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Abstract

This paper introduces a visual real-time insect monitor-
ing approach capable of detecting and tracking tiny and
fast-moving objects in cluttered wildlife conditions using an
RGB-DVS stereo-camera system. By building on the intrin-
sic benefits of event vision data acquisition, we demonstrate
that insect presence can be detected at an extremely high
temporal rate (on average more than 40 times real-time)
while surpassing the spatial and spectral sensitivity of con-
ventional colour-based sensing. Our DVS-based detection
and tracking algorithm extracts insect locations over time,
and we evaluated our system based on 81104 manually an-
notated stereo-frames with 34453 insect appearances fea-
turing highly varying scenes and imaging conditions (in-
cluding clutter, wind-induced motion, etc.). Comparing our
algorithm to two state-of-the-art deep learning algorithms
reveals superior results in both detection performance and
computational speed. Using the DVS as a trigger for the
temporally synchronised RGB camera, we are able to cor-
rectly identify 73% of images with and without insects which
can be increased to 76% with parameters optimised for dif-
ferent scenes. Overall, our study suggests that DVS-based
sensing can be used for visual insect monitoring by en-
abling reliable real-time insect detection in wildlife con-
ditions while significantly reducing the necessity for data
storage, manual labour and energy.

1. Introduction
Insects are by far the largest and most diverse class of

animals and are pivotal for the ecosystem while having a
tremendous impact on food production, health and the econ-
omy [1, 6, 28]. During the last decade, an alarming decline
in insect biomass, abundance and diversity has been re-
ported [34, 36], which has resulted in an increased demand
for insect monitoring strategies [10]. Apart from manual
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censuses using conventional techniques such as Malaise
traps [23] image-based monitoring systems appear to be the
most promising solution for high-throughput detection and
classification of insects at scale [3].

From a computer vision point of view, quantifying the
abundance and behaviour of insects in natural environments
is however notoriously more difficult than recording bigger
vertebrates for which dedicated camera trap systems can be
used to detect motion in the field of view of the vision sen-
sor [13]. Due to the small size, potentially low contrast, and
relatively fast movement speeds in front of cluttered and
dynamic backgrounds, motion detectors such as passive in-
frared sensors are not sufficient to detect and track insects
reliably [15, 16]. As a consequence, time-lapse and high
frame-rate monitoring systems have been introduced to col-
lect continuous data independent of the presence of insects,
which, however, result in a huge amount of non-informative
images (i.e. without insects present), high energy consump-
tion and the need for real-time image processing on limited
computing hardware.

Related Work To address these challenges, a variety of
insect monitoring systems using dedicated hardware and
software modules have been introduced in the past. For
example, Naqvi et al. demonstrated that scheduled frame
capturing outperforms motion-activated imaging using off-
the-shelf camera trap hardware [27]. Others have built cus-
tom off-grid systems either based on ultra-low power hard-
ware and offline processing [11] or on edge compute units
enabling on-board processing at increased energy consump-
tion [7].

If energy and storage limitations are neglected, con-
tinuous recordings can be processed in an offline fash-
ion. For example, Ratnayake et al. combined kNN back-
ground subtraction with YOLOv2 to detect honeybees dur-
ing foraging [30], which has later been extended towards
additional flower detection using YOLOv4 [29]. From
a technical point of view, the central challenge is to de-
tect tiny low-contrast objects in cluttered environments.
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Figure 1. Overview of the DVS-RGB imaging system. Left: Con-
tinuous DVS camera events are processed using a real-time detec-
tion algorithm (see Sec. 2). If insect presence is detected in the
shared field of view, the temporally synchronized RGB camera is
triggered. Middle: Exemplary DVS (top) and RGB (bottom) im-
age and zoomed crops of insect (orange) and plant motion (blue).
Note that the insect can hardly be seen in the RGB image (black
circle).

To address these challenges, a variety of detection strate-
gies have been developed, including data augmentation [9],
super-resolution methods [4,21], multi-scale representation
techniques [14], dedicated loss functions [22] and context-
based strategies [17]. Established algorithms have also been
adapted to detect small objects, including YOLOv7 [37],
CenterNet [38] and CornerNet [20]. Since most of these
algorithms were not designed for the particular use-case of
insect detection in natural environments, they do not enable
the very high frame rate and low energy consumption nec-
essary for an effective visual insect camera trap triggered by
real-time detection.

Dynamic Vision Sensors (DVS), also called event cam-
eras, could provide a solution to these challenges. This
relatively new class of neuromorphic vision sensors en-
ables asynchronous operation paradigms in which the pixels
are triggered by local brightness changes above a thresh-
old [12]. As a result, DVS cameras output sparse events
at a variable rate consisting of the (x, y)-location on the
sensor array, a timestamp and the polarity (i.e. sign of the
change). This paradigm results in very high temporal res-
olutions, low power consumption, high dynamic range and
reduced data redundancy, making it highly suited for out-
door recordings [8], so that it has been used for a variety of
tasks such as SLAM [18] and human pose estimation [33]
to name a few examples.

Event cameras have already been used in the context of
object detection and tracking. These methods are gener-
ally either based on feature detection/tracking or on clus-
tering events over time. The former includes classical fea-
ture detection/tracking applied to integrated event images
as in the work by Zhu et al. [39] on one side and the purely
asynchronous corner tracking algorithm by Alzugaray and

Chli [2] on the other. Rodrı́guez-Gomez et al. [31] later em-
ployed a purely asynchronous hybrid approach between fea-
ture tracking and event clustering by identifying corner fea-
tures via eFast [25] followed by asynchronous event clus-
tering to associate pixel regions with features.

As with feature tracking, purely cluster-based meth-
ods generally either operate on chunks of event data or
asynchronously. The works by Mondal and Das [24] and
Barranco et al. [5] fall into the former category, while
Schraml and Belbachir [35] and Lagorce et al. [19] pro-
posed asynchronous methods which operate on successive
events. Schraml and Belbachir assign events to existing
clusters based on proximity, cluster radius and cluster ac-
tivity and create new clusters dynamically. In contrast,
Lagorce et al. introduced a framework for event cluster-
ing based on continuous or discrete kernels, which actively
tracks a changing subset of a fixed number of clusters.

For flying drones Sanket et al. proposed a Deep Learning
based propeller detector called EVPropNet that uses images
composed of accumulated event streams in order to predict
rotor locations [32]. EVPropNet employs a U-Net like ar-
chitecture that was trained on simulated data and the au-
thors demonstrate the network’s performance in controlled
real world scenarios.

The methods mentioned above were usually tested in
static or only slightly dynamic backgrounds. In con-
trast, unconstrained insect habitats include highly dynamic
scenes where plants, shadows and other non-insect objects
induce almost constant motion cues (e.g. wind-induced mo-
tion). Moreover, the limited spatial resolution and non-
optimal signal-to-noise ratios of previously available DVS
sensors also limit their applicability to small insects in a
relatively large field of view. Given the new generation of
event cameras based on the IMX636 ES sensor (offering
a 1280 × 720 resolution), these devices have now attained
a technological level of quality, rendering insect detection
and tracking possible for the first time.

Contribution Our overall goal is to present our efforts
towards building the first event vision-based insect cam-
era trap consisting of a temporally synchronised RGB-DVS
stereo camera system. We demonstrate that the core ben-
efits of DVS, namely very high temporal resolutions with
high dynamic range, can be used in a probabilistic detec-
tion and tracking algorithm to identify insects within the
field of view of the cameras. Given our highly optimised
algorithm, insect detections can be computed with, on av-
erage, 4800% of the necessary real-time performance and
are therefore fast enough to trigger the RGB camera result-
ing in lower power consumption and reduced data storage
requirements. To evaluate our system, we generated a ded-
icated dataset consisting of six different wildlife imaging
scenarios recorded in the Botanical Garden of the Univer-
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sity of Münster with varying background and foreground
conditions, including strong clutter, wind-induced motion,
moving shadows and other disturbing artefacts. In total,
we annotated 41897 insect detections in 81104 frames, and
our algorithm was able to correctly identify 81.02% of all
frames with insect presence while providing a detection
F1 score ranging from 69.62% for suitable imaging con-
ditions to 22.35% for inappropriate situations. We com-
pare our algorithm with YOLOv7 (as a baseline for state-of-
the-art object detection [37]) and EVPropNet (as a baseline
for event-based flying object detection [32]) and demon-
strate that our algorithm outperforms both approaches in
detection accuracy and computational performance. Our
results suggest that DVS-based sensing can be advanta-
geous compared to conventional imaging hardware to de-
tect small insects in cluttered and dynamic environments.
At the time of writing this article, event cameras are still
relatively expensive compared to consumer RGB cameras.
However, increasing demand could lead to cheaper event
based systems in the future. Code and dataset are avail-
able at https://zivgitlab.uni-muenster.de/
cvmls/neuromorphic-insect-detection.

2. Methods

2.1. Hardware System

The imaging system uses a full frame RGB cam-
era (Basler acA1920-150uc 2.3 MP 150fps; lens: Kowa
LM6JC 6mm/F1.4 C-Mount) and an event-based camera
(Prophesee EVK-3 HD 0.92 MP; lens: Kowa LM5NCL
4.5mm/F1.4 C-Mount), which were arranged in an axis-
parallel stereo camera system with a minimum baseline
of 60 mm to provide an appropriate shared field-of-view
(cf. Fig. 1). The lenses were chosen to achieve a similar
opening angle at a working distance of 1.5m. Both cameras
attached to a tripod via a common base plate can then be
positioned in front of or above plants of interest.

For temporal synchronization, the ExposureActive
signal of the full frame camera is connected to TriggerIn
of the event-based camera. This way, a trigger event with
positive polarity is injected into the event stream when the
exposure of the full frame camera starts, and one with neg-
ative polarity when the exposure ends. Synchronization is
achieved by matching the n-th frame after starting the full-
frame camera with the n-th trigger event of the same polar-
ity. We note that spatial stereo camera calibration can be
done using existing frameworks [26]. Since we focus on
using solely the DVS as a trigger for the RGB camera we
ensured an overlapping field of view without explicit extrin-
sic camera parameter calculation.

2.2. Insect Dataset

To develop and evaluate our event-based real-time de-
tection and tracking algorithm, we generated a benchmark
dataset using the synchronized stereo-camera system de-
scribed in Sec. 2.1. The DVS events were captured with
its maximum 1280 × 720 resolution (without fine-tuning
biases), while the frame-based camera was set to record
1920 × 1200 images at 100 fps. In total, we recorded 31
videos featuring a variety of weather, illumination and veg-
etation conditions and viewing angles. All recordings were
made in the Botanical Garden of the University of Münster,
which features a wide variety of plants and insects, making
it a suitable testing ground for our system. We classified
the difficulty of our scenes based on (1) the distance to the
area of interest (short: dst, usually the plants/flowers in the
centre of the visual field); (2) the dynamics of the area of
interest (short: fd, mainly the wind-induced motion of these
plants); and (3) the dynamics of the background (short: bd,
motion which does not belong to the area of interest). Each
category was then manually rated as low (l), medium (m)
or high (h) magnitude (e.g. ’l-l-l’ indicates low rating for
(1)-(2)-(3)).

Six of these recordings were used to generate ground
truth by accumulating the DVS event streams between each
trigger signal, resulting in 81104 frames (see Fig. 4 for ex-
amples). These frames were annotated by adding bound-
ing boxes around insects in the generated DVS images. We
also added insect IDs and a binary confidence label to all
bounding boxes enabling a fine-grained analysis of our al-
gorithm. The IDs were used to identify unique insect trajec-
tories, and the confidence label specifies the certainty of the
annotator that the respective box represents an insect (high
confidence) or could be an artefact (low confidence). Note
that for annotations, the DVS signal was usually more con-
venient to use, so the RGB images were mainly used for
verification purposes. In total, we identified 41897 bound-
ing boxes (34453 confident), resulting in 29423 frames with
insect presence and 174 unique trajectories. An overview of
our dataset can be found in Tab. 1.

2.3. Real-Time Insect Detection & Tracking Algo-
rithm

In order to recognize insect presence in the event stream,
we developed an asynchronous detection and tracking algo-
rithm. Our algorithm processes each event individually by
(1) rejecting unwanted events; (2) detecting insect-shaped
motion cues in the remaining event stream; and (3) dis-
ambiguating clusters representing flying insects from those
representing moving plants and debris.

Event Rejection To enable real-time processing of spa-
tially and temporally high-resolution event streams on low-
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Scene
(dst-fd-bd)

#Frames w Insects #Frames w/o Insects #Unique Insects #Bboxes Med Area (%) Eventrate (kEv/s)
overall conf. overall conf. overall conf. overall conf. overall conf.

l-l-l 8533 7206 7013 8340 26 25 9192 7850 0.200 0.214 89.095
l-h-l 2839 1617 32024 33246 5 5 2898 1617 0.102 0.167 28.317

m-h-h 6790 5913 1410 2287 56 37 15051 12479 0.061 0.065 50.751
m-m-h 4120 3213 1880 2787 22 14 4992 3920 0.043 0.052 55.647
h-l-h 396 372 5604 5628 11 10 405 380 0.005 0.004 7.981
h-h-h 6745 6450 3750 4045 54 37 9359 8207 0.022 0.022 191.479

combined 29423 24771 51681 56333 174 128 41897 34453 0.072 0.087 70.545

Table 1. Dataset overview. Scene naming scheme according to (1)-(2)-(3) with (1) the distance to the area of interest (dst); (2) the
dynamics of the area of interest (fd); (3) the dynamics of the background (bd) and (1),(2),(3) ∈ {low (l), medium (m), high (h)} magnitude
(see Sec. 2.2). The number of frames with insects, without insects, unique insects and bounding boxes is given. Moreover, the median area
(in %) and event rate in 1000 events per second (kEv/s) are specified.

Classify event
as noise?

Event occurs
at position

Is position inside
existing cluster?

Identify max.
affinity cluster

Assign event
to cluster

Are adjacent
pixels active?

Initialize
new cluster

Reject event

event rejection & moving object clustering

yes

no

yes

no yes

no

Figure 2. Event rejection and object clustering. First, the event
is rejected if it was generated from noise or contains redundant
information. Then, existing clusters are searched for matches. If
found, the best matching cluster is updated with the new event
information. If no matching cluster is found and the region of
pixels around the new event shows increased activity, a new cluster
is created.

power hardware, noisy and redundant information have to
be rejected before being passed to more complex process-
ing steps (see Fig. 2). By combining the density matrix [35]
and the ”Surface of Active Events” approach [2] we derive
two continuously updated attributes for each pixel (x, y),
namely Tx,y

t (timestamp of the most recent event at pixel
(x, y) and time t) and āx,y

t (average event rate at pixel (x, y)
and time t exponentially weighted by recency with decay
factor d):

Let Et = {(x, y)| event at position (x, y) in time step t}
T x,y
t = max({t|(x, y) ∈ Et}) timestamp of most

recent event at pixel (x, y)

āx,y
t =

∑t
i=0 d

t−i
1Et((x, y))∑t

i=0 d
i

=
1Et((x, y)) + dâx,y

t−1

1 + dwt−1

with âx,y
t =

t∑
i=0

dt−i
1Et

((x, y)) and wt =

t∑
i=0

di

(1)

These attributes are used in an event rejection algorithm
summarized in Algorithm 1 which first discards events oc-
curring too close to the previous event (i.e. redundant infor-

mation [2]) and filters the remaining events based on their
timestamp and pixel activity (i.e. noisy information). The
rejection is controlled by three thresholds (highlighted in
grey) and can be adjusted according to the recording sce-
nario.

Input: Event at time t and position (x, y)
delta← (t− T x,y

t );
if delta < min delta then

return ; // Reject event as
redundant information

end
T x,y
t ← t;

if delta > max delta then
return ; // Reject event as noise

end
update(āx,y

t );
if āx,y

t > noise threshold then
process(t, (x, y));

end
Algorithm 1: Event rejection algorithm.

The activity is defined as exponentially weighted aver-
age āx,y

t at time step t to smooth pixel activity over time
during tracking as it can be calculated incrementally based
on new data at, the preceding unnormalized weighted sum
ât−1 and the preceding sum of weights wt−1 (see Eq. (1)).
Given large gaps between events (e.g. for mostly static
background pixels) we update the average by calculating a
single integer power of the decay factor:

Let (x, y) /∈ Ei for i ∈ [1, k)

⇒ āx,y
t =

1Et
((x, y)) + dkâx,y

t−k∑k−1
i=0 di + dkwt−k

=
1Et

((x, y)) + dkâx,y
t−k

1− dk

1− d
+ dkwt−k

(2)
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Moving object clustering Small moving objects cause
increased event rates in a relatively compact area of pixels
(see Figs. 1 and 3) which can be represented by bivariate
normal distributions [19]. Additionally, the average rate of
assigned events is exponentially weighted by recency and
kept as a measure of cluster activity. Accordingly, a cluster
at time t is characterized by its activity āclt , the centre µclt
and the covariance matrix of the underlying normal distribu-
tion Σcl

t . We also compute the area of that cluster Aclt from
this distribution by extracting the number of pixels within a
Mahalanobis distance (dM ) of one from the cluster centre.

When a new event passes the former event rejection step,
the cluster with the highest affinity to the event position is
identified. Affinity to point (x, y) is defined as

affinity = (dist threshold− dclM (x, y))
āclt

(Aclt )2

with Mahalanobis distance dclM from cluster. If the maxi-
mum affinity is above zero, the event is considered to be in-
side the area of influence of the corresponding cluster, and
the event is assigned to that cluster. This way, events are as-
signed to clusters based on proximity while penalizing large
clusters with relatively low activity.

If the event is not inside the area of influence of any ex-
isting cluster, a new cluster is created if the surrounding
pixels in the activity field have a mean activity above the
creation threshold. Cluster initialization at time t∗

is based on a neighbourhood around the event position in
the activity field:

āclt∗ =
∑

(u,v)∈Nx,y

āu,v
t∗

µclt∗ =
∑

(u,v)∈Nx,y

(u, v)T āu,v
t∗

āclt∗

Σcl
t∗ =

∑
(u,v)∈Nx,y

((u, v)T − µclt∗ )
T ((u, v)T − µclt∗ ) ā

u,v
t∗

āclt∗

with Nx,y neighborhood around event position x, y

If an event is assigned to a cluster, the cluster activity is
increased, and the distribution parameters µcl and Σcl are
nudged towards the new event position by weight ω:

Let Ci ⊆ Ei events assigned to cluster at time i

⇒ āclt =

∑t
i=t∗+1 d

t−i|Ci|+ dt−t∗ āclt∗∑t
i=t∗ d

t−i

ω = weight factor/min(āclt ,max weight)

(3)

Here weight factor provides control over the smooth-
ing of the parameters over time, and max weight estab-
lishes a lower bound of smoothness for clusters with low
activity. The decay factor d can be chosen differently to
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Figure 3. Events generated by a flying bee (left, blue) and a twig
moving in the wind (right, orange) during a time of one second.
Both objects show similar displacements, but the event count of
the bee is significantly higher (bottom).

the decay factor used to calculate pixel activity. Whenever
āclt

(Aclt )2
falls below alive threshold, the cluster is re-

moved.

Insect classification When an object of fixed shape
moves, events are primarily generated from contrast
changes of the leading and trailing edges of their silhouette
and texture [19], whereas most events generated by a flying
insect are generated by the wing movements. This obser-
vation results in the heuristic that insects generate a signif-
icantly higher rate of events per occupied pixel than mov-
ing plants for a given movement speed (see Fig. 3). These
properties allow the classification of clusters representing
insects versus other moving objects like plants and debris
by tracking their speed, event rate and shape over time.

To integrate this observation the exponentially weighted
averages of the cluster movement vector m and of the
foreground confidence f were added as additional cluster
attributes and iteratively updated over time analogous to
Eqs. (1) and (3). The foreground confidence increases if the
activity of a cluster is high relative to its area and move-
ment speed

(
āclt
A2 |m|−

1
2 > foreground threshold

)
and decreases otherwise. Clusters with a foreground confi-
dence above zero are then classified as a flying insect, which
can be used to trigger the temporally synchronized RGB
camera to capture images.
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Figure 4. Accumulated event rate over 10 seconds of a bee visiting
two flowers with cluster trajectory and ground truth overlay (top).
First frame of every evaluated scene in order of Tab. 1 (bottom).
The scene naming scheme is described in Sec. 2.2 and the caption
of Tab. 1.

2.4. Identifying Suitable Parameters

As described above several parameters can be set to iden-
tify insect movement in the DVS event stream. The choice
of these parameters mainly depend on the three criteria used
to characterise the challenges in the different scenes (see
Sec. 2.2). To evaluate both, the best possible performance
given optimal parameters for each scene and a set of fixed
parameters as a trade-off for all scenes we performed exten-
sive parameter scans for these conditions. In particular we
used a random-search strategy to identify scene-specific and
global parameter configurations and evaluated our pipeline
using these sets (cf. Sec. 3).

3. Results

Our overall goal is to demonstrate that DVS are suitable
to detect insect presence in cluttered natural environments
(e.g. to trigger the RGB camera). Insect detections are com-
puted using iteratively updated temporal and spatial infor-
mation in the event stream and insect locations can be iden-
tified based on cluster centres in the DVS signal. Therefore,
we evaluate both the detection accuracy on a per-frame ba-
sis (i.e. correctly identified frames with or without insects
using the DVS as an indicator) and the detection F1 score
based on bounding boxes in discretised DVS images (see
Sec. 2.2). To analyse the impact of the user-specified pa-
rameters (see Sec. 2) we evaluated our algorithm using an
optimal set per scene (called scene-specific configuration)

and one fixed set used for all scenes (called global configu-
ration).

In addition, we compare the results of our algorithm
to two deep learning-based approaches, namely YOLOv7
as a baseline for state-of-the-art object detectors [37] and
EVPropNet as a baseline for for event-based object detec-
tors [32]. Since EVPropNet targets the detection of rotating
drone propellers it shares similarities to our goal of detec-
tion insect wings given comparable activity densities. Given
our focus to evaluate the DVS data for efficient RGB cam-
era triggering and to enable direct comparability we evalu-
ate both approaches on event data only.

For EVPropNet the original pretrained model by Sanket
et al. was used [32] on the full frame resolution of the ac-
cumulated events between trigger signals. Predictions were
generated by locating local maxima in the heatmap-like out-
put of the network. The confidence threshold determining
whether a peak should be considered an insect prediction
was chosen per scene to yield the best results. We there-
fore compare our work to the best possible performance of
pretrained EVPropNet. The inference of one image on a
reference consumer grade graphics card (RTX 2060 Super)
takes approximately 31.6ms on average. All results regard-
ing EVPropNet can be found in Tab. 2.

For YOLOv7 the official implementation [37] was used
in all experiments and we chose the standard v7 model in-
stead of the bigger variants such as YOLOv7-e6e since fast
inferences are required to trigger the RGB camera in case of
insect visitations. Again accumulated events between trig-
ger signals at full spatial resolution were used as an input
for training and testing. YOLOv7 was trained for 50 epochs
with a batch size of 16. The best model was chosen accord-
ing to the weighted combination of 0.1 · mAP@0.5 + 0.9 ·
mAP@0.5:0.95, as is proposed in the official implementa-
tion. In order to evaluate the performance 6-fold cross val-
idation was used on the six scenes of our dataset resulting
in 6 models optimized on five scenes with the sixth scene
used for testing only. The inference time of one image for
a traced YOLOv7 model is approximately 22.9ms on av-
erage on a reference consumer grade graphics cart (RTX
2060 Super). We also evaluated the impact of reduced im-
age sizes on the computational performance. Given the al-
ready small object sizes (cf. Tab. 1) the reductions how-
ever resulted in unstable network trainings. Moreover, we
tested to only reduce the resolution during inference which
resulted in a large drop in detection performance. Given
these results and the inference time on the reference con-
sumer graphics card we conclude that it would be difficult
to decrease the inference time much further on edge devices
that would be suited for remote outdoor recording scenar-
ios. As for EVPropNet we chose the confidence thresholds
for YOLOv7 to be optimal for every scene. All results for
YOLOv7 are summarised in Tab. 2.
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Scene
(dst-fd-bd)

Ours (Global Configuration)
Box F1 Box Prec Box Rec Frame Acc Frame Acc + δ Frame F1 Frame Prec Frame Rec Proc. Speed

l-l-l 69.62 88.20 57.50 76.18 67.59 71.10 92.31 57.81 5111
l-h-l 63.49 60.24 67.10 96.84 89.95 67.99 66.26 69.82 4860

m-h-h 50.24 90.99 34.70 67.55 85.75 75.10 98.68 60.61 4961
m-m-h 40.00 82.97 26.35 59.38 69.70 53.12 97.67 36.48 2959
h-l-h 27.83 36.13 22.63 94.54 88.89 45.30 60.27 36.29 9183
h-h-h 22.35 35.81 16.24 48.18 51.37 39.75 75.04 27.04 1048
avg 45.59 65.72 37.42 73.78 75.54 58.73 81.70 48.01 4687

Scene
(dst-fd-bd)

Best YOLOv7 Configuration
Box F1 Box Prec Box Rec Frame Acc Frame Acc + δ Frame F1 Frame Prec Frame Rec Conf. Thresh

l-l-l 64.56 81.83 53.31 74.87 73.46 68.59 93.55 54.15 7.3
l-h-l 58.51 59.68 57.39 96.41 79.22 61.13 63.72 58.75 24.6

m-h-h 46.03 69.89 34.31 69.16 87.98 76.76 98.00 63.08 4.4
m-m-h 37.12 58.23 27.24 57.73 68.45 54.82 84.15 40.65 15.9
h-l-h 46.07 39.77 54.74 95.00 57.73 57.95 60.77 55.38 5.4
h-h-h 24.32 28.58 21.16 45.23 58.80 44.29 62.06 34.43 19.8
avg 46.10 56.33 41.36 73.06 70.94 60.59 77.04 51.07 12.9

Scene
(dst-fd-bd)

Best EVPropNet Configuration
Box F1 Box Prec Box Rec Frame Acc Frame Acc + δ Frame F1 Frame Prec Frame Rec Conf. Thresh

l-l-l 50.72 67.56 40.60 68.44 72.78 58.70 87.11 44.27 3.92
l-h-l 6.17 3.65 19.98 80.19 31.39 11.92 7.58 27.89 68.63

m-h-h 7.87 5.68 12.77 58.68 85.64 67.82 91.35 53.93 3.92
m-m-h 7.19 4.86 13.80 43.43 67.86 43.39 58.85 34.36 3.92
h-l-h 1.02 14.29 0.53 93.74 87.90 1.06 33.33 0.54 3.92
h-h-h 1.70 0.99 6.07 32.58 56.42 36.76 45.18 30.99 3.92
avg 12.45 16.17 15.63 62.84 67.00 36.61 53.90 32.00 14.71

Table 2. Results overview. All values (see Sec. 3) are given in percent. δ(= 100): Number of additional frames automatically captured
after each assumed detection. The scene naming scheme is described in Sec. 2.2 and the caption of Tab. 1.

Scene
(dst-fd-bd)

Ours (Scene Specific Configuration)
Box F1 Frame Acc Frame Acc + δ Frame F1

l-l-l 70.27 76.37 68.88 71.01
l-h-l 74.49 98.07 95.70 76.00

m-h-h 56.57 80.40 84.85 87.20
m-m-h 40.17 60.32 65.93 56.34
h-l-h 32.47 93.98 84.24 44.44
h-h-h 27.43 52.62 58.76 48.22
avg 50.23 76.96 76.39 63.87

Table 3. Results Ours with configurations optimized for each
individual scene. All values (see Sec. 3) are given in percent.
δ(= 100): Number of additional frames automatically captured
after each assumed detection. The scene naming scheme is de-
scribed in Sec. 2.2 and the caption of Tab. 1.

Frame-based Evaluation We define a frame as true pos-
itive if it contains an insect and the corresponding event
stream comprises an insect cluster. Likewise, true negative
frames neither contain an insect nor a cluster, false nega-
tive frames include an insect but no cluster, and false posi-
tive frames do not include insects, but an insect cluster has

been identified in the DVS stream. This definition is used
to calculate the accuracy, precision, recall and F1 score on
a per-frame level based on the confident user annotations
only.

As can be seen in Tab. 2 the frame accuracy varies be-
tween the different scenes, ranging from 96.84% to 48.18%
with an overall mean accuracy of 73.78% between scenes.
Over the total number of frames between scenes, 81.02%
of all RGB images (recorded with ∼ 100fps) are correctly
identified as either containing an insect or are correctly clas-
sified as empty if triggering would be done on a per-frame
basis. This is also reflected in the F1 score and the corre-
sponding precision and recall values. Assuming a triggering
mechanism as used for conventional camera traps, in which
a detected animal initiates the collection of a continuous im-
age sequence of δ frames (in our case 1 second, resulting in
δ = 100) the average frame accuracy increases to 75%.

Given the different scene complexities, the distance to
the area of interest (c.f. Tab. 1) has the strongest impact on
the frame-based accuracy values. Using parameters opti-
mised for particular scenes (Tab. 3), minor improvements
can be recognized. However, given that this distance is
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inversely proportional to the number of pixels covered by
the appearance of the insects, smaller distances are recom-
mended as expected.

As can be seen in Tab. 2 our algorithm outperforms
YOLOv7 and EVPropNet in almost all global and scene-
specific configurations for the frame-based metrics. Only
for the scene ”h-l-h” YOLOv7 outperforms our approach
(for a discussion see bounding box-based evaluation be-
low).

Bounding Box-based Evaluation To extract the locali-
sation score in the event stream, cluster centres µcl are
matched to user-specified bounding boxes by distance. Cen-
tres inside a minimum enclosing circle of the bounding box
are considered a true positive, cluster centres with no corre-
sponding bounding box specify false positives and bound-
ing boxes without a corresponding cluster are considered
false negatives. These estimates are used to quantify the
precision, recall and F1 score using the confident user an-
notations only.

An exemplary accumulated event image with cluster
centre and ground truth trajectory is given in Fig. 4. As
can be seen in Tab. 2 and similar to the frame-based evalua-
tion, the F1 score varies between 69.62% and 22.35%. The
distance to the area of interest has the strongest impact but
the dynamics within this area and the background are also
impacting our object detection performance. Tuning the pa-
rameters for individual scenes again improves the F1 score
for boxes; however, given the highly complex and challeng-
ing scenarios, an average precision of 65.72% and recall of
37.42% for our global configuration demonstrate that the
DVS-based object detection is generalising well enough for
initial insect localisation.

As can be seen in Tab. 2 our algorithm outperforms
YOLOv7 and EVPropNet on the bounding box-based met-
rics. Similar to the frame-based evaluation, YOLOv7
achieves the best scores for the ”h-l-h” scene. A possible
explanation could be the particularly small appearance of
the insects in this scene (see Tab. 1). As a consequence,
the body and wings of the insects do not generate sufficient
event counts in the DVS stream. For YOLOv7 this is not
necessarily important, since it uses images composed of ac-
cumulated events, which do not depend on the actual event
activity per pixel but is mostly influenced by the shape of the
object of interest. Instead the performance of YOLOv7 is
more dependent on a combination of the distance to the area
of interest, the movement of objects with insect like shapes
in the accumulated event stream, and the overall movement
around insects.

Processing Speed Enabling DVS-based triggering re-
quires event processing faster than the frame rate of the
RGB camera (here: 100fps). In this context, we define

processing speed as the ratio between recording duration
and the amount of time necessary for a given algorithm
to fully analyse the recording. As can be seen in column
’Proc. Speed’ of Tab. 2 events are processed on average
with 4800% of the necessary real-time performance as a
single threaded workload on a AMD Ryzen 3700X CPU.
Since the number of events increases with the dynamics of
the scene and the background (cf. Tab. 1), the processing
speed decreases to 1048%, which is still sufficient to trigger
a high frame-rate RGB camera. The processing speed of
the deep learning-based approaches does not depend on the
event rate, but is still much slower than our algorithm. In
direct comparison, YOLOv7 outperforms EVPropNet but
still requires 22.9ms per frame on an RTX 2060 Super,
which equates to 43.67% real-time performance. More-
over, the higher power requirements of deep learning-based
approaches are also disadvantageous compared to the pro-
posed solution.

4. Conclusion

In this paper, we describe our progress towards building
a DVS-based insect camera trap. In particular, we introduce
this type of sensing in combination with a real-time small
object detection algorithm to identify insect presence be-
yond the capabilities of conventional imaging. Our evalua-
tions demonstrate that the intrinsic benefits of event cameras
are indeed favourable to disambiguate background from in-
sect motion, while asynchronous processing enables insect
localisation at very high event rates (beyond the speed of
consumer RGB cameras). A comparison against two state-
of-the-art deep learning models revealed superior detection
performance and lower processing times.

The high dynamic range and low energy consumption
of DVS are also favourable characteristics for outdoor ap-
plications, which we are going to elaborate on in more de-
tail in the future. We will also investigate the combination
of RGB and DVS cues for more targeted insect localisa-
tion purposes and extend our evaluations towards nocturnal
insects. Moreover, we will investigate if combined imag-
ing cues will be beneficial for species classification tasks.
We conclude that this type of neuromorphic sensing has the
potential to initiate the RGB image-capturing process and
could therefore be an important technology for building a
general-purpose insect camera trap.
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