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Figure 1. Left: Utilizing a reference facade image (bottom row, left column) and relative camera position information (top row), our method
generates novel facades from varied viewpoints, all while preserving the reference image’s structure and style (centered columns). Addi-
tionally, our approach faithfully reconstructs the reference facade (right column). Right: Zoomed facade regions highlight our method’s
capacity to modify critical facade elements, like windows, across diverse viewpoints (red and orange regions). Furthermore, our approach
accurately reconstructs (green region) the reference facade (blue region).

Abstract
We introduce FacadeNet, a deep learning approach for

synthesizing building facade images from diverse view-
points. Our method employs a conditional GAN, taking a
single view of a facade along with the desired viewpoint in-
formation and generates an image of the facade from the
distinct viewpoint. To precisely modify view-dependent el-
ements like windows and doors while preserving the struc-
ture of view-independent components such as walls, we in-
troduce a selective editing module. This module leverages
image embeddings extracted from a pretrained vision trans-
former. Our experiments demonstrated state-of-the-art per-
formance on building facade generation, surpassing alter-
native methods.

1. Introduction
In urban planning, architectural design, and historical

preservation, there is an increasing demand for rich vi-
sual representations of building facades, as it facilitates
more comprehensive visual analyses, interactive 3D visu-
alizations such as virtual tours, and digital archiving of
structures [10, 37]. A conventional approach to capturing
building facades involves taking photographs from differ-
ent viewpoints. However, this approach is often constrained
by practical limitations, such as the unavailability of mul-
tiple vantage points, especially in densely built urban en-

vironments. Moreover, obtaining a large dataset of images
from varying views is time-consuming and expensive. In
light of these challenges, synthesizing novel views of build-
ing facades from a single image emerges as a compelling
alternative.

We tackle the problem of synthesizing images of a build-
ing’s facade from novel viewpoints, given a single image of
the facade taken from an arbitrary viewpoint. Synthesiz-
ing novel views of a facade given a single image entails
estimating the appearance of the facade as seen from view-
points different from the original image. This problem has
been a subject of interest in computer graphics and compu-
tational photography due to its wide range of applications
and inherent challenges associated with geometric and pho-
tometric consistency [41, 48]

Traditional methods have relied on 3D reconstruction
techniques [15], which involve extensive manual interven-
tion and are not easily scalable. Learning-based approaches,
especially conditional Generative Adversarial Networks
(cGANs), have recently been explored for view synthe-
sis [12, 23]. However, state-of-the-art methods such as
StyleGAN2 [24] and Swapping Autoencoder [34] that rely
on style-content separation, often fail to decouple view in-
formation from structural properties of the facade.

In contrast, our approach, FacadeNet, addresses these
challenges through a novel selective editing module, which
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enables finer control over the generation process. It guides
the generation by computing a selective editing mask, al-
lowing the alteration of view-dependent elements (e.g.
windows) while keeping view-independent elements (e.g.
walls) intact. FacadeNet takes as input a single image of a
building facade together with the desired view information
in the form of a view tensor, and uses a conditional GAN
equipped with our novel selective editing module to synthe-
size an image of the facade from a different viewpoint.

Computing a selective editing mask could be simplified,
if a semantic segmentation of the input facade image is
available, as in SPADE [33] and SEAN [49]. Unfortunately
such semantic segmentation masks are not available for the
vast majority of facade images captured in the wild. Us-
ing a pretrained network to generate such semantic masks
is possible, but these will always be imprecise, especially
at boundaries. Inspired by recent advances in the explain-
ability of large pretrained vision transformer models [3],
we hypothesize that a selective editing mask could be com-
puted by combining, in a learnable network module, fea-
tures from deep layers of such models. Our novel selective
editing module (Section 3) takes as input image features ob-
tained by a pretrained DINO model [5], and learns an opti-
mal weighting of them in order to compute a selective edit-
ing mask. This mask then drives the synthesis of a facade
image where view dependent parts such as windows and
doors are edited according to the provided view informa-
tion, while view independent parts such as the walls remain
fixed.

Through a series of experiments (Section 4), we demon-
strate that our method outperforms quantitatively and qual-
itatively competing works, as well as strong baselines such
as having access to ground truth semantic segmentation
masks, on the large LSAA facade image dataset [50]. Fur-
ther ablations motivate the design choices for our selective
editing module as well as some technical implementation
details.

In summary, the main contributions of this paper are:

1. Introducing a novel selective editing module within a
conditional GAN, that enables real-time synthesis of
novel facade views from a single arbitrary image.

2. Demonstrating through rigorous evaluation that Fa-
cadeNet outperforms state-of-the-art alternatives in
single-image facade view synthesis.

3. Present a comprehensive ablation study, unveiling the
importance of different components in the FacadeNet
architecture.

4. Showcasing two applications of our novel approach in
(i) eliminating rectification artifacts in facade images
extracted from panoramic street-view images, and (ii)
real-time texturing of simple 3D building models with
dynamic camera-dependent facade views.

2. Related Work
Our work lies within the broader realm of view synthe-

sis, with a particular focus on synthesizing novel views of
building facades via conditional GANs. In this section, we
briefly review key areas of related work, including facade
image analysis, traditional view synthesis, learning-based
view synthesis, and conditional GANs for image genera-
tion.

Facade Image Analysis. Building facades have been a
subject of interest due to their role in urban planning, ar-
chitectural design, and 3D modeling. Debevec et al. [10]
used facade images for architectural scene modeling, while
Remondino and El-Hakim [37] emphasized image-based
3D modeling for archival and historical preservation, fo-
cusing on facades. Datasets like eTrims [28], CMP Facade
dataset [46], and Graz50 [36], have been developed to facil-
itate research on facade analysis and modeling, aiding tasks
such as facade segmentation, object detection, and 3D re-
construction [45]. However, these datasets predate recent
deep learning advancements and are relatively small, thus
are unsuitable for our purposes. The recent LSAA dataset
of Zhu et al [50] provides a large set of rectified facade im-
ages with various metadata including annotated view infor-
mation and is thus used to train and evaluate our network.

Traditional View Synthesis View synthesis involves
generating new scene images from viewpoints different
from the available ones. Classic methods include view mor-
phing by Seitz and Dyer [41], a technique that generates in-
termediate views of a scene by blending and warping two
or more images, and Debevec et al. [10], who focused on
creating photorealistic models of architectural scenes from
images. Traditional approaches focused on geometric and
photometric consistency to synthesize novel views. Hartley
and Zisserman [15] provide an extensive exploration of the
geometry involved in multiple view synthesis. McMillan
and Bishop [30] proposed the image-based rendering tech-
nique, which involved blending of different views. While
these methods were ground-breaking, they often require ex-
tensive manual effort and are not easily scalable. In con-
trast, our method is fully-automated, scalable, works in real-
time, and does not rely on any hand-engineered features or
correspondences to generate novel views of a facade.

Learning-based View Synthesis The advent of deep
learning led to learning-based methods gaining popularity
for view synthesis tasks. Hedman and Kopf [16] used a
deep neural network to synthesize motion blur and refocus
images. Flynn et al. [12] introduced DeepStereo, which pre-
dicts new views from large natural imagery datasets. Zhou
et al. [48] advanced this domain with a multiplane image
representation for stereo magnification. Neural Radiance
Fields [4, 29, 31] have recently taken the view synthesis
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and reconstruction research areas by storm. However, they
necessitate training on multiple images per facade, requir-
ing training from scratch for each new facade, and often
lack real-time speed, although recent methods offer vast
improvements [17]. Diffusion models [11, 19, 32, 43] are
a valid recent alternative to GANs, but they are slower
and harder to control. Diffusion-based generative mod-
els [20, 44] have gained substantial attention for surpassing
GANs in FID scores, particularly in unconditionally gen-
erated tasks like ImageNet [21] and super-resolution [40].
However, image editing poses a more intricate challenge
for diffusion models. Recent advancements in both con-
ditional [39] and unconditional [7] diffusion models have
tackled this, yielding high-quality results. Here, we un-
dertake a comparative analysis between the performance of
Palette [39] and FacadeNet. In contrast, our method offers
real-time performance, generalizes to unseen facades, and
only requires one facade image as input.

Conditional Generative Adversarial Networks GANs
have been used for various image generation tasks, and con-
ditional GANs, in particular, have been successful in image-
to-image translation tasks. The Pix2Pix network by Isola et
al. [23] is a well-known example of using conditional GANs
for image translation. StyleGAN [25] introduced a novel
approach that utilizes a learned constant feature map and
a generated latent code z to control the output image fea-
tures. StyleGAN2 [24] further enhances this concept with
AdaIN [22] layer, which adjusts image channels to unit vari-
ance and zero mean, retaining channel statistics. It then
incorporates style through scaling and shifting, guided by
conditional information. Karras et al [26] introduced an al-
ternative approach that retains scale-specific control, elim-
inating undesired artifacts while preserving result quality.
Image2StyleGAN [1, 2] aimed to overcome a disadvantage
of StyleGAN-based approaches to manipulate reference im-
ages. However, these approaches are slow due to a pre-
processing step that iteratively predicts the latent code to
reconstruct the reference image.

Another line of work to disentangle an image’s latent
space was introduced in the Swapping Autoencoder pa-
per [34] where two discriminators are used to disentan-
gle style and structure from a reference input image. Ic-
GAN [35] on the other hand used two inverse encoders to
allow changing of the conditional and latent vectors sep-
arately. StarGAN [8] is one of the most common multi-
domain image-to-image translation method which tries to
improve the scalability of GAN models by using a single
generator to generate all available domains. To extend Star-
GAN [8] to a multi-modal approach, StarGANv2 [9] re-
placed the domain label with a domain specific style la-
tent code that can represent diverse styles for each of the
available domains. The SPADE network [33] introduced
a novel conditional batch normalization specifically modi-

fied for images. An improved approach that enables multi-
modal controllable style change for each different input was
described in the SEAN network [49]. Our method is most
closely related to StyleGAN2 [24] and Swapping Autoen-
coder [34], that rely on style-content decoupling. Encod-
ing facade view information as style is not enough how-
ever, since conditional GANs often fail to decouple view
information from structural properties of the facade. As a
result, they tend to hallucinate elements (e.g. windows or
balconies), or add noise and other artifacts. FacadeNet tack-
les the shortcomings of these methods through a novel se-
lective editing module, which computes a selective editing
mask based on pretrained DINO [5] features to guide the
generation, allowing it to focus on altering only the view-
dependent elements (e.g., doors, balconies, windows).

Currently, 3D-aware synthesis techniques [6, 14, 47] ex-
hibit training efficiency and sampling capabilities com-
parable to 2D Generative Adversarial Networks (GANs).
However, their effectiveness relies on meticulously curated
datasets with aligned structures and scales, such as those
for human or cat faces. A recent study [42], circumvented
previous challenges, notably dependence on known camera
poses. This workaround trains models to learn pose distri-
butions from single-view data, rather than relying on multi-
view observations. Similarly, our proposed approach elim-
inates the need for known camera poses and can be trained
on sparse single-view image data.

3. Method
Our approach focuses on synthesizing building facades

with varying viewing angles, based on a reference facade
image fref ∼ F ⊂ RHxWx3 and horizontal and vertical
angle vectors θh ∼ ΘH ∈ [−1,+1]W and θv ∼ ΘV ∈
[−1,+1]H . By conditioning the generation process on the
new view direction controlled by the input angle vectors,
our method, called FacadeNet, produces facades that ex-
hibit realistic modifications in semantic components like
windows and doors. To ensure authenticity, we incorpo-
rate a discriminator D that enforces plausible changes in
these components. Preserving the overall facade structure is
crucial. Thus, our network is designed to faithfully recon-
struct areas such as walls that remain unchanged regardless
of the viewing direction. To achieve this, we utilize the fea-
ture embeddings of a self-supervised vision transformer [5]
to construct a semantic-aware mask, which guides the re-
construction process. Moreover, we employ a reconstruc-
tion loss to enhance the structural accuracy of the gener-
ated facades. In the following sections, we first provide
an overview of our proposed architecture in Section 3.1.
We then delve into how we enforce the generation of struc-
turally aware and novel building facades in Section 3.2 and
Section 3.3, respectively. Finally, in Section 3.4, we present
the implementation details of our approach.
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Figure 2. Our training procedure creates latent tensors z = E(fref ) which capture the reference facade’s style and structure. These
z tensors form the basis for diverse view generation from a single reference image fref with conditional information θ. The generator
utilizes the latent code z and the target view direction θ to produce new samples G(z, θtarget). Our approach accurately reconstructs fref
by aligning θtarget with the same viewpoint of fref , while varying the θtarget it generates novel views fnovel. To ensure high-quality and
consistent facade reconstruction from various viewpoints, our model employs multiple loss functions. These encompass L1 reconstruction
and conditional discriminator losses, enhancing fidelity and structural awareness. Furthermore, we introduce a selective editing module
that employs prior information (DINO ViT features) to extract a selective editing mask. This mask designates editable components during
novel view synthesis, contributing to the precision of the process.

3.1. FacadeNet architecture

To generate building facades with specified viewing di-
rections based on a reference image fref and guided by the
target viewing vector θtarget = [θh, θv], we employ a task-
specific conditional GAN architecture [23]. As illustrated
in Figure 2, FacadeNet comprises an autoencoder network.
First, the encoder E, inspired by [34], takes the reference
building facade as input and produces a latent tensor z with
spatial dimensions, encoding both the structural and texture
information present in the image fref :

z = E(fref ) (1)

Next, the conditional generator G, following [26], utilizes
the latent tensor z to synthesize a facade that aligns with the
desired viewing direction, using the target viewing vector
θtarget:

fnovel = G
(
E(fref ), [θh, θv]

)
(2)

The generated facade fnovel is crafted by combining the en-
coded reference image embedding z and the target viewing
information. To ensure realistic results, the discriminator D
assesses the novel facade. The target viewing vector is also
incorporated into the discriminator to enforce that the gen-
erated facade aligns with the desired viewing direction, by
adopting the conditional discriminator idea of [23].

3.2. Structural awareness

In our specific task, we aim to modify the high-frequency
areas within the facade image, as they have a greater impact
on influencing the viewing direction of the building being
represented. At the same time, we want to preserve the low-
frequency structural components typically found in building

facades, such as flat surfaces like walls. These components
remain visually consistent regardless of the observer’s view-
ing position.

Accurate reconstruction. In line with the principles of
the classic autoencoder [18], we aim to acquire a mapping
between the latent code z ∼ Z and the image fref ∼ F ⊂
RHxWx3. To this end, we employ an image reconstruction
loss that compares the input facade fref with the recon-
structed facade frec conditioned on the ground truth target
viewing vector θgttarget, which corresponds to the direction
of the camera that originally captured the input image:

Lrec(E,G; θgtt ) = Efref∼F

[
|fref −G

(
E(f), [θgth , θgtv ]

)
|
]

(3)

During the optimization process of the autoencoder, this
loss facilitates the acquisition of accurate and informative
latent representations for building facades.

Selective Editing Module. Our primary goal is to selec-
tively modify areas within the input facade that have a sig-
nificant impact on the building’s viewing direction while
disregarding regions that maintain visual consistency rel-
ative to the capturing camera’s orientation. To accom-
plish this, we introduce the Selective Editing Module that
constructs the selective editing mask, effectively isolating
these areas within the facade image. Drawing inspiration
from the findings of [3], we initially pass the input facade
through a pre-trained self-supervised vision transformer [5]
and extract the key representations of the last attention layer.
To retain high-frequency information from the underlying
data distribution, we employ principal component analysis
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Figure 3. This figure depicts the step-by-step procedure for calculating selective editing masks for a given image fref . We commence by
employing a pre-trained DINO ViT model to extract localized key embeddings that encapsulate crucial visual features within the image.
Once DINO key embeddings are obtained, we apply PCA (Principal Component Analysis) to retain high-frequency information from these
embeddings. Lastly, our adaptive blending layer utilizes the PCA embeddings, enabling optimal feature combination extraction. This
process yields a single-channel selective mask denoted as MMM .

(PCA) on these embeddings By selecting the top four prin-
cipal components Vpc = [v1,v2,v3,v4], we capture the
most salient features. To create the selective editing mask,
we blend these selected principal components using a lin-
ear combination approach. More specifically, we employ a
set of learnable blending weights W ∈ R4 and apply the
sigmoid function σ(·) to obtain the final mask:

M = Vpc · σ(W) (4)

This formulation enables the network to learn the optimal
linear combination of the principal components, effectively
highlighting the most prominent elements within the facade,
such as windows and doors (see Figure 3). The extracted
selective editing mask is semantic-aware, since it captures
semantic areas in the facade image that are view-dependent.

In addition to the reconstruction loss (Eq 3), which pe-
nalizes modifications across the entire reconstructed im-
age, we introduce the Selective Editing Loss that capital-
izes on the selective editing mask M. This loss compares
the masked input facade fref with the masked novel facade
fnovel whose viewing direction is altered according to the
conditional target viewing direction θnoveltarget, rather than the
ground truth direction of the reference facade. While the ex-
tracted mask M highlights editable areas within the facade,
the primary objective of this loss is to retain the appearance
of view-independent components. To achieve this, we uti-
lize the complement of the mask, denoted as M′ = 1−M.
By employing M′, we effectively ignore high-frequency ar-
eas, enabling the network to preserve the viewing direction
of the view-independent structural elements during the syn-
thesis of novel facades with varying viewing directions:

ledit(E,G; θnt ) = ||fref ⊙M′ −G
(
E(fref , θ

n
t )
)
⊙M′|| (5)

Furthermore, as part of our training process, we synthesize
n novel facades for each input image and apply the selec-
tive editing loss. This step is crucial in ensuring that the
appearance of view-independent components remains con-
sistent across various novel facades with different viewing
directions:

Ledit(E,G; [θn1
t , θn2

t , · · · , θnk
t ]) =

1

k

k∑
i=1

l
(i)
edit (6)

3.3. Novel reconstruction

When it comes to image editing, a crucial aspect is to
modify the latent representation of an input image in a way
that ensures the novel reconstruction appears both authentic
and aligns with the provided conditional information. Si-
multaneously, this representation should be able to faith-
fully and easily reconstruct the input image. To address
these requirements, we introduce two key loss components:
the View-dependent loss and the View-consistent loss. These
losses play a vital role in guiding the network to generate re-
alistic novel facades while preserving the fidelity of the ref-
erence facade and its original viewing direction, enforced
by the discriminator D.

View-dependent loss. This loss facilitates the network’s
ability to synthesize novel facades that appear authentic
and visually consistent with the specified viewing direction.
By incorporating the conditional information, the network
learns to modify the relevant components of the facade, en-
suring the alterations align with the intended changes in the
viewing perspective. Following the synthesis process dur-
ing of the selective editing loss, we utilize a conditional ad-
versarial loss that guides the generation of multiple novel
facades based on the conditional target viewing directions
θnovelitarget :

Ldep
GANd(E,G,D; θni

t ) = Efref∼F,θ∼Θ[−log(D(f in, θ))] (7)

View-consistent loss. In parallel, the View-consistent
loss serves to maintain the faithfulness of the reconstruc-
tion process for the reference facade. By minimizing the
impact of viewing direction changes on the entire image,
we ensure the reconstruction remains as close as possible to
the original facade, thereby preserving its original viewing
direction. The non-saturating adversarial loss [13] for the
generator G and the encoder E is computed as:
Lcons
GAN (E,G,D; θgtt ) = Efref∼F[−log(D(frec, θ

gt
t ))] (8)
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3.4. Implementation Details

In this section we provide the implementation details re-
garding our training process. For the construction process
of the target viewing vectors please see our supplementary
material.

To optimize our network, we combine the structural
awareness and novel reconstruction losses using linear
weights::

Ltotal = λ1Lrec + λ2Ledit + λ3Ldep
GAN + λ4Lcons

GAN (9)

We empirically set the weights as λ1 = λ2 = 3 and
λ3 = λ4 = 0.5, effectively balancing the importance of
each loss component. For training, we employ the Adam
optimizer with a learning rate of 0.001. Our network is
trained on four NVIDIA V100 GPUs using a batch size of
32 images at a resolution of 256×256. The training process
consists of 15 million iterations, taking approximately 4
days to complete. Remarkably, our trained model achieves
an impressive average generation speed of 62 frames per
second (fps) for a batch size of 32 images. We also refer
readers to our project page with source code for more de-
tails. 1

4. Evaluation
This section presents a comprehensive evaluation of Fa-

cadeNet’s performance, combining qualitative and quanti-
tative analysis. We begin by discussing the dataset used for
our experiments in Section 4.1, providing important context
for the subsequent evaluations. In Section 4.2, we conduct
a comparative analysis of our approach against state-of-the-
art GAN-based and diffusion-based models. To assess per-
formance, we employ various metrics, illustrating the supe-
riority of FacadeNet. To conclude our evaluation, Section
4.3 presents two novel applications specifically tailored to
urban environments. These applications serve as powerful
demonstrations of the versatility and potential impact of Fa-
cadeNet. Through these innovative use cases, we highlight
the practical value and wider implications of our research.
Please see our supplementary material for an in-depth abla-
tion study of our design choices, where we emphasize the
effectiveness of our selective editing module. Moreover,
we provide examples of facade interpolation under varying
viewing directions.
4.1. Dataset

We make use of a rectified facade dataset sourced from
[50] to obtain genuine rectified facade images. This dataset
comprises approximately 23, 000 images. The dataset pro-
vides various attributes from four distinct categories: Meta-
data (including geographic properties like longitude, lati-
tude, city, and building information), homography (encom-

1ygeorg01.github.io/FacadeNet includes our code and trained models.

passing view angle and homography error), semantic at-
tributes (such as windows, balcony, and door area), and
semantic embedding (capturing similarities between sam-
ples). These attributes offer valuable insights into various
scenarios.

In our particular case, we leverage the homography at-
tributes, particularly the view angle and the size of the
cropped facade, to generate pairs of facade images and view
direction targets (see supplementary). These targets repre-
sent the viewpoint for each given facade image, thereby en-
abling accurate processing of images regarding the angle
information.

4.2. Comparisons with other methods

In this section, we perform a comparison between our
approach and the state-of-the-art approaches related to our
work. We use styleGAN2-ADA [24], Palette [39], 3DGP
[42] and Swapping-autoencoder [34] to extract metrics that
measure the quality and consistency of facade reconstruc-
tion and novel view synthesis. To assess the performance of
facade reconstruction, we utilize several metrics including
PSNR, SSIM , and FIDrec. These metrics allow us to
evaluate both the image quality and the structural similar-
ity between the reference and generated reconstructed im-
ages. Additionally, for evaluating the quality of novel view
synthesis, we rely on the FIDnovel score. In terms of con-
sistency and perceptual similarity, we employ LPIPSvgg

and LPIPSalex metrics [27], which aim to measure the
smoothness of viewpoints interpolation. A low LPIPS
score indicates that the image patches are perceptually sim-
ilar which implies fewer alternations in structure and style
between viewpoints.

To measure StyleGAN2 [24] and 3DGP [42] reconstruc-
tion quality, we project the reference image to the latent
space in an iterative manner. We set the maximum num-
ber of optimization iterations to 1000 and 4000 respectively.
We further modified the Swapping-Encoder [34] model to
disentangle structure and novel direction, thereby enabling
novel view manipulation and synthesis, and trained Palette
[39] given as conditional input the angle-view maps and
the reference image to follow our task’s approach. Further,
we introduce two versions of our network: FacadeNetbase
serves as the baseline, which relies solely on L1 and ad-
versarial losses to optimize its performance. On the other
hand, FacadeNetfull represents the enhanced version of
FacadeNet, incorporating all the design choices discussed
in section 3, including the utilization of the selective editing
module.

To assess the capabilities of StyleGAN2 [24] and 3DGP
reconstruction [42], we employ an iterative approach to
project the reference image into the latent space. We set the
maximum optimization iterations to 1000 for StyleGAN2
and 4000 for 3DGP . Furthermore, we have customized the
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Method LPIPS-alex↓ LPIPS-vgg↓ FIDrec ↓ FIDnovel ↓ PSNR↑ SSIM↑
StyleGAN2-ADA [24] – – 22.52 – 20.591 0.467

Palette [38] 0.259 0.401 23.367 22.829 17.881 0.332
3DGP [42] 0.186 0.347 35.918 33.005 14.673 0.201

Swapping-AE [34] 0.198 0.386 10.55 15.64 22.24 0.668
FacadeNetbase 0.174 0.296 10.59 9.91 24.13 0.69
FacadeNetfull 0.119 0.240 9.601 8.327 23.866 0.714

Table 1. This table presents a comprehensive comparison between our model baseline FacadeNetbase, StyleGAN2 [26], Palette [38],
3DGP [42], swapping-autoencoder [34] and FacadeNet. The results clearly demonstrate the superiority of our task-specific model across
various evaluation criteria, including reconstruction quality, novel view synthesis quality, and consistency. To assess the reconstruction
image quality, we employ FIDrec, PSNR, and SSIM metrics. Regarding novel view image quality we rely on FIDnovel, while we
measure the inter-view consistency with LPIPS − {alex, vgg} metrics. Our final model FacadeNet outperforms previous approaches
by a significant margin.

Swapping-Encoder model [34] to disentangle structure and
novel direction, thereby enabling novel view manipulation
and synthesis. Additionally, we have trained Palette [39] us-
ing angle-view maps and the reference image as conditional
inputs, aligning with our task’s approach. Moreover, we in-
troduce two versions of our network FacadeNetbase serves
as the baseline, relying solely on L1 and adversarial losses
to optimize its performance. Conversely, FacadeNetfull
represents the enhanced iteration of FacadeNet, incorporat-
ing all the design choices discussed in Section 3, including
the utilization of the selective editing module.

Table 1 showcases a comprehensive comparison of
various models. Among them, FacadeNetbase and
FacadeNetfull achieves higher reconstruction quality,
outperforming alternative approaches with PSNR scores
of 24.13 and 23.86, and SSIM values of 0.69 and 0.714,
respectively. Notably, the performance of Swapping−AE
[34] and Palette [39] surpasses that of 3DGP [42].

In terms of FID scores, our FacadeNet approach gen-
erates more realistic samples than other models. Particu-
larly in novel view facade synthesis, the FID score differ-
ence increases noticeably. Our design choices effectively el-
evate facade synthesis, resulting in robust artifact-free novel
views. FacadeNetfull outperforms swapping-AE [34] by
1.04 FID score points for FIDrec, and this gap widens to
7.32 for novel view synthesis FIDnovel.

A central advancement of FacadeNet centers around
the coherence among diverse viewpoints. To quantify this
aspect, we employ the LPIPS metric. Notably, com-
pared to other methods, 3DGP [42] excels in consis-
tency, by achieving the highest scores. Building upon this,
FacadeNetfull further surpasses 3DGP [42] by improv-
ing LPIPSalex and LPIPSvgg scores by 0.05 and 0.88
respectively.

4.3. FacadeNet Applications

Problematic Rectified Facade Improvement Our main
assumption to improve problematic facade images, is that
0-view angle difference facades are closer to ortho-rectified

images that contain minimum distortion or other artifacts.
We define as problematic the group of facades that their
mean view-angle value is higher than 60◦. Those facades
have extreme orientations either to the left or right and con-
tain large areas of missing information on doors and win-
dows or other assets.

Moreover, our methodology manages to generate hidden
information that is not visible in the reference facades(top
images) due to the originally captured view angle. Our gen-
erator G manages to generate new information for the un-
seen parts of the input facade images with identical style
and structure which is essential for the consistency between
input and output facade images. Examples are provided in
the supplementary.

Real-Time Textures for Urban Scenes Following the fa-
cade view interpolation experiments we developed an ap-
plication where we represent a 3D city environment by us-
ing interactive textures created by our generative model.
More specifically we create a large scene that contains
simple cubes b ∼ B that represent the buildings and we
use reference facades f ∼ F as textures. As we navi-
gate around the city the view direction targets between the
camera and the points are computed. The computed view
angle maps are used as conditional view direction targets
θtarget = {θh, θv} to alter the orientation of each texture
map accordingly. The equations to compute the view direc-
tion target in 3D environment are as follows:

d = p− c (10)

θfh(d, n) = (d ⊙ [1, 0, 1]) · (n ⊙ [1, 0, 1]) (11)

θfv (d, n) = (d ⊙ [0, 1, 1]) · (n ⊙ [0, 1, 1]) (12)

d ∈ R3 stands for the viewing direction vector that starts
from the camera positions c and points on a facade point
p, the ray direction from the camera to a specific point is
computed with the following equation d = c − p. The tar-
get maps are computed as the dot product of the viewing
direction vector d and the facade’s surface normal vector n.
θfh and θfv denote the target vectors for the horizontal and
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Figure 4. This figure presents qualitative comparisons between Palette [39] (1st row), 3DGP [42] (2nd row), swapping-AE [34] (3rd

row) and FacadeNetfull (4th row). Palette and 3DGP are unable to generate fine details as the generation is combined with novel view
synthesis. Notably, artifacts become apparent in the output generated by the swapping − AE model across varying viewing angles. In
contrast, FacadeNetfull’s results demonstrate a higher level of robustness, effectively preserving the structural details. More results are
displayed in the supplementary.

vertical axis respectively. θfh and θfv target maps differ on
the angle that is computed on each occasion, for θfh targets
we consider x and z axis to compute the angle difference on
the horizontal axis, while, for vertical maps θfv we consider
y and z axis to output the difference on the vertical axis. To
cancel out a specific axis, the Hadamard product ⊙ is used
to isolate either the angle difference on the x − axis for
horizontal target vector θfh or the difference on y− axis for
vertical target vector θfv .

This enables a real-time manipulation of textures for an
urban 3D scene, more precisely, for each building b we ran-
domly assign a reference image f which serves as texture
for this building(cube). In each rendering iteration, our ap-
plication updates the textures for each building b according
to camera location c. Given, facade point p their normal n,
and the camera position c we create the horizontal and ver-
tical view targets θh and θv . Then, our model generates the
new texture accordingly t = G(E(f), θftarget). For more
examples check the video in the supplementary materials.

5. Conclusion and Future Work

In this paper, we presented FacadeNet, a novel condi-
tional GAN that synthesizes building facade images from

different viewpoints given a single input image. By introd-
cuting the selective editing module, FacadeNet effectively
focuses on view-dependent facade features, leading to high-
quality synthesized images with fewer artifacts compared
to existing methods. Our experimental evaluations demon-
strate state-of-the-art performance on standard metrics and
appealing qualitative results.

Future Work FacadeNet offers several avenues for future
work. First, exploring methods to handle highly complex
facades with intricate geometric patterns could enhance the
model’s and applicability to a wider range of architectural
styles. Moreover, integrating additional context, such as
surrounding buildings and natural elements, could improve
the visual coherence of the synthesized images in urban en-
vironments. FacadeNet could also be extended to support
the synthesis of interiors, which would be beneficial for vir-
tual reality applications. Finally, incorporating temporal in-
formation for dynamic scene elements (e.g., varying light-
ing conditions) could make FacadeNet applicable to time-
varying view synthesis.
Acknowledgements This project has received funding
from the EU H2020 Research and Innovation Programme
and the Republic of Cyprus through the Deputy Ministry of
Research, Innovation and Digital Policy (GA 739578).

5391



References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent
space? In ICCV, 2019. 3

[2] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-
age2stylegan++: How to edit the embedded images? In
CVPR, 2020. 3

[3] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel.
Deep vit features as dense visual descriptors. arXiv preprint
arXiv:2112.05814, 2021. 2, 4

[4] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In ICCV, 2021. 2

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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