64 96.62 94.20 96.64 98.64 87.59 92.84 97.27 77.34 83.53 88.92 93.83 94.98 95.91

Table 5. AUC of the two-view pose error, in percent, measured on the proposed synthetic testing scenes (see Table 3) using SuperPoint [9].
SphereGlue’s performance is relatively independent of the scene whereas SuperGlue performs comparatively poorly in Shapespark.

and Cj is below rn (see Section 3.1), ground truth keypoint
correspondences are established as follows.

To simplify this explanation, consider a single keypoint κi

detected on image Ii as described in Section 3.3. Denoting
keypoint coordinates as unit Cartesian vectors x = (x, y, z),
the first step is to sample the depth map Di and recover κi’s
depth value di. The corresponding 3D point is obtained as
Pi = dixi. The next step is to project Pi onto Cj , which is
achieved using the relative pose between Ci and Cj given
as [Rji|tji], with Rji = RjRiT and tji = tj −Rjiti. The
projection yields a point ρji on the surface of the unit sphere
computed as

  \bm {\rho }^{ji} = \frac {\mathbf {P}^{ji}}{\| \mathbf {P}^{ji} \|} = \frac {\mathbf {R}^{ji} d^{i} \mathbf {x}^{i} + \mathbf {t}^{ji}}{\| \mathbf {R}^{ji} d^{i} \mathbf {x}^{i} + \mathbf {t}^{ji} \|}. \label {eq:projection} 





 

 
 (1)

Akin to a radius search, an angular deviation ω (shown
in yellow in Fig. 4) is used to identify possible keypoint
correspondences among those extracted from Ij . The co-
ordinates of all keypoints detected on Ij are embedded in
a 3D KDTree [23] for fast nearest neighbor search. Then,
if no keypoint is found within the region defined by ω and
centered at ρji, κi has no correspondence in image Ij . This
happens due to occlusion or failure of the keypoint detector.
If, however, a candidate κj is found, before assigning it as
the ground truth correspondence of κi, it is necessary to
apply the occlusion filter, which is described as follows. The
depth map Dj is sampled to recover κj’s depth value dj and
the 3D point Pj = djxj is determined. If ∥Pji − Pj∥ is
smaller than a threshold δ, κi and κj are regarded as corre-
spondences (Fig. 4-(a)); else Pi is considered occluded in
Ij (Fig. 4-(b)). This process is repeated for all keypoints de-
tected in image Ii. It may happen that the same keypoint κj

is assigned as ground truth correspondence to more than one
keypoint in image Ii. These duplicates are then removed.

4. Evaluation
The goal of this section is twofold. First, we aim to

demonstrate the importance of a keypoint matcher dedicated
to spherical images (and in a broader sense, of algorithms

(a)

(b)

Figure 4. Computation of ground truth keypoint correspondences
with occlusion filtering. (a) A match is found. (b) No match is
found as the associated 3D point is occluded on the target image.

that properly handle the unique characteristics of spherical
images, such as, but not limited to, neighborhood across
image borders and severe distortion under geometric trans-
formations). Second, to provide baseline evaluations so that
future approaches can be compared to existing methods.

We then evaluate two keypoint matching approaches
on the synthetic test scenes (see Table 3), namely Super-
Glue [27] and SphereGlue [12] using pre-trained weights
provided by the respective authors. The former is the state-
of-the-art attention-based approach designed primarily for
perspective images. We use, however, the outdoor weights,
i.e. those obtained by training SuperGlue on the MegaDepth
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Bank (930) Barbershop (80) Berlin (280)

Classroom (370) Garage (1090) Harmony (380)

Italian Flat (270) Kartu (640) Lone Monk (670)

Medieval Port (2160) Middle East (4300) Passion (600)

Rainbow (930) Seoul (330) Shapespark (860)

Showroom (1340) Simple (310) Tokyo (90)

Urban Canyon (4090) Vitoria (550) Warehouse (900)

Figure 5. Sample images from each synthetic scene. Number of images indicated in parenthesis.
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Berlin Street (186) Church (54) Corridors (116)

Meeting Room 1 (18) Meeting Room 2 (21) Stadium (74)

Town Square (35) Train Station (112) Uni (71)

Figure 6. Sample images from each real scene. Number of images indicated in parenthesis. See Supp. Material for more details.

dataset [19] as they yield better results for panoramic images
than the indoor weights. SphereGlue is a recent approach
inspired by SuperGlue but dedicated exclusively to spheri-
cal images. Here we use only SuperPoint keypoints [9] as
SuperGlue pre-trained weights exist only for this detector.

We report Matching Score (MS), Precision (P) and Recall
(R) in Table 4. Table 5 summarizes the results obtained by
measuring the area under the curve (AUC) of the two-view
pose error at 5◦, 10◦ and 20◦. The pose error is measured as
the maximum angular deviation between rotation and trans-
lation. All values in Tables 4 and 5 were calculated using
the ground truth keypoint correspondences (see Section 3.4).

Even though SphereGlue outperforms SuperGlue — as
expected when evaluated on spherical images — its perfor-
mance is lower than that reported by the authors. A possible
explanation is the wider baseline and stronger distortions
present in our dataset. Also, SphereGlue was trained on a
relatively small set of 15k image pairs whereas our training
set is two orders of magnitude bigger (see Table 2).

5. Societal Impact
This work focuses on a dataset of everyday scenes, in

an effort to advance research about fundamental computer
vision problems. As such, there is no immediate threat posed
by these scenes for individuals or organizations. Images
were properly anonymized and do not depict any human or
personal data that can be associated to any particular person.

6. Conclusion
We believe that tasks related to scene understanding can

be further improved when aggregating information from
nearby views. This can be achieved with spherical SfM,
which in turn depends on keypoint detection and matching.

Therefore, we introduced SphereCraft, a new dataset to
support the development of data-driven models for spherical
keypoint detection, matching and SfM. It consists of 21
synthetic and 9 real scenes. For each real scene, we provide
high-resolution RGB images along with several detected
keypoints (handcrafted and learned). For each synthetic
scene, in addition to the RGB images and keypoints, we
also provide ground truth camera poses, high-resolution and
highly accurate depth maps, keypoint correspondences and
3D meshes. We propose a train-test split seeking to strike a
good balance between what the networks see during training
and testing time. We then used the testing set to provide a
baseline evaluation of two learn-based keypoint matchers.

Future work includes evaluation of existing models for
keypoint detection, depth prediction and multi-view cam-
era pose estimation. We also consider adding other data
modalities, such as spherical optical flow.

Acknowledgements
This work was supported by the projects SustainML

(101070408) and XAINES (01IW20005).

4415



References
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
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